Skip to main content

Deep Transfer Collaborative Filtering for Recommender Systems

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11672))

Included in the following conference series:

Abstract

Collaborative filtering (CF) is among the most effective techniques for recommendations. However, it suffers from data sparsity and cold-start issue. One solution is to incorporate the side information and the other is to learn knowledge from relevant domains. In this paper, we consider both aspects and propose a generic deep transfer collaborative filtering (DTCF) architecture, which integrates collective matrix factorization and deep transfer learning. We exhibit one instantiation of our architecture by employing non-negative matrix tri-factorization and stacked denoising autoencoder (SDAE) in both source and target domains. Deep learning copes with both the ratings’ statistic characteristics and the side information to generate effective latent representations. Matrix tri-factorization produces private latent factors linked with per SDAE and common latent factors connected with different domains. Extensive experimental results on real datasets exhibit a superiority of our approach in comparison to state-of-the-art works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.grouplens.org/datasets/movielens.

  2. 2.

    http://www2.informatik.uni-freiburg.de/~cziegler/BX/.

References

  1. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Advances in Neural Information Processing Systems, pp. 343–351 (2016)

    Google Scholar 

  2. Ding, C.H.Q., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering, pp. 126–135 (2006)

    Google Scholar 

  3. Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., Zhang, F.: A hybrid collaborative filtering model with deep structure for recommender systems. In: AAAI, pp. 1309–1315 (2017)

    Google Scholar 

  4. Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv:1511.06443 (2015)

  5. Gupta, S.K., Phung, D.Q., Adams, B., Tran, T., Venkatesh, S.: Nonnegative shared subspace learning and its application to social media retrieval. In: KDD, pp. 650–658 (2010)

    Google Scholar 

  6. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering, pp. 173–182 (2017)

    Google Scholar 

  7. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Hu, G., Zhang, Y., Yang, Q.: MTNeT: a neural approach for cross-domain recommendation with unstructured text. In: KDD Deep Learning Day, pp. 1–10 (2018)

    Google Scholar 

  9. Kanagawa, H., Kobayashi, H., Shimizu, N., Tagami, Y., Suzuki, T.: Cross-domain recommendation via deep domain adaptation. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) ECIR 2019. LNCS, vol. 11438, pp. 20–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15719-7_3

    Chapter  Google Scholar 

  10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. J. 8, 30–37 (2009)

    Article  Google Scholar 

  11. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  12. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2001)

    Google Scholar 

  13. Li, S., Kawale, J., Fu, Y.: Deep collaborative filtering via marginalized denoising auto-encoder. In: ACM International on Conference on Information and Knowledge Management, pp. 811–820 (2015)

    Google Scholar 

  14. Li, T., Ma, Y., Xu, J., Stenger, B., Liu, C., Hirate, Y.: Deep heterogeneous autoencoders for collaborative filtering. In: ICDM, pp. 1164–1169 (2018)

    Google Scholar 

  15. Long, M., Cheng, W., Jin, X., Wang, J., Shen, D.: Transfer learning via cluster correspondence inference. In: ICDM, pp. 917–922 (2011)

    Google Scholar 

  16. Long, M., Wang, J., Ding, G., Shen, D., Yang, Q.: Transfer learning with graph co-regularization. IEEE Trans. Knowl. Data Eng. 26(7), 1805–1818 (2014)

    Article  Google Scholar 

  17. Ouyang, Y., Liu, W., Rong, W., Xiong, Z.: Autoencoder-based collaborative filtering. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8836, pp. 284–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12643-2_35

    Chapter  Google Scholar 

  18. Park, S., Kim, Y.D., Choi, S.: Hierarchical Bayesian matrix factorization with side information. In: IJCAI, pp. 1593–1599 (2013)

    Google Scholar 

  19. Porteous, I., Asuncion, A.U., Welling, M.: Bayesian matrix factorization with side information and Dirichlet process mixtures. In: AAAI, pp. 563–568 (2010)

    Google Scholar 

  20. Rennie, J.D.M., Srebro, N.: Fast maximum margin matrix factorization for collaborative prediction. In: ICML, pp. 713–719 (2005)

    Google Scholar 

  21. Salakhutdinov, R.: Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In: ICML, pp. 880–887 (2008)

    Google Scholar 

  22. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2007)

    Google Scholar 

  23. Salakhutdinov, R., Mnih, A., Hinton, G.E.: Restricted Boltzmann machines for collaborative filtering. In: ICML, pp. 791–798 (2007)

    Google Scholar 

  24. Shi, Y., Larson, M., Hanjalic, A.: Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges. ACM Comput. Surv. 47(1), 1–45 (2014)

    Article  Google Scholar 

  25. Singh, A., Gordon, G.J.: A Bayesian matrix factorization model for relational data. In: UAI, pp. 556–563 (2010)

    Google Scholar 

  26. Singh, A.P., Gordon, G.J.: Relational learning via collective matrix factorization. In: KDD, pp. 650–658 (2008)

    Google Scholar 

  27. Truyen, T.T., Phung, D.Q., Venkatesh, S.: Ordinal Boltzmann machines for collaborative filtering. In: UAI, pp. 548–556 (2009)

    Google Scholar 

  28. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender systems. In: KDD, pp. 1235–1244 (2015)

    Google Scholar 

  29. Zhuang, F., et al.: Mining distinction and commonality across multiple domains using generative model for text classification. IEEE Trans. Knowl. Data Eng. 24(11), 2025–2039 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gai, S., Zhao, F., Kang, Y., Chen, Z., Wang, D., Tang, A. (2019). Deep Transfer Collaborative Filtering for Recommender Systems. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics