Skip to main content

Measuring Lower Limb Alignment and Joint Orientation Using Deep Learning Based Segmentation of Bones

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11734))

Abstract

Deformities of the lower limbs are a common clinical problem encountered in orthopedic practices. Several methods have been proposed for measuring lower limb alignment and joint orientation clinically or using computer-assisted methods. In this work we introduce a new approach for measuring lower limb alignment and joint orientation on the basis of bones segmented by deep neural networks. The bones are segmented on X-ray images using an U-net convolutional neural network. It has been trained on forty manually segmented images. Afterwards, the segmented bones are post-processed using fully connected CRFs. Finally, lines are fitted to pruned skeletons representing the bones. We discuss algorithms for measuring lower limb alignment and joint orientation. We present both qualitative and quantitative segmentation results on ten test images. We compare the results that were obtained manually using a computer-assisted program and by the proposed algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Paley, D.: Normal lower limb alignment and joint orientation In: Principles of Deformity Correction, pp. 1–18. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-59373-4_1

    Chapter  Google Scholar 

  2. Olczak, J., et al.: Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop. 88, 581–586 (2017)

    Article  Google Scholar 

  3. Cherian, J.J., Kapadia, B.H., Banerjee, S., Jauregui, J.J., Issa, K., Mont, M.A.: Mechanical, anatomical, and kinematic axis in TKA: concepts and practical applications. Curr. Rev. Musculoskelet. Med. 7, 89–95 (2014)

    Article  Google Scholar 

  4. Lohman, M., Tallroth, K., Kettunen, J.A., Remes, V.: Changing from analog to digital images: does it affect the accuracy of alignment measurements of the lower extremity? Acta Orthop. 82, 351–355 (2011)

    Article  Google Scholar 

  5. Yang, N.H., Nayeb-Hashemi, H., Canavan, P.K., Vaziri, A.: Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait. J. Orthop. Res. 28, 1539–47 (2010)

    Article  Google Scholar 

  6. Ariumi, A.: Three-dimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects. J. Orthop. Sci. 15, 64–70 (2010)

    Article  Google Scholar 

  7. Sharma, L., Song, J., Felson, D.T., Cahue, S., Shamiyeh, E., Dunlop, D.D.: The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 286, 188–195 (2001)

    Article  Google Scholar 

  8. Pape, D., Rupp, S.: Preoperative planning for high tibial osteotomies. Operative Techn. Orthop. 17, 2–11 (2007)

    Article  Google Scholar 

  9. Moreland, J., Bassett, L., Hanker, G.: Radiographic analysis of the axial alignment of the lower extremity. J. Bone Joint Surg. Am. 69, 745–749 (1987)

    Article  Google Scholar 

  10. Wu, J., Mahfouz, M.R.: Robust x-ray image segmentation by spectral clustering and active shape model. J. Med Imaging 3, 034005 (2016)

    Article  Google Scholar 

  11. Aganj, I., Harisinghani, M., Weissleder, R., Fischl, B.: Unsupervised medical image segmentation based on the local center of mass. Sci. Rep. 8, 13012 (2018)

    Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML, vol. 37, pp. 448–456 (2015)

    Google Scholar 

  14. Liu, C., Szeliski, R., Bing Kang, S., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008)

    Article  Google Scholar 

  15. Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: 3rd International Conference on Learning Representations, ICLR 2015 (2015)

    Google Scholar 

  16. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Proceedings of the 24th International Conference on Neural Information Processing Systems, USA, Curran Associates Inc., pp. 109–117 (2011)

    Google Scholar 

  17. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05088-0

    Book  Google Scholar 

  18. Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33, 721–740 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Kwolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwolek, K., Brychcy, A., Kwolek, B., Marczyński, W. (2019). Measuring Lower Limb Alignment and Joint Orientation Using Deep Learning Based Segmentation of Bones. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics