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Abstract—Image classification is a difficult machine learning
task, where Convolutional Neural Networks (CNNs) have been
applied for over 20 years in order to solve the problem. In
recent years, instead of the traditional way of only connecting
the current layer with its next layer, shortcut connections have
been proposed to connect the current layer with its forward
layers apart from its next layer, which has been proved to be
able to facilitate the training process of deep CNNs. However,
there are various ways to build the shortcut connections, it is
hard to manually design the best shortcut connections when
solving a particular problem, especially given the design of the
network architecture is already very challenging. In this paper,
a hybrid evolutionary computation (EC) method is proposed to
automatically evolve both the architecture of deep CNNs and the
shortcut connections. Three major contributions of this work are:
Firstly, a new encoding strategy is proposed to encode a CNN,
where the architecture and the shortcut connections are encoded
separately; Secondly, a hybrid two-level EC method, which
combines particle swarm optimisation and genetic algorithms, is
developed to search for the optimal CNNs; Lastly, an adjustable
learning rate is introduced for the fitness evaluations, which
provides a better learning rate for the training process given
a fixed number of epochs. The proposed algorithm is evaluated
on three widely used benchmark datasets of image classification
and compared with 12 peer Non-EC based competitors and one
EC based competitor. The experimental results demonstrate that
the proposed method outperforms all of the peer competitors in
terms of classification accuracy.

Index Terms—Evolutionary Computation, Image Classifica-
tion, Convolutional Neural Networks, and Shortcut Connections.

I. INTRODUCTION

Image classification is a difficult machine learning task
due to a couple of reasons. Firstly, the dimensionality of
the input image is very high. The image is composed of a
number of pixels each of which is one dimension. Assuming a
grayscale image with size of 256256 pixels (real-life images
are often even larger), the dimensionality is 65, 536, which
brings a huge search space for machine learning algorithm.
Furthermore, the diversity of images in the same class can be
large. In order to correctly distinguish the images of various
classes, the variability of images in the same class needs to
be minimised and the variability of images between different
classes has to be maximised. The large diversity of images
in the same class makes it extremely difficult to minimise the

variability of images in the same class, which therefore causes
the complication in image classification.

Deep Convolutional Neural Networks (CNNs) have been
the leading approach for solving image classifications tasks
since it was introduced around 30 years ago [[1]]. Various CNN
methods have been developed, e.g. VGGNet [2f, Xception [3|]
and GoogLeNet [4]. Deep CNNs have achieved better and
better accuracy on image classification tasks. However, the
architectures of CNNs grow deeper and deeper (i.e. more and
more layers), which makes the training of deep CNNs much
harder due to the difficulty in the CNNs architecture design
and network training.

Almost all of the state-of-the-art CNNs are with a manually
designed architecture, which is very challenging to achieve
without expertise both in CNNs and domain knowledge on
the target problem. However, most real-world users often
do not have such knowledge. In recent years, evolutionary
computation (EC) has shown to be effective in automatically
searching for the optimal architecture of CNNs [5] [6] [7].

Back-propagation with gradient descent optimisation is the
most commonly used method for training CNNSs, but the
vanishing gradients problem often occurs when training a
deep CNN [8] [9]]. Recently, shortcut connections have been
introduced and shown to be effective in dealing with this
problem [10]. Shortcut connections add extra connections
between the current layer and the forward layers. Typical
examples are ResNet [[11] as shown in Fig.|l|and the densely-
connected shortcuts in DenseNet [[12] as illustrated in Fig.
2l As can be seen from Fig. [I] in ResNet, along with the
direct forward connections between the current layer and the
next layer, there are also jump connections, which connect
the current layer to the layer after the next layer. DenseNet
divides the CNN architecture into a number of blocks. Each
layer can be connected to all of the forward layers of the
same block, which is called densely-connected structure. Such
shortcut connections have been heavily investigated in recent
years with different variants [[10] [[13]]. However, such shortcut
connections are manually designed and there still are a large
number of open questions. For example, although the oper-
ations after shortcut connections are addition in ResNet and
concatenation in DenseNet, it is unclear whether the shortcut
connections in ResNet with the concatenation mechanism is



Fig. 1: ResNet architecture (image taken from [|11]])
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Fig. 2: DenseNet architecture (image taken from [12])
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better than DenseNet. Without rich expertise, it is still chal-
lenging to design the best shortcut connections to effectively
and efficiently address a given problem. Therefore, it is needed
to develop an approach to automatically searching for the
shortcut connections.

Goals: we aim to develop a novel EC based approach
that can automatically find the optimal CNN architecture and
decide whether there should be shortcut connection(s) between
one layer and its forward layer(s). A two-level encoding strat-
egy is proposed, which is then used by a hybrid EC method
of a genetic algorithm (GA) and particle swarm optimisation
(PSO) to evolve both the network architecture and shortcut
connections. Since both the architecture and the shortcut
connections are dynamically decided during the evolutionary
process without any human interference, the proposed method
is named DynamicNet. The proposed method will be examined
and compared with one EC based method and 12 state-of-the-
art non-EC based methods on three of the widely-used datasets
having different levels of difficulties. The specific objectives
and contributions are:

o Design a new encoding strategy that includes both the
CNN architecture and the shortcut connections. Since the
CNN architecture is decisive to the classification accuracy
and the shortcut connections impact how well the CNN
can be trained, a two-level encoding is proposed with
the first level representing the CNN architecture and the
second level representing the shortcut connections. These
two levels are encoded as a vector with decimal values
and a vector of binary values, respectively;

e Develop a hybrid algorithm that can work with the
two-level encoding. A variable-length PSO algorithm is
proposed to evolve the CNN architectures due to PSO’s
promising performance on continuous optimisation while
GA is used to evolve the shortcut connections since it
works well on optimisation tasks with binary values;

e Propose a new fitness evaluation method to improve
the effectiveness and efficiency of the encoded CNN.
Classification accuracy is used as the fitness value of the
proposed method. Each evaluation requires to train the
encoded CNN, which is an expensive process. Motivated
by previous work [14], a small number of training epochs
is used to speed up the training. Furthermore, an automa-

tion method is developed to search for the best learning
rate among a sequence of learning rates to improve the
classification accuracy.

II. BACKGROUND
A. ResNet

As shown in Fig. [I] the architecture at the bottom represents
a plain CNN architecture called VGG nets [[15]], which mostly
contains convolutional layers with 3 x3 filters; while by insert-
ing shortcut connections, the plain architecture is turned into
the recently proposed ResNet shown as the architecture at the
top of the figure. The output is calculated based on Equation
(1), where x is the input, F(z, W;) represents the output of
the convolutional layer with the weights W, and W can be a
constant of 1 if the dimension of the input is identical to that
of the output of the convolutional layer; otherwise it will be a
linear projection of the input in order to match the dimension
of the output of the convolutional layer.

y=F(z,W;) + Wy (D

B. DenseNet

DenseNet is a newly proposed CNN architecture in image
classification tasks. As shown in Fig. 2| a DenseNet is com-
posed of several dense blocks, and the convolutional layer
and the pooling layer between the dense blocks which are
referred to as the transition layer. Fig. [3| illustrates a dense
block, which contains five layers, and a transition layer at
the end. To be more specific with the dense block, suppose a
single image x is passed to a dense block, which is composed
of L layers. Each of the L layers implements a non-linear
transformation H;(-), and the output of the I*" layer is denoted
as x;. As the output of the [* layer receives all of the feature
maps of all preceding layers, the output x; can be calculated
according to Formula (2, where [zo, %1, ..., ©;—1] refers to the
concatenation of the feature maps obtained from layer O, 1,

, I — 1, and H; represents a composite function of three
consecutive operations, which are batch normalization (BN)
[16]], a rectified linear unit (ReLU) [17]] and 3 x 3 convolution
(Conv).

;= Hi([xo, 21, ..., 21-1]) 2

C. GAs and PSO

a) GAs: As an EC approach, GAs are inspired by the
process of natural selection. The bio-inspired operators, such
as mutation, crossover and selection, are utilised to evolve
the population in order to obtain a high-quality solution [18].
The procedure of GA is composed of five parts: initialisation,
selection, fitness evaluation, mutation, and crossover. At the
stage of initialisation, a population of random vectors with a
fixed dimension is generated; Next, the selection is performed
by using a selection algorithm to select the individuals into
a mating pool; After that, mutation is performed by selecting
one individual from the mating pool and the value of each
dimension is randomly chosen to be changed to evolve a new



Fig. 3: A five layer dense block (image taken from [12])

individual; Crossover is performed by selecting two individu-
als in the mating pool and combining a part of one individual’s
vector with that of the other. By iterating the fitness evaluation,
selection, mutation, and crossover, the new population can be
filled with new individuals with hopefully better solutions. The
whole process terminates when the stopping criteria are met,
and the best individual of all generations is reported as the
evolved solution.

b) PSO: As one of the EC approaches, PSO is motivated
by the social behaviour of fish schooling or bird flocking [[19]
[20]. In PSO, there is a population consisting of a number of
candidate solutions also called particles, and each particle has
a position and a velocity. The representation of the position
is xi = (®i1,%42,...iq), Where x; is a vector of a fixed
dimension representing the position of the ¢th particle in
the population and z;4; means the dth dimension of the ith
particle’s position. v; = (v;1, v;2, ...v;q) illustrates the velocity
of a particle, where v; is a fix-length vector expressing the
velocity of the ith particle and v;4 means the dth dimension
of the ith particle’s velocity. The way that PSO solves the
optimisation problems is to keep moving the particle to a
new position in the search space until the stopping criteria
are met. The position of the particle is updated according to
the update equation which incorporates two equations - the
velocity update equation [3| and the position update Equation
(). In Formula (3), via(t + 1) indicates the updated dth
dimension of the ¢th particle’s velocity, r; and ry carry random
numbers between 0 and 1, w,c; and ¢y are PSO parameters
that are used to fine-tune the performance of PSO, and P, and
P,; bear the dth dimension of the local best and the global
best, respectively. After updating the velocity of the particle,
the new position can be achieved by applying Formula ().

Vig(t 4+ 1) = w* viq(t) + 1 %71 % (Pig — 2q(t)) + 2 % 19 % (Pgqg — 244(t)) (3)

ind(t + 1) = xid(t) + ’Uid(t + 1) 4)

D. Related Work

With regard to the automatic design of artificial neural
networks, two research areas haven been surged in recent
years, which are neuroevolution (NE) and neural architecture
search (NAS) [21] [22]. The traditional NE only evolves the
connection weights given a fixed topology. NeuroEvolution
of Augmenting Topologies (NEAT) [23] was proposed to
evolve neural network topologies along with weights, which
outperformed the best fixed-topology method on a challenging
benchmark reinforcement learning task. On top of NEAT, a
Hypercube-based NeuroEvoltuion of Augmenting Topologies
(HyperNEAT) was developed to open up a new class of
complex high-dimensional tasks to neuroevolution. However,
neuroevolution is hard to be applied on evolving deep CNNs
because the search space of deep CNNs, which combines the
topologies and the connection weights, is too large, which
makes EC algorithms hard to perform well. As a result, NAS
[22] was proposed to automatically search for the optimal
topology of CNNs, but not to evolve the connection weights.
Instead, the connection weights were trained by backpropaga-
tion. However, the process of training a deep CNN is slow,
which results in a very slow NAS process. In the proposed
NAS with reinforcement learning [22], the experiments ran
on 500 GPUs for 28 days to obtain the final result, and the
improved NAS method called NASNet [24]] has dramatically
reduced the running time, but the experiments still took 4 days
on 500 GPUs.

Since the computational cost of NAS is extremely high, and
most of the research institutes do not have such powerful GPU
resource of 500 GPUs, in the past years, interested researchers
have proposed quite a lot of NAS algorithms to evolve CNN
architectures with a much lower computational cost, e.g. in
[25] [26] [27] [21]. However, in the proposed algorithms with
much lower computational cost, the classification accuracy is
comprised a little bit. For example, the proposed method in
[27]] does not achieve an ideal result on one of the benchmark
datasets called CONVEX.

Although there has been a large amount of work done in
automatically designing neural networks without any human
interference, there is often a trade-off between the efficiency
and effectiveness. Along with recent CNNs becoming deeper
and deeper, automatically evolving CNNs becomes much
harder, especially with limited hardware resources.

III. THE PROPOSED METHOD

The proposed method is described in this section, which
uses a hybrid EC method of GA and PSO (HGAPSO).
The overall structure of the proposed method is described,
followed by the details of the algorithms. The new CNN
architecture named DynamicNetEl, which will be evolved by
the HGAPSO algorithm, is introduced. Then the encoding
strategy to represent DynamicNet is designed as the rest of the
algorithm is dependent on them. Based on that, the overview

'DynamicNet is implemented as one of the models in the Python li-
brary:https://pypi.org/project/convtt/
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Fig. 4: The flowchart of the experimental process

of the algorithm, the first-level PSO evolution and the second-
level GA evolution are described; Lastly, the fitness evaluation
is defined.

A. Overall Structure of the System

Fig. @] shows the overall structure of the system (this
structure is actually used by all of the experiments in this
paper). The dataset is split into a training set and a test set,
and the training set is further divided into a training part and
a test part. The training part and the test part are passed to
the EC process, which is the HGAPSO algorithm. During
the fitness evaluations, the training part is used to train the
neural network, and the test part is used to obtain the test
accuracy of the trained neural network, which is used as
the fitness value. EC produces the evolved CNN architecture,
which is the best individual. Lastly, in the CNN evaluation
procedure, the produced CNN architecture is trained on the
whole training set, and the test accuracy of the trained CNN
model is obtained, which is the final output of the system.

B. DynamicNet - The Evolved CNN Architecture

By comparing the figures of ResNet and DenseNet, it can
be observed that in ResNet, each layer has at most two
connections from previous layers. However, in DenseNet, the
connections of each layer coming from previous layers are
the number of previous layers due to the densely-connected
structure. Therefore, the number of input feature maps is the
sum of the numbers of feature maps of all previous layers,
which results in the exploding growth of the number of feature
maps, particularly for the layers near the output layer. The
solution introduced in DenseNet is to divide the whole CNN
into multiple blocks called Dense Block as shown in Fig. [3]
Each block is followed by a transition layer, which comprises a
convolutional layer and a pooling layer, to reduce the number
of feature maps to half the number of input feature maps.
The hyperparameters of the convolutional layer are fixed,
which are 3 as the filter size, 1 as the stride size, and half
the number of input feature maps as the number of feature
maps; The pooling layer also has fixed hyperparameters, which
are 2x2 as the kernel size and 2 as the stride size. As the
proposed DynamicNet may be densely-connected, it might
have the same exploding growth issue of the number of feature
maps. Therefore, DynamicNet adopts the block mechanism of
DenseNet.

Inside each block, there are a number of convolutional layers
with a fixed filter size of 3x3 and a fixed stride size of 1.

After each layer, the total number of input feature maps grows
by the number of feature maps of the convolutional layer,
which is called the growth rate of the block. In DenseNet,
the number of blocks, the number of convolutional layers and
the growth rate are manually designed, which requires good
domain knowledge and a lot of manual trials to find a good
architecture. In the proposed HGAPSO algorithm, these three
hyperparameters will be also automatically designed.

C. HGAPSO Encoding Strategy

DynamicNet is comprised of a number of blocks which are
connected by transition layers, and the shortcut connections
are built between layers inside the block. Based on the
construction pattern of the network, the hyperparameters of the
architecture can be split into the architecture and the shortcut
connections. Regarding the architecture of the network, there
are various hyperparameters including the number of blocks,
the number of convolutional layers in each block and the
growth rate of the convolutional layer in the block, which need
to be evolved. In addition to the densely-connected structure in
DenseNet, different topologies of shortcut connections, i.e. the
different combination of partial shortcut connections in each
block, will be explored by the proposed HGAPSO method
in order to keep the meaningful features and remove the
unmeaningful features learned by previous layers.

Based on the analysis of the architecture and hyperparam-
eters, the encoding process can be divided into two steps.
The first step is to encode the hyperparameters of the CNN
architecture. Each of the hyperparameters is a dimension of
the architecture encoding, which is shown in Fig. [’5_5} The first
dimension is the number of blocks, and the two hyperparam-
eters of each block, the number of convolutional layers and
the growth rate, as two dimensions are appended to the vector.
The first step of the encoding is named the first-level encoding,
which will be used by the first-level evolution. Based on the
results of the first-level encoding, the shortcut connections can
be encoded into a binary vector at the second-level encoding.
An example of one block with 5 layers is illustrated in Fig.
[5b] Each of the dimensions represents a shortcut connection
between two layers that are not next to each other, and the two
layers next to each other are always connected. Taking the first
layer as an example, the three binary digits - [101] represents
the shortcut connections between the first layer to the third, to
the fourth, and to the fifth layer, respectively, where 1 means
the connection exists and 0 means there is no connection. A
number of similar binary vectors shown in Fig. [5b] constitute
the whole vector that represents the shortcut connections of
the whole block.

D. HGAPSO Search

1) Overview: Based on the two-level encoding strategy, the
algorithm is composed of two levels of evolution, which are
described in Algorithm [I] The first-level evolution is designed
to evolve the architecture of the CNNs encoded by the first-
level encoding, and the second-level evolution is performed to
search for the best combination of shortcut connections. There
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(a) HGAPSO first-level encoding
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(b) HGAPSO second-level encoding
Fig. 5: HGAPSO encoding

are a couple of reasons to separate the architecture evolution
from the evolution of the shortcut-connection combination.
First of all, since the architecture and the shortcut connections
play different roles in the performance of CNNs, which are
that the architecture including the depth and the width of the
CNN s represents the capacity of network and the shortcut con-
nections are to facilitate the training process of the network,
the training process is only comparable when the architecture
is fixed, which inspires the idea of splitting the evolution
to two levels. Secondly, if the hyperparameters of both the
architecture and the shortcut connections are combined into
one encoded vector, it will bring some uncertainties to the
search space, which, therefore, may deteriorate the complex
search space by introducing more disturbance to the search
space.

It is arguable that the computational cost of the two-level
evolution may be high, but the two-level encoding strategy
divides the complex search space into two smaller search
spaces and reduces the disturbance in the search space, so
the two-level evolution we believe will not perform worse
than searching for the optima in a much more complex
search space. Other than that, as the second-level evolution
of searching for the best combination of shortcut connections
only depends on the specific architecture evolved in the first-
level evolution, the second-level evolution can be done in
parallel for each of the individual of the first-level evolution,
which can dramatically speed up the process if sufficient
hardware is available.

2) HGAPSO First-level PSO evolution: Algorithm [2] shows
the pseudo code of the PSO evolutionary process. Based on the
encoded vector from the first-level encoding, the value of each
dimension is a decimal value, and PSO has been proved to be
effective and efficient in solving optimisation problems with
decimal values, so PSO is chosen to perform the first-level
search. However, the dimensionality of the encoded vector is
not fixed, so an adapted variable-length PSO is proposed to
solve this variable-length problem. Since the size of the input
feature maps to each block is different and the specific block
is trained and designed to learn meaningful features given the
size of the input feature maps, when applying EC operators
on two individuals, it is important to find the matched blocks
which have the same size of input feature maps and apply
the operators on the matched blocks. To be specific with the

Algorithm 1: Framework of HGAPSO

P <« Initialize the population with first-level encoding
elaborated in Section
Pyest < Empty PSO Personal Best;
Ghest < Empty PSO global best;
while first-level termination criterion is not satisfied do
P < Update the population with first-level PSO
evolution described in Section [[II-D
for particle ind in population P do
P_sub + Initialize the population with second-level
encoding based on the value of ind illustrated in
Section [III-C}
while second-level termination criterion is not
satisfied do
P_sub <+ Update the population with second-level
GA evolution described in Section [[II-D
evaluate the fitness value of each individual;
P_suby.s; < retrieve the best individual in P_sub;
end while
Update Ppest if P_subpes: 1s better than Ppegy;
end for
Gpest <+ retrieve the best individual in P;
end while

PSO evolution in HGAPSO, the length of the particle may be
different from the length of the personal best and global best,
so based on the blocks of the individual, the corresponding
blocks in the personal best and the global best need to be
matched by selecting the blocks with the same size of the
output feature and the PSO algorithm is only applied on the
matched blocks.

The first dimension of the vector represents the number of
blocks. When the number of blocks changes, the depth of
the CNN architectures changes, which achieves the ability
to evolve the depth of the CNN architecture and keeping
the diversity of the PSO population. However, the change of
the number of blocks incurs a dramatic change to the CNN
architecture, and if it changes too often, each CNN architecture
evolution might be too short to achieve good performance,
so it is better to leave the evolution some time to optimise
other hyperparameters given the specific number of blocks. In
order to keep the diversity of the number of blocks and reduce
the disturbance caused by frequently changing the number of
blocks, the rate of changing the number of blocks in the vector
is introduced, which is a real value between [0, 1]. Therefore,
the preference for diversity or stability depending on specific
tasks can be controlled by tweaking the rate of changing the
number of blocks.

When the number of blocks is changed, some blocks need to
be randomly cut or randomly generated in order to meet the
requirement of the number of blocks in the first dimension.
For example, suppose the number of blocks is increased from
3 to 4, the hyperparameters of the fourth block need to be
randomly generated based on the first-level encoding strategy,



which then are appended to the vector of 3 blocks; On the other
way around, assuming the number of blocks is decreased from
4 to 3, the last block is removed. In the proposed HGAPSO
method, whenever removing a block(s), it always starts from
the last layer because it does not affect the feature map sizes
of the other blocks.

Algorithm 2: HGAPSO first-level PSO evolution

Input: The current particle ind, the personal best Ppst, the
global best Gy.s:, the rate of changing the number of
blocks 7.p;
rnd <+ Generate a random number from a uniform
distribution;

the second-level evolution consumes the most computation.
While for the first-level evolution, as the computational cost
is not that high, and in order to achieve a more stable
performance given the architecture of a CNN, the full training
dataset is used.

IV. EXPERIMENT DESIGN
A. Benchmark Datasets and State-of-the-art Competitors

Due to our limited hardware resource, the DECNN method
proposed in [27], which only requires a few days running of
the experiment on a single GPU, is chosen as the peer EC
competitor instead of the method proposed in [22], which
takes 28 days on 500 GPUs to obtain the final result. The

Find the matched blocks of the particle ind by comparing state-of-the-art machine learning algorithms used to compare

the feature map size;

with DECNN are also used as the peer Non-EC competitors.

Update the velocity and position of the matched blocks of As DECNN did not perform well on CONVEX benchmark

the particle ind according to Equation 3] and

if rnd < r., then
Update the velocity and position of the dimension of
number of blocks of the particle ind according to

Equation [3] and

dataset [29]], CONVEX dataset is selected as one of the
benchmark datasets to see if the proposed HGAPSO algorithm
able to achieve better performance. Apart from the CONVEX
dataset, the MB and MDRBI datasets [29]] are also used
as benchmark datasets to evaluate the proposed algorithm

Randomly cut or generate the blocks to the value of the across different complexities, as MB is the simplest dataset

number of blocks.
end if

3) HGAPSO Second-level GA evolution: According to the
second-level encoding depicted in Section [[II-Cl once the
CNN architecture is obtained from the first-level evolution, the
dimensionality of the second-level encoding will be fixed, so
the encoded vector can be represented by a fixed-length binary
vector. Since GAs are good at optimising binary problems, a
GA is chosen as the algorithm to perform the second-level
evolution.

E. HGAPSO Fitness Evaluations

It can be observed from Algorithm [I] that fitness evaluation
only takes place inside the second-level GA evolution, and
the fitness of the best GA individual is used as the fitness
of its corresponding particle of first-level PSO evolution.
Backpropagation with Adam Optimiser [28] is used to train
the network for a number of epochs on part of the training
data. The accuracy of the trained CNN on the test part of the
training data as the fitness value of the individual.

There are two hyperparameters for the fitness evaluations,
which are the number of epochs and the initial learning
rate of Adam Optimiser. In the experiment, 5 epochs are
used by considering the hardware available and a fairly-short
experimental time. After the number of epochs is chosen,
DenseNet is used as a baseline to determine an initial learning
rate for optimising a CNN with the given depth and width, i.e.
after the architecture of the CNN determined, the network with
fully-connected blocks as shown in Fig. [3| are used to find a
best initial learning rate among 0.9, 0.1 and 0.01.

In order to speed up the evolution process, a part of the
training dataset is used for the second-level evolution because

among the MB variants, and MDRBI is the most complicated
variant of the MB datasets. On MB, the images represent the
handwritten digits from O to 9, and there are 12,000 training
images and 5,000 test images; MDRBI contains the same
amount of training and test images, but some noises are added
to the original MB dataset. The CONVEX dataset contains
images with the shape of convex or non-convex, which are
divided into the training dataset of 8,000 images and the test
dataset of 5,000 images. Since EC methods are stochastic, the
experiment will be run 30 times and statistical tests will be
performed when comparing the proposed algorithm with its
peer competitors.

As it would be more convincing to evaluate the proposed
HGAPSO algorithm on larger datasets such as CIFAR-10, but
the computational cost is too high, e.g. one run of HGAPSO on
CIFAR-10 takes more than a week. Therefore, the experiment
on CIFAR-10 will not be run for 30 times due to the very
high computational cost, our limited GPU resource and the
time constraint. Instead, only one run of the experiment will
be performed in order to obtain an initial result, which gives
suggestions on whether it is worth continuing the experiments
for 30 runs in the future when more GPU resources are ready.

B. Parameter settings

All of the parameters are configured according to the
conventions in the communities of PSO [30] and GAs [31]
along with taking into account the computational cost and the
complexity of the search space. The values of the parameters
of the proposed algorithm are listed in Table [I]

V. RESULTS AND DISCUSSIONS

When comparing the proposed HGAPSO method (stochas-
tic) with the state-of-the-art methods (deterministic), One Sam-
ple T-Test is applied to test whether the results of HGAPSO



TABLE I: Parameter Settings

TABLE III: Classification rates of HGAPSO and DECNN

Parameter [ Value Parameter [ Value
HGAPSO parameters PSO

the range of # of [4, 8] €1, C2 1.49618
layers in each block w 0.7298
the range of growth [8, 32] GA

rate in each block mutation rate 0.01
population size 20 cross over rate 0.9
generation 10 elitism rate 0.1

is statistically significantly better, due to that ; when the
comparison of error rates between HGAPSO and the proposed
DECNN is performed, Two Sample T-test is utilised. Table
shows the comparison results between HGAPSO and the
state-of-the-art algorithms; Table [lI} compares HGAPSO with
DECNN.

A. HGAPSO vs. State-of-the-Art methods

The experimental results and the comparison between
HGAPSO and the state-of-the-art methods are shown in Table
In order to clearly show the comparison results, the terms
(+) and (-) are provided to indicate the result of HGAPSO
is significantly better or worse than the best result obtained
by the corresponding peer competitor; The term (=) shows
that the mean error rate of HGAPSO is similar to that of the
competitor, i.e. no significant difference from the statistical
point of view. The term (-) means there are no available results
reported from the provider or cannot be counted.

It can be observed that the proposed HGAPSO method
achieves a significant improvement in terms of the error rates
shown in Table HGAPSO significantly outperforms the
other peer competitors across all the three benchmark datasets.
To be specific, it further reduces the error rate over the best
competitor by 5%, 1% and 10% on the CONVEX, MB and
MDRBI datasets, respectively.

TABLE II: Classification errors of HGAPSO and Competitors

Method CONVEX MB MDRBI
CAE2 - T8 @ | B33 @
TIRBM = ~ 13550 ®
PGEM-DN-1 - ~ [ 36.76
ScaNet-2 650 @ T27 @ | 50.48
RandNei.2 545 @) 125 | 4369 ™
;EXA)NC"Z Goft- 1 19 () 1.40 (+) | 35.86 (+)
TDANGL2 722 @ T05 @ | 3854 ™
SVM+RBF 13 @ 3003 @ | 55.18 ()
SVM=Poly 982 @ 3.60 (1) | 5441 ()
NNet 3295 (9 160 (5 | 6216
SAA3 TER e 3.46 (1) | 51.93 ()
DBN-3 863 @ 311 (5 | 4739 (&
HGAPSO(best) 1.03 0.74 10.53
HGAPSO(mean) 124 0.84 12.23
?fofso(&ta“d““d 0.10 0.07 0.86
eviation)

B. HGAPSO vs. DECNN

In Table|[IIl} it can be observed that by comparing the results
between HGAPSO and DECNN, both the mean error rate and
the standard deviation of HGAPSO are smaller than that of

CONVEX MB MDRBI

HGAPSO(mean) T.24 0.84 12.23
HGAPSO(standard | - ; 0.07 0.86

deviation)

DECNN(mean) 11.19 1.46 37.55
DECNN(standard 1.94 0.11 2.45

deviation)

P-value 0.0001 0.0001 0.0001

DECNN, and from the statistical point of view, HGAPSO has a
significant improvement in terms of the classification accuracy.

C. Evolved CNN Architecture

After investigating the evolved CNN architectures, it is
found that HGAPSO demonstrates its capability of evolving
both the architecture of CNNs and the shortcut connections
between layers. By looking into the evolved CNN architec-
tures, it can be observed that not only the CNN architectures
with various number of layers but also different topologies of
shortcut connections are evolved. For example, one evolved
CNN architecture has 3 blocks. In the first block, there are 4
convolutional layers, and [0, 0O, 0, 0, 1], [0, 1, 0, 1], [0, O, 1],
[0, O] and [1] represent the connections from the input, the
first layer, the second layer, the third layer to the following
layers, where 1 indicates the connection exists, and 0 means
no connection; The second block is composed of 8 layers with
the growth rate of 34, and the corresponding connections are
[1,0,1,0,1,0,1,0L [0, 1, 1, 1, 1, 0, 1], [1, 1, 1, 1, 1, O],
[1,1,1,0,1],[1, 0,0, 0], [0, O, O], [1, 1] and [0]; In the third
block, there are 5 layers with the corresponding connections
of [0, 0, 1, 1, 0], [0, O, 0, O], [1, O, 0], [0, 1] and [0], and the
growth rate is 39.

D. One-run Result on CIFAR-10 dataset

As mentioned earlier, the computational cost of testing
HGAPSO is extremely high. For one run of the experiment
using one GPU card, it takes more than a week to evolve the
CNN architecture, and it took almost 12 hours to train the
evolved CNN architecture. The classification accuracy of the
specific run is 95.63%, which ranks the second among the
state-of-the-art deep neural networks ranging from 75.86% to
96.53% that are collected by the rodrigob website E]; However,
all of the state-of-the-art deep neural networks require very
highly specialised domain knowledge and tremendous experi-
ments to manually fine-tune the performance, while HGAPSO
has the ability of automatically evolving the CNN architecture
without any human interference, which is considered as the
biggest advantage.

VI. CONCLUSIONS

This paper developed an EC based method for automat-
ically evolving both the architecture of CNNs and shortcut
connections, without human intervention or domain knowl-
edge in either CNNs or the target problem. The proposed

thtp://rodrigob. github.io/are_we_there_yet/build/classification_datasets_results.html#4349



method outperforms both the EC competitor and the Non-
EC competitors on commonly used benchmark datasets. The
first reason is that by evolving shortcut connections, the feature
maps learned in previous layers can be reused in further layers,
which amplifies the leverage of useful knowledge; Secondly,
the shortcut connections make the training of very deep neural
networks more effectively by passing the gradients through
shortcut connections, which has been proven by DenseNet
[12]. Furthermore, the classification accuracy of HGAPSO
on CIFAR-10 is promising as it is very competitive with the
state-of-the-art deep neural networks. In addition, the most
advantage of HGAPSO is that it does not require any human
efforts to design the architecture of CNNs, which is usually
required for the peer state-of-the-art competitors.

In regard to the future work, there are two aspects came
up from the experiments and learnt experience of this paper.
Firstly, due to the hardware limitation, the proposed algorithm
has been tested on relatively small datasets. Even though an
initial result of running HGAPSO on CIFAR-10 is obtained,
the statistical analysis based on the results from 30 runs needs
to be applied in order to make a stronger claim of the proposed
method. It would be more convincing if the algorithms could
be tested on other larger datasets such as ImageNet dataset.
Secondly, as there are more and more new CNN architectures
proposed with better performance, it would be helpful to
investigate more recent CNN architectures, based on which EC
methods can be applied to automatically evolve more advanced
CNN architectures.
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