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Abstract. It is known that when dealing with interval-valued data,
there exist problems associated with the non-existence of a total order.
In this work we investigate a reformulation of an interval-valued decom-
position strategy for multi-class problems called IVOVO, and we analyze
the effectiveness of considering different admissible orders in the aggrega-
tion phase of IVOVO. We demonstrate that the choice of an appropriate
admissible order allows the method to obtain significant differences in
terms of accuracy.

Keywords: Multi-class classification problems - one-vs-one strategy -
interval-valued fuzzy sets - admissible order.

1 Introduction

The objective of a classification problem consists in learning a mapping (clas-
sifier) from a set of labeled data (examples) into a set of labels (classes), being
able of correctly predicting the class of new unseen instances. Depending on the
number of classes (labels) the classifier must deal with, the classification problem
can either be a two-class (binary) or multi-class problem. From the point of view
of complexity, it is much more complex to deal with multi-class problems due
to the overlapping between decision boundaries of the classes [16]. Under this
context, decomposition strategies, which divide multi-class problems into binary
ones, are usually applied to reduce the inherent complexity. The two main de-
composition strategies are One-Vs-All (OVA), that generates as many binary
problems as number of classes, and One-Vs-One (OVO), that generates as many
binary problems as pair of classes, being the latter the most widely used one [10].
Then, each binary problem is solved by an independent base classifier. Finally,
each new example is submitted to each classifier and their outputs are fused in
order to predict the final class of the example.

* This work has been partially supported by the Spanish Ministry of Science and
Technology under the project TIN2016-77356-P and the Public University of Navarre
under the project PJUPNA13.
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In this work we focus on Fuzzy Rule-Based Classification Systems (FRBCSs)
[13], which are known for their interpretability due to the use of linguistic labels
in the antecedent of the produced rules. In order to better deal with the uncer-
tainty associated with the choice of fuzzy membership functions in the reasoning
method of FRBCSs, in [19] IVTURS, a new method based on the use of interval-
valued fuzzy sets, was presented. This model must deal with interval data and
therefore, many difficulties arises. One of the most important issue comes from
the fact that the usual order between intervals is a partial order.

FRBCSs have been proven to successfully deal with multi-class problems
applying an OVO decomposition strategy (see, for example [9, 7, 8]). Moreover,
the first solution to handle multi-class problems with IVTURS was given in
[8] with the name of IVOVO. It is worth noting that the aggregation phase
of IVOVO manages interval-valued confidences and accordingly, the problems
related to the order needs to be addressed. The arrangement of interval-valued
confidences in IVOVO was solved by the usage of a total order given by Xu and
Yager [20], but no further analysis about its suitability has been carried out yet.
Moreover, the order given by Xu and Yager has been proven to be a particular
case of a larger set of total orders between intervals called admissible orders [4].
Considering all these facts, the purpose of this work is to study the influence of
different admissible orders (apart from the one given by Xu and Yager) in the
performance of IVOVO. To do this, we will consider several admissible orders
under two aggregation strategies for OVO, Voting and Win Weighted Voting
(WinWV). We will not only evaluate the final performance of each admissible
order, but also how influential is on each specific dataset. The experimental study
will consider 22 datasets from the KEEL dataset repository [1] and the analysis
will be supported by non-parametric statistical tests [11].

The structure of the paper is as follows. In Section 2 we recall the main
mathematical concepts related with intervals. In Section 3 we describe FRBCSs,
OVO and IVOVO. In Section 4 we explain the concept of admissible order and we
provide several construction methods. We finish this paper with an experimental
study on the influence of admissible orders in IVOVO in Section 5 and the
conclusions and future research lines in Section 6.

2 Preliminaries

In this section we recall the theoretical basis of this work. Since we will deal with
interval data, we will denote by L([0, 1]) the set of all closed subintervals of the
unit interval [0, 1], that is,

L([0,1]) = {x = [z,7] | (z,7) € [0,1]? and z < T}.

Remark 1. Although in this work we focus on L(]0, 1]), we can consider also L
as the set of all positive closed intervals, i.e., L = {x = [z,7] | 0 < z < T}.

Notice that L(][0, 1]) is a partially ordered set with respect to the order rela-
tion <;, defined in the following way: given x,y € L([0, 1])?

x<pyifandonlyifz <yand 7 <7.
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Considering this order relation, we have that (L([0,1]),<r) is a complete
lattice whose smallest element is 0 = [0,0] and the greatest is 1 = [1, 1] [12, 6]

The fact that L([0,1]) is a partially ordered set means that it is not always
possible to establish an order relation between two arbitrary intervals x,y €
L([0,1]). We will say that x and y are incomparable, denoted by x || y, whenever
x £1 y and y £ y hold simultaneously.

Ezample 1. The intervals x = [0.1,0.8] and y = [0.2,0.3] are incomparable. In
fact, x || y whenever (z <y and ¥ < 7) or (y <z and T < 7).

3 IVOVO: Interval-Valued One-Vs-One

IVOVO stands for Interval-Valued One-Vs-One, and is based on the application
of the OVO strategy to IVTURS fuzzy classifier, which outputs interval-valued
confidence degrees instead of real-valued ones. For this reason, in this section we
recall IVOVO and its main components: IVTURS and OVO.

3.1 Fuzzy Rule-Based Classification Systems: IVTURS

Among classification algorithms, Fuzzy Rule-Based Classification Systems (FR-
BCSs) try to create models whose rules are interpretable by humans due to
the use of linguistic labels [13]. These linguistic rules are extracted by a learn-
ing algorithm from a training dataset Dr having P labeled examples z, =
(@p1,.. . Zpn),p = {1,..., P}, where z,,; is the value of the i-th attribute (i =
{1,2,...,n}) of the p-th training example. Each example is associated with a
class y, € C = {C1,Cy, ...,Cy, }, being m is the number of classes of the problem.

IVTURS algorithm [19] is based on FARC-HD (Fuzzy Association Rule-based
Classification model for High-Dimensional problems) [1]. Both use rules with the
following structure:

Rule R; : If 2y is Aj; and ... and z,, is Aj,; then Class = C; with RW;

(1)
where R; is the label of the j-th rule, x = (21,...,2,) is a vector representing
the example, A;; € X is a linguistic label modeled by a triangular membership
function (where X; = {X;1,..., Xy} is the set of linguistic labels for the i-th
antecedent, being [ the number of linguistic labels in this set), C; is the class
label and RWj is the rule weight computed using the certainty factor defined in
[14].

The main difference in the rule representation between FARC-HD and IV-
TURS is that the latter take advantage of Interval-Valued Fuzzy Sets (IVFSs)
to model the uncertainty under the definition of the linguistic labels, and hence
its membership functions are defined by IVFSs instead of FSs. Accordingly, the
whole Fuzzy Reasoning Method (FRM) needs to be adapted to work with inter-
val along all its steps. As a consequence, the confidence (association) degree for
each class obtained in the final step is also an interval. Therefore, the final class
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is taken as the one with the largest confidence degree (according to an admissible
order, see Section 4).

With respect to the rule learning algorithm, FARC-HD was composed of
three steps (see [1] for more details): a fuzzy association rule extraction, a can-
didate rule pre-screening, and a genetic rule selection and lateral tuning. IV-
TURS makes use of FARC-HD for carrying out the rule extraction, but without
performing the last step. Then, it introduces IVFSs and finally uses a genetic
algorithm to tune the interval FRM and carry out a rule selection.

3.2 One-Versus-One (OVO)

In OVO the original m class problem is transformed into a m(m — 1)/2 sub-
problems (all possible pair of classes). Therefore, each base classifier will learn
to distinguish a pair of classes {C;, C;}. To predict the class of a new examples,
each classifier is expected to provide a pair confidence degrees ;;,7r;; € [0, 1]
in favor of classes C; and (), respectively. For simplicity, these outputs are
stored in a score-matriz R. In the case of fuzzy classifiers, these pairs are rarely
normalized [9,7]. This fact requires a normalization step so that the outputs
of all the base classifiers are in the same scale. Normalization with real-valued
confidence degrees is direct, but it is not so straightforward with intervals.

3.3 IVOVO: Interval-Valued One-Vs-One

IVOVO [8] refers to the combination of IVTURS and OVO to enhance the
performance of the former in multi-class problems. Nevertheless, there are three
main issues when using OVO with IVTURS because the score-matrix is filled
by interval confidence scores: 1) there is no consensus on which normalization
strategy should be applied; 2) the aggregations needs to be adapted to work with
intervals; 3) there is no a total order defined to compare intervals.

Hereafter we recall how these issues were addressed in [8]. Recall that the
score-matrix is formed of intervals (R):

— r12 “ee rlm

'miTm2 - —

r;j,rj; € L corresponding to the confidence degrees for classes Cj, Cj, respec-
tively.

In IVOVO, the score-matrix R was normalized to a new score-matrix R
in such a way that all the elements are closed sub-intervals in [0, 1], that is,
i, € L([0,1]) for every 4,3, i # j (according to the theory described in [19]).
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This was done by normalizing them according to the upper bounds:

r.. ..
= 71], , = TU7 if Tij 75 0 or Tji 7’5 0
rl = Tij +T5i Tij +Tji (3)
[0.5,0.5] otherwise

This normalization allows one to maintain the proportion of ignorance and sat-
isfies the property 77; +77; = 1.

Regarding the adaptation of the aggregations methods for OVO, they mainly
consisted in using the interval arithmetic. We recall the voting strategy and the
WinWV strategy as they will be the ones considered in the experimental study
(notice that WV was shown to perform worse than WinWV when considering
fuzzy classifiers and IVOVO).

— Voting strategy (Vote): Class = arg ,mazx E sij,  where s;; is 1 if
T j#iI<m
r;; > 1 and 0 otherwise.
— WinWV: Class = arg mazx E sij, where s;; is rj; if rj, > r¥ and
i=1,...,m \<jZi<m
0 otherwise.

Remark 2. Observe that in both voting strategies the need to compare intervals
appears, thus the necessity of using total orders between intervals.

4 Admissible orders for comparing interval data

In the preliminaries of this paper we have seen that the set L([0,1]) is usually
equipped with a partial order <. This order, which is not a total order, does
not allow neither to compare any arbitrary pair of intervals, nor to calculate
the maximum from an arbitrary set of intervals (see, for example [15,4,5, 18]).
These two aspects are a crucial step of the IVOVO algorithm, specially in the
aggregation phase, where intervals have to be compared in both the Voting and
the WinWV strategies.

If we focus on the Voting strategy, we observe that each vote is given to the
class whose interval-valued confidence is greater. In the original IVOVO, this was
done using Xu and Yager’s total order. With respect to the WinWV strategy,
apart from comparing which interval-valued confidence is greater (in the same
way as in the Voting strategy), we must obtain the most voted class, where the
vote for each class is again given by an interval. Again, this last calculation was
originally performed with Xu and Yager’s total order.

In fact, the total order given by Xu and Yager has been widely used in
many decision-making procedures both based on interval-valued and intuitionis-
tic fuzzy sets. However, in [4], a wider concept that encompasses Xu and Yager’s
order, among others, was given establishing therefore the theoretical framework
of admissible orders. An admissible order is as a linear (total) order that refines
the partial order <j.
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Definition 1. Consider the partially ordered set (L(]0,1]), <r). The order < on
L([0,1]) is called an admissible order if

(i) < is a linear order on L([0,1]);
(i1) for all x,y € L([0,1]), x =y whenever x <py.

Consider the following order: we say that x <yy y ifand only if 2+7 < y+7
or (x +7 = y+¥yand ¥y —y <7Z—x. We have that <xy is an admissible order
and it is actually the order given by Xu and Yager.

Ezample 2. Let x = [0,0.6],y = [0.2,0.4],z = [0.3,0.3]. Observe that any two
intervals can be compared by means of <. However, according to <xy, we have
that x <xy y = z, and so min< ., {x,y,2z} = x and max~<,, {x,y,z} = z.

Apart form the well-known admissible order given by Xu and Yager, there
exist two examples of admissible orders which are derived from the usual lexico-
graphic rules used in R2.

Ezxample 3. The following are examples of admissible orders:

(i) X 2req1 y if and only if 2 < y or (
(il) X SLer2 y if and only if Z < 7 or (

and T < 7).

z=y
Z=yand z <y).
Ezample 4. Having again x = [0,0.6],y = [0.2,0.4],z = [0.3,0.3], we have that

X jLe;El y jLexl z, while z jLew2 y jLez2 X.

Notice that the admissible orders given by Lex1 and Lex2 are, in some sense,
extreme cases. This means that, for any x,y € L([0,1]) with x || y, we always
have that if X <pe¢z1 y, then y <rez0 y, and viceversa.

Besides these well-known examples of admissible orders, in [4], a construction
method of admissible orders considering two continuous functions defined on
K([0,1]) = {(z,y) € [0,1)? | < y} was given.

Definition 2. Let < be an admissible order on L([0,1]). The order < is called a
generated admissible order if there exist two continuous functions f,g : K([0,1]) —
R such that for all [a,b], [c,d] € L([0,1]),

[CL, b] = [C, d] Zf and Only 7'f [f((l, b)a g(a" b)] ZLexl [f(C, d)’ g(c, d)}

We will denote the admissible order generated by the pair (f,g) as <fq .

Ezample 5. Let f(x,y) = # and g(z,y) = y. If we consider x = [0,0.6],y
[0.2,0.4],z = [0.3,0.3], we have that f(z,T) = 0.18, f(y,7) = 0.1 and f(z,%) =
0.09 and, therefore, z <f ,y =t 4 2.

Finally, a much simpler and parametrizable family of admissible orders by
considering only two real numbers in the unit interval was also presented in [4].
The admissible order applies the so called K, operator, which is a mapping
K, :[0,1]*> = [0,1] given by K,(a,b) = a+ a(b—a) [3].
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Definition 3. Let «, 8 € [0,1] with o # 5. For any x,y € L([0,1]), we say
that x a8y if and only if Ka(&yf) < Ka(ﬂay) or (Ka(ivf) = Ka(g,?) and
Kp(z,7) < Ks(y,9))-

Ezample 6. Let a = 1/3 and 8 = 2/3. Then, if we have x = [0,0.6],y =
[0.2,0.4],z = [0.3,0.3], then X <y/39/3 ¥ =1/3,2/3 %, while 2 <9/31/3 Y =2/3,1/3
X.

5 Experimental study

The goal of this experimental study is to analyze the influence of admissible or-
ders in the arrangement of interval-valued confidences in both Vote and WinWV
strategies. To do so, we will make use of the same experimental framework as
in [8] considering a set of 6 different admissible orders, the six admissible orders
presented in the examples of Section 4, namely =rez1, Jrex2, =1/3.2/3, =f.0>
=9/3,1/3 and Xxy. We recall that any admissible order is a refinement of the
partial order <y, which means that if any pair of intervals can be arranged by
means of <y, then any admissible order =< will produce exactly the same ar-
rangement, i.e., the admissible orders have no influence in the experiment. On
the contrary, as the frequency of appearance of incomparable interval-valued
confidences increases, the different admissible orders may yield a larger variety
of results, thus justifying this analysis.

5.1 Experimental framework

The usage of different admissible orders is evaluated using twenty-two datasets
from the KEEL dataset repository [2]. Notice that the same datasets were con-
sidered in previous studies [9,7,8]. Table 1 presents a summary description of
the datasets, including the number of examples (#Ex.), the number of attributes
(#Atts.), the number of numerical (#Num.) and nominal (#Nom.) attributes,
and the number of classes (#Class.).

Table 1: Summary description of the datasets.

Id. Dataset #Ex. #Atts. #Num. #Nom. #Class. Id. Dataset #Ex. #Atts. #Num. #Nom. #Class.
aut  autos 159 25 15 10 6 bal balance 625 4 4 0 3
cle  cleveland 297 13 13 0 5 con contraceptive 1473 9 6 3 3
der dermatology 358 34 1 33 6 eco  ecoli 336 7 7 0 8
gla glass 214 9 9 0 7 hay hayes-roth 132 4 4 0 3
iri iris 150 4 4 0 3 lym lymphography 148 18 3 15 4
new newthyroid 215 5 5 0 3 pag pageblocks 548 10 10 0 5
pen  penbased 1100 16 16 0 10 sat  satimage 643 36 36 0 7
seg  segment 2310 19 19 0 7 shu  shuttle 2175 9 9 0 7
tac  tae 151 5 3 2 3 thy thyroid 720 21 21 0 3
veh vehicle 846 18 18 0 4 vow vowel 990 13 13 0 11
win  wine 178 13 13 0 3 yea yeast 1484 8 8 0 10

The results are evaluated using accuracy performance measure obtained by
a stratified 5-fold cross-validation model following the Distribution Optimally
Balanced Cross Validation procedure [17]. As recommended in the literature
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[11], our conclusions are supported by the proper statistical analysis using non-
parametric statistical tests. Wilcoxon rank test is used for pairwise comparisons,
whereas Aligned Friedman test is considered for multiple method comparisons.

With respect to the configuration of IVTURS for generating the base classi-
fiers of IVOVO, the configuration recommended by the authors is used: 5 fuzzy
labels for each variable, 3 as maximum depth of the tree, a minimum support
of 0.05, a minimum confidence of 0.8, 50 individuals as population size, 30 bits
per gene for the Gray codification and a maximum of 20000 evaluations.

5.2 Influence of normalization strategies in IVOVO

Tables 2 and 3 present the classification accuracy obtained by each admissible
order tested using both Vote and WinWV aggregations methods, respectively.
Additionaly, in each table we include two columns (loss and ad%). Loss refers
to the percentage of accuracy loss between the best admissible order and the
worst (computed as %), whereas ad% refers to the percentage of times
that the usage of admissible orders can change the interval arrangement (that is,
incomparable intervals are present). This information is useful for understanding
the possible effect of the admissible order in the loss. Obviously, if ad% is 0, it
means that all admissible orders will return the same results and hence, the loss
will also be 0.

Table 2: Results VOTE

Dataset <Lex1 =Lex2 <1/3,2/3 Sf.g =2/3,1/3 =xv | loss ad%

aut 75.78 72.17 76.52 7592 75.23 77.13| 6.42 1.70
bal 81.10 84.15 84.31 85.27 85.44 85.12| 5.08 6.68
cle 56.93 53.54 55.26 55.25 54.58 54.57| 5.97 7.07
con 54.65 52.62 53.84 53.23 53.16 53.64| 3.72 11.33
der 95.29 95.29 95.29 95.29 95.29 95.29| 0.00 0.01
eco 80.18 83.47 82.57 83.17 82.86 81.67| 3.94 3.81
gla 70.50 63.40 71.93 69.11 70.55 70.98|11.87 7.78
hay 74.45 74.45 74.45 74.45 74.45 74.45| 0.00 0.00
iri 97.33 94.00 96.00 95.33 95.33 95.33| 3.42 1.39
lym 80.47 79.83 80.52 80.52 79.83 80.52| 0.86 0.14
new 91.63 91.63 95.35 91.16 93.02 94.88| 4.39 7.21
pag 89.56 93.81 94.17 94.35 94.35 94.35| 5.08 3.65
pen 93.92 90.93 95.10 93.92 94.19 95.19| 4.48 6.23
sat 74.52 69.55 79.02 71.69 71.69 81.98|15.16 12.55
seg 90.69 86.71 92.25 90.95 91.34 92.16| 6.01 5.69
shu 89.30 82.46 91.87 86.34 86.80 94.35|12.60 6.11
tae 55.53 56.73 56.13 56.13 56.77 56.77| 2.19 12.58
thy 93.48 94.03 94.03 94.03 94.03 94.17| 0.74 2.92
veh 70.32 61.80 72.21 65.58 68.07 70.91|14.41 17.04
vow 84.04 84.85 89.09 88.18 89.29 89.90| 6.52 7.21
win 94.85 95.54 96.63 96.09 96.09 96.63| 1.84 3.51
yea 56.53 55.07 59.57 58.43 58.90 59.57| 7.55 10.20
AVG 79.59 78.00 81.19 79.75 80.06 81.34‘ 5.56 6.13

Attending at these tables, several points can be highlighted:



On the influence of admissible orders in IVOVO 9

Table 3: Results WINWV

Dataset <pex1 =Lex2 X1/3,2/3 =fg =2/3,1/3 =xv | loss ad%

aut 75.03 70.90 75.17 75.83 76.44 75.85| 7.25 1.70
bal 71.95 83.34 79.96 83.99 84.31 82.54|14.66 6.68
cle 49.47 53.53 55.24 55.93 55.26 54.58 |11.54 T7.07
con 53.70 52.42 53.70 53.57 53.37 53.71| 2.40 11.33
der 96.96 96.69 96.69 96.69 96.69 96.69| 0.28 0.01
eco 76.29 84.36 81.35 82.25 83.13 81.37| 9.57 3.81
gla 59.90 58.74 62.21 65.01 67.32 64.53(12.75 T7.78
hay 75.22 75.22 75.22 75.22 75.22 75.22| 0.00 0.00
iri 96.67 94.00 96.00 95.33 95.33 95.33| 2.76 1.39
lym 80.49 80.54 81.23 81.23 80.54 81.23| 0.91 0.14
new 87.91 90.70 93.02 91.63 93.02 93.95| 6.44 7.21
pag 74.11 94.17 83.37 92.10 92.29 88.01|21.30 3.65
pen 88.92 93.28 92.47 94.01 94.56 93.93| 5.96 6.23
sat 71.41 66.28 78.71 7295 73.73 81.83|19.00 12.55
seg 85.54 84.81 88.66 88.57 88.96 89.31| 5.04 5.69
shu 67.94 82.37 81.58 89.35 89.99 89.46(24.51 6.11
tae 52.35 56.77 56.19 56.82 56.82 56.79| 7.87 12.58
thy 92.51 93.89 93.47 93.90 93.90 93.48| 1.48 2.92
veh 65.96 63.22 71.03 67.23 68.89 71.03(10.99 17.04
vow 75.45 82.83 81.31 84.44 85.56 84.24|11.81 7.21
win 93.17 95.54 96.63 96.09 96.09 97.17| 4.12 3.51
yea 52.23 55.89 56.74 57.15 57.69 58.03| 9.99 10.20
AVG 74.69 77.70 78.64 79.51 79.96 79.92 ‘ 8.66 6.13

— In both Vote and WinWV, results are affected by the admissible order se-
lected. Interestingly, WinWV is more affected by this decision, leading to
worse results than in Vote (e.g., <per1 drops to 74.69% in average with
WinWV vs. 79.59% in Vote).

— Zxv obtains the highest accuracy in Vote, whereas <5 /3 1 /3 leads in WinWV.
=a/3,1/3 and =1 /3 2/3 behave alternatively between Vote and WinWv. Hence,
the order seems to be dependent on the OVO aggregation method.

— Observing the maximum loss values we note that deciding the appropriate
admissible order is definitely a key factor. In Vote, a 15% of accuracy loss
can be obtained if <j..o is used instead of <xy. Similarly, in WinWV this
value increases to 24% in shuttle dataset when considering <r.;1 instead of
=2/3,1/3-

— Overall, for IVOVO using either <pe;1 or <rezo is harmful (both for Vote
and WinWV). This fact is interesting because it tell us that the interval has
more information than the one encoded in its bounds. All the other orders
are considering values insider the interval and not letting only one bound
decide the final order.

Anyway, the previous statements needs to be supported by the appropriate
statistical analysis. Table 4 shows the results of the Aligned Friedman Ranks
tests, one for each OVO aggregation to focus on the differences among admissible
orders.

According to the tests, results are rather different in each OVO aggregation.
In Vote, =/3,2/3 gets the lowest ranks (better), but it does not show significant
differences with < xy. The performance of the other orders is significantly worse.
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Table 4: Aligned Friedman test

Vote WinWV
Method Rank (p-value) Rank (p-value)
<xy 41.61 (0.8422) 43.80 (-)
<1/3.2/3 39.32 () 68.98 (0.0870)
<2/31/3 67.57 (0.0286+) 44.11 (0.9780)
<t 73.59 (0.0089+) 51.95 (0.9585)
<Leat 76.02 (0.0058+) 106.70 (0.0000+)
<Lew 100.89 (0.0000-+) 83.45 (0.0023+)

+ near the p-value means that statistical differences are found at 95% confidence.

On the contrary, in WinWV =<xy shows its robustness in this case being at the
top accompanied by =5/31/3 (no significant differences). The rest of the methods
are again significantly worse than <xy. Notice that in both cases, <j.,1 and
=Lexr2 does not perform well, whereas =5/31/3 and =y,3 /3 have a different
behavior depending on the OVO aggregation considered.

Finally, to better understand the results obtained, we tried to find a correla-
tion between the percentage of times the selection of the admissible order may
change the decision (ad%) and the percentage of loss obtained. Figure 1 shows
these plots for both Vote and WinWV. As we can observe, there is a tendency
for greater losses as the ad% increases, which could be expected but should be
checked. Pearson correlation coefficients for Vote and WinWV between ad% and
loss were 0.6569 and 0.4011, respectively.

) 0251  coef. 0.60
0150 coef: 0.64 . °

0.125 L] 0.20 4
0.100

8 0075 °

loss
L]

L]
° o ¢ 0.10 . .
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. > . ®
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ad% ad%
(a) Vote (b) WinWV

Fig. 1: Scatter plot of ad% vs. loss of all datasets.
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6 Conclusions

In this work we have analyzed the influence of admissible orders for arranging
interval-valued data in IVOVO. To do so, we have considered six different admis-
sible orders, that comes from the most used construction methods, and we have
carried out an experimental study that has proven the large differences in terms
of accuracy that can be obtained. This result justifies itself the importance of
the performed study and points out that deeper studies can be carried out to
determine the most appropriate admissible order. From the results obtained, we
have seen that the usual order of Xu and Yager can be outperformed by other
admissible orders, such as <5/31/3 (even =y,32/3 obtains very good results).
Moreover, we have observed that extreme orders, such as <yc.1 and <pc.2, are
not suitable for IVOVO.

For future work, we aim to carry out a deeper study including more ad-
missible orders and a further analysis of the most suitable order for each ag-
gregation strategy. Moreover, we plan to continue introducing new theoretical
developments of interval theory into IVOVO, as interval aggregation functions
or interval normalization methods.
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