Skip to main content

Towards Effective Data Augmentations via Unbiased GAN Utilization

  • Conference paper
  • First Online:
Book cover PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11672))

Included in the following conference series:

Abstract

The parameters of any machine learning (ML) model are obtained from the dataset on which the model is trained. However, existing research reveals that many datasets appear to have strong build-in biases. These biases are inherently learned by the learning mechanism of the ML model which adversely affects their generalization performance. In this research, we propose a new supervised data augmentation mechanism which we call as Data Augmentation Pursuit (DAP). The DAP generates labelled synthetic data instances for augmenting the raw datasets. To demonstrate the effectiveness of utilizing DAP for reducing model bias, we perform comprehensive experiments on real world image dataset. CNN models trained on augmented dataset obtained using DAP achieves significantly better classification performance and exhibits reduction in the bias learned by their learning mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.bbc.com/news/technology-44243118.

  2. 2.

    http://www.bbc.com/news/technology-21322183.

  3. 3.

    https://github.com/kvfrans/generative-adversial.

  4. 4.

    https://github.com/igul222/improved_wgan_training.

  5. 5.

    https://github.com/soumith/DeepLearningFrameworks.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, 06–11 August 2017, vol. 70, pp. 214–223. PMLR, International Convention Centre, Sydney, Australia (2017)

    Google Scholar 

  2. Brain, D., Webb, G.I.: The need for low bias algorithms in classification learning from large data sets. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 62–73. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45681-3_6

    Chapter  MATH  Google Scholar 

  3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  4. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: NIPS (2017)

    Google Scholar 

  7. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 158–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_12

    Chapter  Google Scholar 

  8. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. In: ITCS (2017)

    Google Scholar 

  9. Kohavi, R., Wolpert, D.H., et al.: Bias plus variance decomposition for zero-one loss functions. In: Machine Learning, Proceedings of the Thirteenth International Conference (ICML), pp. 275–283 (1996)

    Google Scholar 

  10. Kohli, N., Yadav, D., Vatsa, M., Singh, R., Noore, A.: Synthetic iris presentation attack using iDCGAN. In: IJCB (2017)

    Google Scholar 

  11. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Department of Computer Science, University of Toronto (2009)

    Google Scholar 

  12. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 51(2), 181–207 (2003)

    Article  Google Scholar 

  13. Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  14. McLaughlin, N., Del Rincon, J.M., Miller, P.: Data-augmentation for reducing dataset bias in person re-identification. In: 2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE (2015)

    Google Scholar 

  15. Paulin, M., Revaud, J., Harchaoui, Z., Perronnin, F., Schmid, C.: Transformation pursuit for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3646–3653 (2014)

    Google Scholar 

  16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  17. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  18. Sato, I., Nishimura, H., Yokoi, K.: APAC: augmented pattern classification with neural networks. arXiv preprint arXiv:1505.03229 (2015)

  19. Shmelkov, K., Schmid, C., Alahari, K.: How good is my GAN? In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 218–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_14

    Chapter  Google Scholar 

  20. Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2242–2251 (2017)

    Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  22. Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T.: A deeper look at dataset bias. In: Csurka, G. (ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 37–55. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1_2

    Chapter  Google Scholar 

  23. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2011)

    Google Scholar 

  24. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: CVPR (2018)

    Google Scholar 

  25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Verma, S., Wang, C., Zhu, L., Liu, W. (2019). Towards Effective Data Augmentations via Unbiased GAN Utilization. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics