Skip to main content

Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

  • Conference paper
  • First Online:
Book cover Computer Analysis of Images and Patterns (CAIP 2019)

Abstract

Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26-connected components of I. In addition, we define the weight of an edge (RS) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs.

An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.

Work supported by the Spanish research projects TOP4COG:MTM2016-81030-P (AEI/FEDER, UE), COFNET (AEI/FEDER, UE) and the VPPI of University of Seville.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansaldi, S., De Floriani, L., Falcidieno, B.: Geometric modeling of solid objects by using a face adjacency graph representation. In: ACM SIGGRAPH Computer Graphics, vol. 19, no. 3, pp. 131–139. ACM, July 1985

    Article  Google Scholar 

  2. Bertrand, G.: Simple points, topological numbers and geodesic neighborhoods in cubic grids. Pattern Recogn. Lett. 15, 1003–1011 (1994)

    Article  Google Scholar 

  3. Cardoze, D.E., Miller, G.L., Phillips, T.: Representing topological structures using cell-chains. In: Kim, M.-S., Shimada, K. (eds.) GMP 2006. LNCS, vol. 4077, pp. 248–266. Springer, Heidelberg (2006). https://doi.org/10.1007/11802914_18

    Chapter  Google Scholar 

  4. Costanza, E., Robinson, J.: A region adjacency tree approach to the detection and design of fiducials. In: Video, Vision and Graphics, pp. 63–99 (2003)

    Google Scholar 

  5. Cucchiara, R., Grana, C., Prati, A., Seidenari, S., Pellacani, G.: Building the topological tree by recursive FCM color clustering. In: Object Recognition Supported by User Interaction for Service Robots, vol. 1, pp. 759–762. IEEE, August 2002

    Google Scholar 

  6. Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Qualitative spacial representation and reasoning with the region connection calculus. GeoInformatica 1(3), 275–316 (1997)

    Article  Google Scholar 

  7. Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete Morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)

    Article  Google Scholar 

  8. Díaz-del-Río, F., Real, P., Onchis, D.: Labeling color 2D digital images in theoretical near logarithmic time. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 391–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_33

    Chapter  Google Scholar 

  9. Díaz-del-Río, F., Real, P., Onchis, D.M.: A parallel homological spanning forest framework for 2D topological image analysis. Pattern Recogn. Lett. 83, 49–58 (2016)

    Article  Google Scholar 

  10. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  11. Klette, R., Rosenfeld, A.: Digital Geometry Geometric: Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  12. Klette, G.: Skeletons in digital image processing. CITR, The University of Auckland, New Zealand (2002)

    Google Scholar 

  13. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  14. Kong, T.Y., Rosenfeld, A.: Topological Algorithms for Digital Image Processing, vol. 19. Elsevier, Amsterdam (1996)

    Book  Google Scholar 

  15. Kong, T.Y., Roscoe, A.W.: A theory of binary digital pictures. Comput. Vis. Graph. Image Process. 32(2), 221–243 (1985)

    Article  Google Scholar 

  16. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_27

    Chapter  Google Scholar 

  17. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Comput. Aided Des. 23(1), 59–82 (1991)

    Article  Google Scholar 

  18. Molina-Abril, H., Real, P., Nakamura, A., Klette, R.: Connectivity calculus of fractal polyhedrons. Pattern Recogn. 48(4), 1150–1160 (2015)

    Article  Google Scholar 

  19. Molina-Abril, H., Real, P.: Homological spanning forest framework for 2D image analysis. Ann. Math. Artif. Intell. 64(4), 385–409 (2012)

    Article  MathSciNet  Google Scholar 

  20. Pavlidis, T.: Algorithms for Graphics and Image Processing. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  21. Real, P., Molina-Abril, H., Díaz-del-Río, F., Blanco-Trejo, S., Onchis, D.: Enhanced parallel generation of tree structures for the recognition of 3D images. In: Carrasco-Ochoa, J., Martínez-Trinidad, J., Olvera-López, J., Salas, J. (eds.) MCPR 2019. LNCS, vol. 11524, pp. 292–301. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21077-9_27

    Chapter  Google Scholar 

  22. Real, P., Diaz-del-Rio, F., Onchis, D.: Toward parallel computation of dense homotopy skeletons for nD digital objects. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 142–155. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_12

    Chapter  Google Scholar 

  23. Rosenfeld, A.: Adjacency in digital pictures. Inf. Control 26(1), 24–33 (1974)

    Article  MathSciNet  Google Scholar 

  24. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Cambridge (1982)

    MATH  Google Scholar 

  25. Stell, J., Worboys, M.: Relations between adjacency trees. Theoret. Comput. Sci. 412(34), 4452–4468 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Real .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Real, P., Molina-Abril, H., Díaz-del-Río, F., Blanco-Trejo, S. (2019). Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model. In: Vento, M., Percannella, G. (eds) Computer Analysis of Images and Patterns. CAIP 2019. Lecture Notes in Computer Science(), vol 11678. Springer, Cham. https://doi.org/10.1007/978-3-030-29888-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29888-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29887-6

  • Online ISBN: 978-3-030-29888-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics