Skip to main content

Towards Real-Time Image Enhancement GANs

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11678))

Included in the following conference series:

Abstract

Video stream compression, using lossy algorithms, is performed to reduce the bandwidth required for transmission. To improve the video quality, either for human view or for automatic video analysis, videos are post-processed to eliminate the introduced compression artifacts. Generative Adversarial Network have been shown to obtain extremely high quality results in image enhancement tasks; however, to obtain top quality results high capacity large generators are usually employed, resulting in high computational costs and processing time. In this paper we present an architecture that can be used to reduce the cost of generators, paving a way towards real-time frame enhancement with GANs.

With the proposed approach, enhanced images appear natural and pleasant to the eye. Locally high frequency patterns often differ from the raw uncompressed images. A possible application is to improve video conferencing, or live streaming. In these cases there is no original uncompressed video stream available. Therefore, we report results using popular no-reference metrics showing high naturalness and quality even for efficient networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://media.xiph.org/video/derf/.

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of IEEE CVPR Workshops (2017)

    Google Scholar 

  2. Bruna, J., Sprechmann, P., LeCun, Y.: Super-resolution with deep convolutional sufficient statistics. CoRR abs/1511.05666 (2015)

    Google Scholar 

  3. Cavigelli, L., Hager, P., Benini, L.: CAS-CNN: a deep convolutional neural network for image compression artifact suppression. In: Proceedings of IJCNN (2017)

    Google Scholar 

  4. Chu, M., Xie, Y., Leal-Taixé, L., Thuerey, N.: Temporally coherent GANs for video super-resolution (TecoGAN). arXiv preprint arXiv:1811.09393 (2018)

  5. Dar, Y., Bruckstein, A.M., Elad, M., Giryes, R.: Postprocessing of compressed images via sequential denoising. IEEE Trans. Image Process. 25(7), 3044–3058 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dong, C., Deng, Y., Change Loy, C., Tang, X.: Compression artifacts reduction by a deep convolutional network. In: Proceedings of ICCV (2015)

    Google Scholar 

  7. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Proceedings of NIPS (2016)

    Google Scholar 

  8. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  9. Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A.: Deep universal generative adversarial compression artifact removal. IEEE Trans. Multimed. 21(8), 2131–2145 (2019)

    Article  Google Scholar 

  10. Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A.: Deep generative adversarial compression artifact removal. In: Proceedings of ICCV (2017)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. CoRR abs/1505.07376 (2015)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS (2014)

    Google Scholar 

  13. He, X., Hu, Q., Zhang, X., Zhang, C., Lin, W., Han, X.: Enhancing HEVC compressed videos with a partition-masked convolutional neural network. In: Proceedings of ICIP (2018)

    Google Scholar 

  14. Jakhetiya, V., Lin, W., Jaiswal, S.P., Guntuku, S.C., Au, O.C.: Maximum a posterior and perceptually motivated reconstruction algorithm: a generic framework. IEEE Trans. Multimed. 19(1), 93–106 (2017)

    Article  Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Kang, L.W., Hsu, C.C., Zhuang, B., Lin, C.W., Yeh, C.H.: Learning-based joint super-resolution and deblocking for a highly compressed image. IEEE Trans. Multimed. 17(7), 921–934 (2015)

    Article  Google Scholar 

  17. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv preprint arXiv:1812.04948 (2018)

  18. Li, T., He, X., Qing, L., Teng, Q., Chen, H.: An iterative framework of cascaded deblocking and super-resolution for compressed images. IEEE Trans. Multimed. 20(6), 1305–1320 (2017)

    Article  Google Scholar 

  19. Li, Y., Guo, F., Tan, R.T., Brown, M.S.: A contrast enhancement framework with JPEG artifacts suppression. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 174–188. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_12

    Chapter  Google Scholar 

  20. List, P., Joch, A., Lainema, J., Bjontegaard, G., Karczewicz, M.: Adaptive deblocking filter. IEEE Trans. Circ. Syst. Video Technol. 13(7), 614–619 (2003)

    Article  Google Scholar 

  21. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Proceedings of NIPS (2016)

    Google Scholar 

  22. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mittal, A., Saad, M.A., Bovik, A.C.: A completely blind video integrity oracle. IEEE Trans. Image Process. 25(1), 289–300 (2016)

    Article  MathSciNet  Google Scholar 

  24. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2013)

    Article  Google Scholar 

  25. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of CVPR, June 2018

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR (2015)

    Google Scholar 

  27. Stockhammer, T.: Dynamic adaptive streaming over HTTP-: standards and design principles. In: Proceedings of ACM MMSys, pp. 133–144. ACM (2011)

    Google Scholar 

  28. Svoboda, P., Hradis, M., Barina, D., Zemcik, P.: Compression artifacts removal using convolutional neural networks. arXiv preprint arXiv:1605.00366 (2016)

  29. Wang, Z., Liu, D., Chang, S., Ling, Q., Yang, Y., Huang, T.S.: D3: deep dual-domain based fast restoration of JPEG-compressed images. In: Proceedings of CVPR (2016)

    Google Scholar 

  30. Wong, T.S., Bouman, C.A., Pollak, I., Fan, Z.: A document image model and estimation algorithm for optimized JPEG decompression. IEEE Trans. Image Process. 18(11), 2518–2535 (2009)

    Article  MathSciNet  Google Scholar 

  31. Yang, J.X., Wu, H.R.: Robust filtering technique for reduction of temporal fluctuation in H.264 video sequences. IEEE Trans. Circ. Syst. Video Technol. 20(3), 458–462 (2010)

    Article  Google Scholar 

  32. Yang, S., Kittitornkun, S., Hu, Y.H., Nguyen, T.Q., Tull, D.L.: Blocking artifact free inverse discrete cosine transform. In: Proceedings of ICIP (2000)

    Google Scholar 

  33. Yoo, J., Lee, S.h., Kwak, N.: Image restoration by estimating frequency distribution of local patches. In: Proceedings of CVPR (2018)

    Google Scholar 

  34. Zhang, J., Xiong, R., Zhao, C., Zhang, Y., Ma, S., Gao, W.: CONCOLOR: constrained non-convex low-rank model for image deblocking. IEEE Trans. Image Process. 25(3), 1246–1259 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zhang, X., Xiong, R., Fan, X., Ma, S., Gao, W.: Compression artifact reduction by overlapped-block transform coefficient estimation with block similarity. IEEE Trans. Image Process. 22(12), 4613–4626 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPUs used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Seidenari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galteri, L., Seidenari, L., Bertini, M., Del Bimbo, A. (2019). Towards Real-Time Image Enhancement GANs. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics