
Anomaly Detect ion Using Gaussian 
Mix tu re Probabi l i ty Model to Implement 

In t rus ion Detect ion System 

Roberto Blanco , Pedro Mai agon , Samira Briongos 
and Jose M. Moya 

Abstract . Network intrusion detection systems (NIDS) detect attacks 
or anomalous network traffic patterns in order to avoid cybersecu-
rity issues. Anomaly detection algorithms are used to identify unusual 
behavior or outliers in the network traffic in order to generate alarms. 
Traditionally, Gaussian Mixture Models (GMMs) have been used for 
probabilistic-based anomaly detection NIDS. We propose to use multi-
ple simple GMMs to model each individual feature, and an asymmetric 
voting scheme that aggregates the individual anomaly detectors to pro-
vide. We test our approach using the NSL dataset. We construct the 
normal behavior models using only the samples labelled as normal in 
this dataset and evaluate our proposal using the official NSL testing set. 
As a result, we obtain a Fl-score over 0.9, outperforming other super-
vised and unsupervised proposals. 

Keywords: Intrusion Detection • Gaussian Mixture Model • Voting 

1 In t roduc t ion 

In addition to general security concerns, service providers have to deal with 
attacks to their infrastructures, which can affect their service availability, their 
clients or industrial privacy, integrity or reliability of their solutions. Moreover, 
the irruption of the Internet of Things has lead to an exponential growth of the 
number of devices connected to the Internet. The challenges related to protect 
services, networks and devices are drastically increasing in complexity. 

Rule-based protection mechanisms, such as firewalls, are not as effective as 
Intrusion Detection Systems (IDS) [5] when dealing with new security threats 
and complex systems. Intrusion Detection Systems are based on the assumption 
that an attack or an intrusion will change the pattern of resource usage or net-
work flow. Traditionally, IDS are classified as signature-based or anomaly-based 
[1] depending on how they face detection. Signature-based detectors check if the 
collected samples match with known attacks, whereas anomaly-based detectors 



build statistical models that characterize normal behavior and look for abnormal 
patterns. In practice, both approaches require to monitor network packets or to 
collect representative samples of the system they want to protect. 

Training and evaluating a NIDS requires a comprehensive dataset that is 
representative of real traffic packets passing through a firewall. This dataset must 
contain normal and abnormal samples. Indeed, each sample of these datasets 
usually contains multiple features and its corresponding label. There are multiple 
datasets available for research purposes [15,17] which are commonly used to train 
IDS and test their performance, efficiency and accuracy. 

The IDS classifies the data into categories using different methods. Multiple 
machine learning algorithms have been proposed for implementing the classifier 
of the IDS, including both supervised and unsupervised algorithms. Supervised 
algorithms are capable of detecting known varieties of attacks. However, new 
or undocumented attacks may go undetected. For this reason, it is commonly 
suggested to implement IDS based on anomaly detection algorithms. Besides, 
building a labelled dataset to model the new Internet of Things applications, 
including normal traffic and attacks, can be more expensive (or even impossible) 
than generating one with only normal patterns. 

Our proposal is, consequently, based on anomaly detection [8]. We use Gaus-
sian Mixture Models (GMM) [20] to model normal behavior. We propose a set 
of classifiers, which evaluate the individual probability of each of the features 
of a sample, to be considered normal according to GMM. This information is 
then used as the input to a voting based aggregation method which decides if 
the sample is normal or abnormal. This method does not require any anomalous 
sample during the training phase. 

We use the NSL-KDD [17] dataset for our experiments. Our approach obtains 
an Fl-score over 0.9 using a test set with completely new traces which are 
not related to the training set, neither normal nor attacks. We compare our 
solution to existing supervised and unsupervised methods, and the voting GMM 
outperforms most of the considered algorithms. 

2 Re la ted Work 

The main goal of an anomaly detection algorithm is to filter out outliers. This 
task is critical in many disciplines, including medical diagnosis, fault prediction, 
fraud detection or network intrusion detection [10]. 

According to Domingues et al. [6] anomaly detection algorithms are divided 
into different families. Probabilistic methods fit the behavior of the system in a 
set of known functions (Gaussian with GMM [20] or other generic functions in 
Kernel Density Estimators, KDE [12]). Distance-based algorithms, such as the 
Local Outlier Factor (LOF) [4], are applied to Gaussian models or clusters of 
neighbors (using K-means or K-nearest neighbors). Neural networks constitute 
another family in which the most common type of network used for anomaly 
detection is known as Self-Organizing-Maps (SOM) [21]. Finally, domain-based 
algorithms, such as one-class Support Vector Machines (SVM) [22] have been 
used to establish an irregular multi-dimensional boundary to the normal data. 



Network intrusion detection systems (NIDS) have been evaluated with mul-
tiple and well-known datasets. The KDD99 dataset [11] was used in [13] consid-
ering new attacks. The NSL-KDD dataset was evaluated in [19] and the UNSW-
NB15 dataset in [16]. NSL-KDD includes a separate official testing set, with 
traces of attacks and normal traffic not present in the training set, which makes 
it ideal for testing anomaly detection algorithms. 

GMM based algorithms have been proposed to implement NIDS in [2]. In [14] 
fuzzy logic was used to implement clustering using GMM. In [3], they present 
a method that uses a lower dimensional space and adapts to changes in time. 
A majority voting scheme is used in [9] with votes in time windows to reduce 
noise in outlier detection. These algorithms, in order to be applied in real envi-
ronments, need to be fast and select realistic features. For example, Dromard 
et al. [7] use a clustering anomaly detection algorithm to meet real time con-
straints. 

3 Mater ia l s and M e t h o d s 

3.1 Dataset Description 

NSL-KDD dataset [17] is a refined version of the KDD cup 99 dataset (a well 
known benchmark for the research of Intrusion Detection techniques). It contains 
the essential records of its predecessor balancing the proportion of normal versus 
attack traces, and excluding redundant records. Each record is composed of 41 
attributes unfolding four different types of features of the flow, and its assigned 
label which classifies it as an attack or as normal. These features include basic 
characteristics of each network connection vector such as the duration or the 
number of bytes transferred, content related features like the number of "root" 
accesses, contextual time related traffic features such as the number of connec-
tions to the same destination, and host based traffic features like the number of 
connections to the same port number. The whole amount of records covers one 
normal class and four attack classes grouped as denial of service (DoS), surveil-
lance (Probe), unauthorized access to local super user (R2L) and unauthorized 
access from a remote machine (U2R). 

3.2 Data Preprocessing 

NSL-KDD dataset contains numeric and categorical features. The most conve-
nient method for managing categorical features when feeding them to machine 
learning algorithms is the one hot encoding conversion. However, in this dataset 
there are only three categorical features (protocol, service and flag) that are not 
independent from each other. We have removed the service and flag and we have 
only selected tcp traces for our experiments, as this is the most relevant and 
abundant protocol. Moreover, our intention is to build an anomaly detection 
model that could be applied in a router node of the network, so we have also 
removed the content related features which the router should not be able to 
reach. After this process, the number of data features has been reduced to 24 



and we have a train dataset including 53600 normal and 49040 attack records 
and a test dataset with 7842 normal and 10971 attack traces. It is important to 
mention that the test dataset includes attacks that have not being included in 
any entry of the training set. 

3.3 Normalization 

Since the range of values of the raw data varies widely normalization is a 
must step for some machine learning algorithms. It allows to calculate distances 
between points using the Euclidean distance or even accelerates the convergence 
of many optimization algorithms such as gradient descent. We use feature scaling 
to adjust all column feature values into the range [0,1] and avoid large variations 
in data. 

^ 'm i ll 

~ Y I Y 

3.4 Principal Component Analysis 

Principal component analysis (PGA) is a statistical procedure that uses an 
orthogonal transformation to convert a set of observations of possibly correlated 
variables into a set of linearly uncorrelated variables called principal components. 
This transformation is defined in such a way that the first principal component 
has the largest possible variance (that is, accounts for as much of the variability 
in the data as possible), and each succeeding component has, in turn, the high-
est possible variance under the constraint that it is orthogonal to the preceding 
components. This technique is mostly used to reduce the dimensionality of the 
data while preserving the maximum amount of information among the features. 
The problem to solve becomes much simpler, as it deals with less features and 
the solution is still good enough. In this work, we are mainly interested in the 
capability of PGA to obtain uncorrelated features. Our original space has not 
too many dimensions, for this reason we do not care about dimensionality reduc-
tion. We propose to use the PGA technique in order to make a transformation 
that allows to consider each generated feature as if it was independent from the 
others. We know it is not really true but it is a better approximation if we make 
the assumption after the PGA. We have explored both approaches. 

3.5 Feature Gaussian Mixture Probability Model 

A Gaussian mixture model is a probabilistic model that assumes all the data 
points are generated from a mixture of a finite number of Gaussian distributions 
with unknown parameters (Fig. 1 left). For a given set of data we can apply 
an expectation-maximization statistical iterative algorithm and obtain which 
points come from which Gaussian latent component. The algorithm provides 
a classification of the points and the latent components, which are useful to 
our approach. Our goal is to implement an anomaly detection algorithm by 
modeling the normal behavior of a system. Assuming that every feature of our 



system normal traffic follows a Gaussian mixture distribution, we are able to 
obtain its latent components; i.e., we can estimate the mean and the variance of 
every Gaussian in the mixture. We consider an algorithm to distinguish normal 
from anomalous traffic using the obtained normal model. The simple Gaussian 
mixture model only gives us the probability of each sample to belong to every 
latent component of the mixture, but this is only useful when classifying and 
in our problem we don't know what an anomaly is and we should not use any 
attack record in the model building step. Therefore, we cannot use explicitly 
this model to detect any behavior different from the normal one. This is the 
reason why we need to obtain the latent components, because with them we can 
compute a probability of occurrence. With the assumption of the normal traffic 
in our system following a Gaussian mixture distribution we can obtain for a given 
traffic vector the latent component that each one of the vector features belongs 
with the highest probability. As we have characterized the latent components 
we can then compute the probability of occurrence for this traffic vector values 
following the corresponding latent components as if it was the worst case, that 
means that we compute the area under the normal curve for all the possible 
values with an absolute value greater than the analyzed value. For example, if 
we analyze the probability of occurrence for a value that match the mean of 
the latent component, this would be 1; on the other hand, if we consider the 
probability of occurrence for a value that match the mean plus the variance of 
the latent component, its probability wouldl be 1 — (0.3413 + 0.3413) = 0.3174 
(Fig. 1 right). 

Normal Distribution 

Fig. 1. Gaussian Mixture and Gaussian probabilities. 

3.6 Probability Voting Scheme 

The main point in this paper is the Feature Gaussian Mixture Probability Model 
that is supposed to obtain the occurrence probability of a certain value of a fea-
ture in a given traffic vector. This is in fact a probabilistic statistical model 
in which we expect that the normal values have a higher probability than the 
anomaly ones. In order to make decisions we need a method that aggregates 
all the features probabilities and applies a certain threshold so we can classify 
the entire traffic vector as normal or anomalous. Taking in account this idea we 
propose a simple voting scheme that evaluates each feature probability indepen-
dently and then estimates the nature of the traffic vector based on the number 



of independent positive evaluations. Our method needs two hyperparameters, 
one for establishing the individual feature probability threshold and the other as 
the minimum number of anomalous features to consider the whole vector as an 
attack. We have called the first one as a and it is the percentage error we can 
afford when classifying normal features. For every normal feature in our training 
dataset, we compute the occurrence probability. The value of alpha represents 
the percentage of the training normal feature probabilities that will be consid-
ered as anomalous for the model, so the decision threshold will be set as the 
maximum occurrence probability in the 1 — a remaining percentage. For sim-
plicity this percentages are normalized from 0 to 1. We have called the second 
one as consensus and it is just the number of positive (feature probability larger 
than the threshold) evaluations needed to consider the whole traffic vector as 
anomalous. 

3.7 Other Machine Learning Algorithms 

In order to compare the proposed methods, other state-of-art algorithms are 
introduced. 

K-Means is an unsupervised learning algorithm that is mostly used for 
clustering. Given a set of data vectors with the same number of features (dimen-
sionality d) and a number of desired clusters c, the algorithm is able to seek 
and find the optimum c points in the space d that minimize the sum of squared 
distances of the whole set of data vectors to its closest point. At the end this 
means that the algorithm can organize the data in c groups or clusters making 
use of its underlying structure. We use the algorithm to solve a binary classifi-
cation problem. Therefore, we could set the number of desired clusters to two. 
However, normal traffic can be distributed in more than one cluster. We apply 
the algorithm several times, varying the number of considered clusters, and then 
define each cluster as normal or anomalous looking at the proportion of normal 
and attack records that it contains. In our problem, K-Means is an appropriate 
method for building up a classifier due to its unsupervised nature. However, as 
we are trying to detect anomalies and we should not know how anomalies are 
before we want to detect them, K-Means in its standard way can only be applied 
for a reactive model and not for a predictive one. But we can use K-Means in 
another way as well, instead of try to make different clusters with the whole set 
of data and then try to identify which clusters are for each class we can only 
give the algorithm the normal class data that we want to model. This produces 
different clusters for only what we know it is normal traffic. Once we have these 
clusters, we measure the distances from the normal records to the centroids of 
the method and then the distances from the attacks to the same centroids. Ide-
ally, we should obtain larger distances for the attacks than the distances for 
the normal traces, as we have built the algorithm to minimize the distances to 
the normal traces. This is what we called in this paper the K-Means distance 
method. It is a pure anomaly detection algorithm because it is unsupervised and 
only needs one class to model the normal scenario. 



Anomaly detection is very similar to novelty detection, which detects a sam-
ple that is different to an initial set of data. Considering novelty detection 
algorithms, there is a well known method that is a variation of the Support 
Vector Machine algorithm with the objective of obtaining a membership deci-
sion boundary for only one class of data. As SVMs are max-margin methods, this 
algorithm does not model a probability distribution of the data. It only finds a 
function that is positive for regions with high density of points and negative for 
small densities. In this work, both SVM approaches are included, so the classifier 
has been called SVM-2 and the novelty detector has been named as SVM-1. 

A Decision Tree is a flowchart-like structure in which each internal node rep-
resents a "test" or a decision on an attribute. Each branch represents the outcome 
of the test, and each leaf node represents a class label. The full paths from root to 
leaf represent classification rules. We can train a decision tree structure with input 
train data and a desired class or label output in a supervised learning framework 
in order to adapt it to our problem. This simple algorithm is very convenient to 
compare with in this paper because we propose a new voting scheme algorithm 
which solution is in fact very similar to a decision tree structure. 

A Multilayer Perceptron (MLP) is a type of feedforward artificial neural 
network. It is typically composed by three different layers. The first layer is called 
the input layer and it is fed with the numerical values that we want to be the 
input of the network. The second layer is called the hidden layer and it usually 
contains several nodes or neurons. Each neuron is fully connected to all of the 
input values of the first layer and it applies a non-linear activation function to 
a linear weighted combination of the inputs. The last layer is the output layer 
and it has the same number of nodes as values we want to estimate. When 
the network is used in a classification problem the output layer is supposed to 
give an approximated probability for every class we want to distinguish. MLP 
utilizes a supervised learning technique called backpropagation for training so 
it is a supervised algorithm. Moreover, the nonlinear activation functions of the 
layers make it able to distinguish data that is not linearly separable. Unlike the 
Decision tree algorithm this is a parametric method, and once optimized it offers 
a complex mathematical function that approximates the solution to the problem. 

4 Exper imen ta l Se tup 

We conduct a set of experiments using the same original dataset described in 
the proposal. We perform three different transformation techniques to the data 
in order to cover all the possibilities. We contemplate all the combinations so at 
the end we obtain eight different datasets that are just numerical transformed 
versions of the original one. Figure 2 shows the full decision diagram of data 
transformations applied to the original dataset to obtain each of the used input 
datasets. The normalization, principal component parameters and the Feature 
Gaussian Mixture Probability Model latent components for each feature are 
computed only with the information of the normal records in the training set. 
Once adjusted, the three techniques are applied to our training and testing 
dataset without changing any configuration. 



Fig. 2. Data transformation diagram 

The eight generated datasets are: 

- d_raw: The original NSL dataset without any transformation of the numerical 
values. 

- d_raw_probs: We apply the FGMPM to the original NSL dataset values and 
change each feature value for the occurrence probability of each feature in the 
normal model. 

- d_raw_pca: The uncorrelated version of the original NSL dataset with the 
same number of features. 

- d_raw_pca_probs:We apply the FGMPM to the uncorrelated version of the 
original dataset and obtain the occurrence probabilities for this uncorrelated 
values of the features. 

- d_norm: The original NSL dataset with the normal training values normal-
ized to the range [0-1] and the remaining values normalized according to the 
previous scaler. 

- d_norm_probs: We apply the FGPM to the normalized version of the 
dataset. 

- d_norm_pca: The uncorrelated version of the normalized dataset. 
- d_norm_pca_probs: The occurrence probabilities of the uncorrelated fea-

tures of the normalized dataset. 

For every mentioned dataset we build up six different models with the fol-
lowing algorithms: 

- Voting: Our proposed voting scheme method for anomaly detection that can 
only be applied to the probability datasets. 

- KM-D: The well known K-Means algorithm using the anomaly detection 
approach with the squared euclidean distances. 

- SVM: A one class SVM for novelty detection. 
- KM -C : K-Means algorithm in its standard clustering approach. 
- DT: A default decision tree classifier. 
- MLP: A simple multilayer perceptron with a hidden layer of 100 neurons 

and an output layer with 2 cells: attack or non-attack. 



The first three algorithms are trained using only the normal training data due 
its anomaly detection objective and one class modeling capability. The KM-G 
is trained in an unsupervised way but using the normal and attack records of 
the training dataset. The DT and MLP are trained using the same data as the 
KM-G but in a supervised manner with the labels given. All models are tested 
with the whole NSL test dataset. 

The experimental implementation has been developed using Python3.5 with 
the following libraries: Scikit-learn [18] version 0.20.2, Numpy version 1.13.0, 
Scipy version 0.19.0 and Pandas version 0.20.2. The FGMPM algorithm has been 
developed by the authors using pure Python mixed scikit-learn, which provides 
more flexibility in our research at the expense of less computational performance. 

5 Resul t s 

We first introduce the set of metrics used to evaluate the performance of the 
proposed models with state of the art algorithms. Although we are facing an 
anomaly detection problem, our test can be considered as simple binary clas-
sification experiments: normal and attack traffic vectors. Therefore, we use the 
four basic metrics of the binary confusion matrix: True Positives (TP) and True 
Negatives (TN) for correctly classified records, and False Negatives (FN) and 
False Positives (FP) for the misclassified samples. These four values lead us to 
more interesting metrics in anomaly detection: 

- Sensitivity: Positive detection rate. 
- Positive Predictive Value (PPV): True positives vs predicted positives rate. 
- Negative Predictive Value (NPV): True negatives vs predicted negatives rate. 
- F1 Score (Fl): Harmonic mean between PPV and Sensitivity. 
- B: Attack percentage in the whole testing dataset. 
- Intrusion Detection Capacity (CAP): A more complex and sensitive metric 

that relates the PPV and NPV with B and gives a very accurate idea of the 
complete performance of the model. 

We select the three most interesting metrics for the anomaly detection systems 
for the evaluation: Sensitivity, in order to compare the anomaly detection rate, 
the Fl-Score, as a measure of the test's accuracy, and Intrusion detection capac-
ity (GAP), which best reflects the effectiveness of the models. 

Table 1 shows the values obtained on the three selected metrics with every 
algorithm on every generated dataset. The detection methods are sorted, begin-
ning with those who require less information to be trained. We highlight in 
red the experiments in which the algorithm does not converge to a valid solu-
tion. Also we have placed where our proposed voting scheme makes no sense 
because the dataset is not composed by probabilities. 

The SVM and the K-Means algorithms, in its classical approach, generally do 
not converge using not normalized data. It is an expected result, as both of them 
rely on the distances among the data. The K-Means algorithm, in its anomaly 
detection variant, does not converge well for the probabilities obtained after the 
PGA transformation. In general, supervised learning algorithms perform worse 



Table 1. CAP, Fl-Score and Sensitivity. E l stands for d_norm, E2 for d_norm_probs, 
E3 for d_norm_pca, E4 for d_norm_pca_probs, E5 for d_raw, E6 for d_raw_probs, E7 for 
d_raw_pca and finally E8 for d_raw_pca_probs. The best results are highlighted in bold, 
whereas the experiments in which convergence was not achieved are in italic 

E l E 2 E3 E 4 E5 E 6 E7 E 8 

GAP V o t i n g - 0,4714 - 0 , 4 9 7 2 - 0,4797 - 0 , 4 9 5 8 GAP 
KM-D 0 , 4 5 0 2 0,3897 0 , 4 5 0 2 0,0306 0,2155 0,4236 0,2155 0,0405 

GAP 

SVM-1 0,3536 0,2011 0,3536 0,3536 0,0022 0,3067 0,0023 0,171 

GAP 

KM-G 0,42 0 , 5 1 2 7 0,4215 0,4097 0,0005 0 , 5 1 1 3 0,0005 0,4772 

GAP 

D T 0,3801 0,3456 0,3396 0,3347 0 , 3 9 3 4 0,3659 0 , 4 0 8 0,3305 

GAP 

SVM-2 0,3144 0,3557 0,3144 0,3144 0,3271 0,3366 0,2873 0,3216 

GAP 

MLP 0,3505 0,305 0,3572 0,3318 0,3401 0,3027 0,3136 0,3333 

F1 V o t i n g - 0,8703 - 0 , 8 8 3 8 - 0,8715 - 0 , 9 0 6 1 F1 
KM-D 0,8558 0,8499 0,8558 0,0163 0,7169 0,8475 0,7169 0,4066 

F1 

SVM-1 0,7729 0,6255 0,7729 0,7729 0,7372 0,7303 0,7373 0,6177 

F1 

KM-G 0 , 8 6 3 1 0 , 8 9 7 6 0 ,8636 0,8826 0,7369 0 , 8 9 8 1 0,7369 0,9054 

F1 

D T 0,7766 0,7504 0,7429 0,7458 0 , 7 8 7 7 0,7681 0 ,8015 0,7364 

F1 

SVM-2 0,7171 0,7565 0,7171 0,7171 0,7568 0,7382 0,72 0,7678 

F1 

MLP 0,7513 0,7088 0,7575 0,8151 0,7796 0,7025 0,7972 0,7967 

Sensitivity V o t i n g - 0,7952 - 0,8184 - 0,7944 - 0,9032 Sensitivity 
KM-D 0,7692 0,7865 0,7692 0,0088 0,5946 0,7616 0,5946 0,2715 

Sensitivity 

SVM-1 0,6397 0,4651 0,6397 0,6397 0,9934 0,5839 0,9938 0,4635 

Sensitivity 

KM-G 0 , 8 0 4 6 0 , 8 5 1 2 0 , 8 0 4 8 0 , 8 9 1 3 0,9999 0 , 8 5 3 9 0,9999 0 , 9 4 9 5 

Sensitivity 

D T 0,6392 0,6055 0,5954 0,6008 0,6545 0,6287 0,6746 0,5875 

Sensitivity 

SVM-2 0,5628 0,6128 0,5628 0,5628 0,6203 0,589 0,5733 0,5836 

Sensitivity 

MLP 0,6059 0,553 0,6139 0,7323 0 , 6 5 5 5 0,5447 0 , 7 0 1 8 0,6911 

than unsupervised algorithms in our experiment. This is because of the fact that 
the testing dataset has different attacks than the training dataset, so the super-
vised algorithms cannot generalize as good as unsupervised ones. Although super-
vised algorithms seems to be always worse, they have a very high specificity, higher 
than unsupervised algorithms. The best result in the table is achieved by the K-
Means clusters for the d_raw_pca_probs dataset. However, our voting scheme has 
a higher GAP than KM-G with this data because the overall performance of the 
model is better, although the KM-G has a higher anomaly detection rate. KM-
G and our Voting scheme are the best algorithms here, but we have to consider 
that KM-G needs attacks in its training phase and does not provide a strictly nor-
mal model. On the other hand, our voting scheme offers a good normal model 
but it always needs the occurrence probabilities to be computed. Regarding the 
two hyperparameters of the Voting scheme, the best performance is achieved for 
a value of alpha equal to 0,013 and a consensus of 5. It has been noticed that an 
alpha increase can bee compensated with a consensus decrease and vice-versa in 
order to achieve a good performance. The KM-D algorithm seems to be a good 
alternative when we cannot normalize the data nor compute these probabilites. 



6 Conclusions 

Considering anomaly detection, unsupervised models are better suited to the real 
scenario, with unknown or untagged attacks or anomalies in datasets. We evalu-
ate the impact of different preprocessing on the anomaly detection performance 
of different algorithms. We consider normalization, PCA and the probabilities 
of normal features with GMM. Moreover, we propose a Voting scheme algo-
rithm. We train and test our voting scheme and multiple known unsupervised 
algorithms. The best results are obtained using KM-C and our Voting scheme, 
although the latter requires less information than the former. Considering the 
preprocessing, normalized data usually leads to a better performance. However, 
using the probabilities of normal features with GMM in NIDS with NSL-KDD, 
not normalized data generates more accurate probabilites and more sensitive 
detection algorithms. The PCA slightly improves the sensitivity of the anomaly 
detection algorithms, while it seems to have less effect with supervised algo-
rithms. Finally, we have proved that using the occurrence probabilities improves 
the performance of the anomaly detection models and, specially, it allows the 
usage of a simple voting scheme to achieve a very good detector with Fl-scores 
over 0.88 and CAP over 0.49, better than other more complex algorithms eval-
uated. 

Acknowledgements . This work was supported by the Spanish Ministry of Economy 
and Competitiveness under contracts TIN-2015-65277-R, AYA2015-65973-C3-3-R and 
RTC-2016-5434-8. 

References 

1. Axelsson, S.: Intrusion detection systems: a survey and taxonomy. Chalmers Uni-
versity of Technology, Tech. rep. (2000) 

2. Bahrololum, M., Khaleghi, M.: Anomaly intrusion detection system using Gaus-
sian mixture model. In: 2008 Third International Conference on Convergence and 
Hybrid Information Technology, November 2008, vol. 1, pp. 1162-1167. h t t p s : / / 
doi.org/10.1109/ICCIT.2008.17 

3. Barkan, O., Averbuch, A.: Robust mixture models for anomaly detection. In: 2016 
IEEE 26th International Workshop on Machine Learning for Signal Processing 
(MLSP), September 2016, pp. 1-6. https://doi.org/10.1109/MLSP.2016.7738885 

4. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based 
local outliers. In: Chen, W., Naughton, J.F., Bernstein, P.A. (eds.) Proceedings of 
the 2000 ACM SIGMOD International Conference on Management of Data, 16-18 
May 2000, Dallas, Texas, USA, pp. 93-104. ACM (2000). https:/ /doi.org/10.1145/ 
342009.335388 

5. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13(2), 222-
232 (1987). https://doi.org/10.1109/TSE.1987.232894 

6. Domingues, R., Filippone, M., Michiardi, P., Zouaoui, J.: A comparative evaluation 
of outlier detection algorithms: experiments and analyses. Pat tern Recogn. 74, 
406-421 (2018) 

https://doi.org/10.1109/MLSP.2016.7738885
https://doi.org/10.1145/
https://doi.org/10.1109/TSE.1987.232894


7. Dromard, J., Roudiere, G., Owezarski, P.: Online and scalable unsupervised net-
work anomaly detection method. IEEE Trans. Netw. Serv. Manage. 14(1), 34-47 
(2017). https://doi.org/10.1109/TNSM.2016.2627340 

8. Heady, R., Luger, G., Maccabe, A., Servilla, M.: The architecture of a network 
level intrusion detection system. Tech. rep., Los Alamos National Lab., NM, LTnited 
States, New Mexico LTniversity, Albuquerque (1990) 

9. Hock, D., Kappes, M.: A self-learning network anomaly detection system using 
majority voting. In: Dowland, P., Furnell, S., Ghita, B.V. (eds.) Proceedings 
Tenth International Network Conference, INC 2014, Plymouth, UK, 8-10 July 
2014, pp. 59-69. Plymouth LTniversity (2014). http:/ /www.cscan.org/openaccess/? 
paperid=225 

10. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. 
Rev. 22(2), 85-126 (2004). https://doi.org/10.1007/sl0462-004-4304-y 

11. Kdd cup 1999, October 2007. ht tp: / /kdd.ics .uci .edu/databases/kddcup99/ 
kddcup99.html 

12. Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13(1), 
2529-2565 (2012). http://dl.acm.org/citation.cfm?id=2503308.2503323 

13. Kukielka, P., Kotulski, Z.: Analysis of neural networks usage for detection of a new 
attack in IDS. Ann. UMCS Inf. 10(1), 51-59 (2010) 

14. Liu, D., Lung, C., Lambadaris, I., Seddigh, N.: Network traffic anomaly detec-
tion using clustering techniques and performance comparison. In: 2013 26th IEEE 
Canadian Conference on Electrical and Computer Engineering (CCECE), May 
2013, pp. 1-4. https://doi.org/10.1109/CCECE.2013.6567739 

15. Moustafa, N., Slay, J.: LTNSW-NB15: a comprehensive data set for network intru-
sion detection systems (LTNSW-NB15 network data set). In: Military Communica-
tions and Information Systems Conference (MilCIS), pp. 1-6. IEEE Stream (2015) 

16. Moustafa, N., Slay, J.: The evaluation of network anomaly detection systems: sta-
tistical analysis of the LTNSW-NB15 data set and the comparison with the KDD99 
data set. Inf. Secur. J. A Global Perspect. 25(1-13), 1-14 (2016) 

17. NSL-KDD data set for network-based intrusion detection systems, March 2009. 
http: / / nsl.cs.unb.ca/NSL-KDD / 

18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. 
Res. 12, 2825-2830 (2011) 

19. Revathi, S., Malathi, A.: A detailed analysis on NSL-KDD dataset using various 
machine learning techniques for intrusion detection. Int. J. Eng. Res. Tech. 2(12), 
1848-1853 (2013) 

20. Reynolds, D.D.: Gaussian Mixture Models. In: Li, S.Z., Jain, A. (eds.) Encyclopedia 
of Biometrics. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5 

21. Shahreza, M.L., Moazzami, D., Moshiri, B., Delavar, M.: Anomaly detection using 
a self-organizing map and particle swarm optimization. Scientia Iranica 18(6), 
1460-1468 (2011). https://doi.Org/10.1016/j.scient.2011.08.025 

22. Zhang, R., Zhang, S., Muthuraman, S., Jiang, J.: One class support vector machine 
for anomaly detection in the communication network performance data. In: Pro-
ceedings of the 5th Conference on Applied Electromagnetics, Wireless and Optical 
Communications, pp. 31-37. ELECTROSCIENCE'07, World Scientific and Engi-
neering Academy and Society (WSEAS), Stevens Point (2007) 

https://doi.org/10.1109/TNSM.2016.2627340
http://www.cscan.org/openaccess/
https://doi.org/10.1007/sl0462-004-4304-y
http://kdd.ics.uci.edu/databases/kddcup99/
http://dl.acm.org/citation.cfm?id=2503308.2503323
https://doi.org/10.1109/CCECE.2013.6567739
https://doi.org/10.1007/978-0-387-73003-5
https://doi.Org/10.1016/j.scient.2011.08.025

