Skip to main content

Image Retrieval with Similar Object Detection and Local Similarity to Detected Objects

  • Conference paper
  • First Online:
Book cover PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11672))

Included in the following conference series:

  • 2873 Accesses

Abstract

Commercial image search applications like eBay and Pinterest allow users to select the focused area as bounding box over the query images, which improves the retrieval accuracy. The focused area image retrieval strategy motivated our research, but our system has three main advantages over the existing works. (1) Given a query focus area, our approach localizes the most similar region in the database image and only this region is used for computing image similarity. This is done in a unified network whose weights are adjusted both for localization and similarity learning in an end-to-end manner. (2) This is achieved using fewer than five proposals extracted from a saliency map, which speedups the pairwise similarity computation. Usually hundreds or even thousands of proposals are used for localization. (3) For users, our system explains the relevance of the retrieved results by locating the regions in the database images that are the most similar to the query object. Our method achieves significantly better retrieval performance than the off-the-shelf object localization-based retrieval methods and end-to-end trained triplet method with a region proposal network. Our experimental results demonstrate 86% retrieval rate as compared to 73% achieved by the existing methods on PASCAL VOC07 and VOC12 datasets. Extensive experiments are also conducted on the instance retrieval databases Oxford5k and INSTRE, where we exhibit competitive performance. Finally, we provide both quantitative and qualitative results of our retrieval method demonstrating its superiority over commercial image search systems.

We are grateful for the Amazon Research Award (ARA). This work was also supported in part by NSF grants IIS-1302164 and IIS-1814745.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269–1277 (2015)

    Google Scholar 

  2. Cho, M., Kwak, S., Schmid, C., Ponce, J.: Unsupervised object discovery and localization in the wild: part-based matching with bottom-up region proposals. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1201–1210 (2015)

    Google Scholar 

  3. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE ICCV, pp. 1440–1448 (2015)

    Google Scholar 

  5. Gordo, A., Almazán, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_15

    Chapter  Google Scholar 

  6. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237–254 (2017)

    Article  MathSciNet  Google Scholar 

  7. Iscen, A., Tolias, G., Avrithis, Y.S., Furon, T., Chum, O.: Efficient diffusion on region manifolds: recovering small objects with compact CNN representations. In: CVPR, vol. 1, p. 3 (2017)

    Google Scholar 

  8. Li, Y., Liu, L., Shen, C., van den Hengel, A.: Image co-localization by mimicking a good detector’s confidence score distribution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_2

    Chapter  Google Scholar 

  9. Perret, E.: Here’s How Many Digital Photos Will Be Taken in 2017 (2017). https://mylio.com/true-stories/tech-today/how-many-digital-photos-will-be-taken-2017-repost/

  10. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  11. Pinterest: Pinterest (2018). https://www.pinterest.com/

  12. Razavian, A.S., Sullivan, J., Carlsson, S., Maki, A.: Visual instance retrieval with deep convolutional networks. ITE Trans. Media Technol. Appl. 4(3), 251–258 (2016)

    Article  Google Scholar 

  13. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  14. Salvador, A., Giró-i Nieto, X., Marqués, F., Satoh, S.: Faster R-CNN features for instance search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 9–16 (2016)

    Google Scholar 

  15. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  16. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

    Article  Google Scholar 

  19. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Salient object detection with recurrent fully convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1734–1746 (2018)

    Article  Google Scholar 

  20. Wang, S., Jiang, S.: INSTRE: a new benchmark for instance-level object retrieval and recognition. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 11(3), 37 (2015)

    Google Scholar 

  21. Wei, X.S., Luo, J.H., Wu, J., Zhou, Z.H.: Selective convolutional descriptor aggregation for fine-grained image retrieval. IEEE Trans. Image Process. 26(6), 2868–2881 (2017)

    Article  MathSciNet  Google Scholar 

  22. Wei, X.S., Xie, C.W., Wu, J.: Mask-CNN: localizing parts and selecting descriptors for fine-grained image recognition. arXiv preprint arXiv:1605.06878 (2016)

  23. Xu, J., Shi, C., Qi, C., Wang, C., Xiao, B.: Unsupervised part-based weighting aggregation of deep convolutional features for image retrieval. arXiv preprint arXiv:1705.01247 (2017)

  24. Zhang, X., Xiong, H., Zhou, W., Lin, W., Tian, Q.: Picking neural activations for fine-grained recognition. IEEE Trans. Multimedia 19(12), 2736–2750 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidra Hanif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanif, S., Li, C., Alazzawe, A., Latecki, L.J. (2019). Image Retrieval with Similar Object Detection and Local Similarity to Detected Objects. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics