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Abstract
The well-established music grammar is often used
to change audio elements of music to invoke au-
diences’ emotional experience. Such music gram-
mar, referred to as domain knowledge, is crucial for
affective music content analyses, but has not been
thoroughly explored. In this paper, we propose a
novel method to analyze music emotion through
exploring domain knowledge. Specifically, we first
infer probabilistic dependencies between different
main musical elements and emotions from the sum-
marized music theory. Then, we transfer the do-
main knowledge to constraints, and formulate af-
fective music content analysis as a constrained op-
timization problem. Experiments on the Music in
2015 database and the AMG1608 database demon-
strate that the proposed affective content analyses
method can successfully leverage well-established
music grammar for better emotion regression from
music content.

1 Introduction
We are surrounded by digital music collections due to the
popularity of the Internet and the proliferation of user friend-
ly MP3 players. Since almost every piece of music is creat-
ed to convey emotion, naturally, music emotion recognition
has attracted increasing attention in recent years. Automat-
ic emotion recognition from music pieces has wide potential
application in both music creation and music distribution.

The framework of current research into music emotion
recognition mainly consists of feature extraction and classi-
fication. First, various features, including timbre, rhythm and
harmony, are extracted from music pieces. Then, a classifi-
er, such as support vector machine, is used to classify music
pieces into several discrete emotion categories, or a regressor,
such as support vector regression, is adopted to predict con-
tinuous emotional dimensions, such as valence and arousal.
An extensive review of emotion recognition from music can
be found in [Yang and Chen, 2012].

Although various discriminative features and classifiers
have been developed, automatic emotion recognition from
music pieces is still a very challenging task due to the com-
plexity and subjectivity of human emotions, and the rich va-

riety of music content.
Almost all the current work on music emotion recognition

focuses on developing discriminative features and classifiers.
This kind of data-driven approach does not successfully ex-
ploit the domain knowledge of emotion and music, i.e. the
inherent psychological relationship between human emotion
and music, which carries crucial information for music emo-
tion recognition.

Specifically, main musical dimensions, i.e., rhythm, tonal-
ity, timbre, dynamics and pitch are often used to affect users’
emotional experience. The tempo, mode, brightness, loud-
ness and pitch can represent the five main musical dimen-
sions respectively[Lartillot and Toiviainen, 2007]. Fig. 1[S-
loboda, 2011]summarized the relations between music ele-
ments and emotions. From fig. 1, we can find that fast tem-
po is often used to generate the arousal atmosphere, while
the slow tempo is used to create quiet environment [Fer-
nández-Sotos et al., 2016; Gabrielsson and Lindström, 2010;
Gomez and Danuser, 2007; Husain et al., 2002]. Major mode
can be used to induce happiness and excitement, and minor
mode can create a more tense and sad music[Miller, 2005].
Brightness is related to arousal[Gabrielsson and Lindström,
2010]. Higher brightness can be used to induce excitement
and astonishment, while lower brightness can be used to in-
duce sadness and softness. As for loudness, higher loudness
can be used to induce anger, fear and excitement, and lower
loudness can create a more relaxed and quiet music[Gabriels-
son and Lindström, 2010]. High pitch may lead to happi-
ness, anger and fear, while low pitch may induce sadness
[Gabrielsson and Lindström, 2010].Such inherent dependen-
cies between music elements and emotions can be leveraged
for emotion recognition from music, but have not been ex-
plored yet.

Therefore, in this paper, we propose a novel method to an-
alyze musical emotion through exploring domain knowledge.
As a primary study to explore music theory for music emotion
analysis, this paper takes main musical dimensional elements
as an example to demonstrate the feasibility of the proposed
music emotion analyses method enhanced through exploring
domain knowledge. Specifically, we first infer probabilistic
dependencies between main musical dimensional elements
and emotions from the summarized music theory. Then we
transfer the domain knowledge to constraints and formulate
music emotion analyses as a constrained optimization prob-



Figure 1: Music elements used by composers to communicate emo-
tions to audiences

lem. Experiments on two benchmark databases demonstrate
the superiority of the proposed method.

2 Domain Knowledge
Musical dimensions including rhythm, tonality, timbre, dy-
namics, and pitch, are used by composers to communicate
emotions to audiences[Lartillot, 2011]. In this section, we
introduce the dependencies between musical elements and e-
motions from the summarized music theory.

2.1 Rhythm
Tempo has great power to establish the mood of music
and can greatly affect the emotions of the audiences [Fer-
nández-Sotos et al., 2016; Gabrielsson and Lindström, 2010;
Gomez and Danuser, 2007; Husain et al., 2002]. General-
ly, tempo represents the rhythm of the music[Lartillot, 2011].
By adjusting the tempo, the composers can fully design the
emotions which are contained in their music. Specifically, as
mentioned in [Gabrielsson and Lindström, 2010], fast tempo
is designed to create the exaggerated atmosphere, which in-
vokes high arousal mood from the audiences. On the other
hand, the slow tempo is adopted to create quiet atmosphere,
which invokes low arousal mood from the audiences.

Perceived music tempo can influence audiences’ feelings.
Specifically, when listening to music with fast tempo signals,
people intuitively associate it with activity/excitement, happi-
ness/joy/pleasantness, potency, surprise, flippancy, anger, un-
easiness, and fear. Slower tempos are associated with calm-
ness/serenity, peace, sadness, dignity/solemnity, tenderness,
longing, boredom and disgust[Gabrielsson and Lindström,
2010].

Tempo is typically categorized into Largo (40-60bpm),
Adagio (66-76bpm), Andante (76-108bpm), Moderato (108-
120bpm) and Allegro(120-168) [Miller, 2005]. Largo,
Larghetto, and Adagio are in slow pace, Andante is in a in-
termediate pace and typically considered as walking pace,

and Moderato and Allegro are in fast pace. Since it is not
easy to distinguish slow pace from intermediate pace, we treat
them as an group. There are obvious difference between fast
pace and intermediate pace, and we adopt the 108bpm as the
threshold for categorizing the tempo as fast or slow rhythm.

Table 1: The dependencies between four music elements (tempo,
mode, brightness and loudness) and emotions. Note that the

√

demonstrates great dependencies between emotion and the music
elements. Details are discussed in Sec. 2

high A low A high V low V
fast tempo

√

slow tempo
√

major mode
√

minor mode
√

high brightness
√

low brightness
√

high loudness
√

low loudness
√

2.2 Tonality
Tonality is one of the most important musical elements for
music presentation. Since mode is a system of musical tonal-
ity involving a type of scale coupled with a set of character-
istic melodic behaviors[Miller, 2005], composers control the
musical tonality by adjusting the mode. Generally, the mod-
e is scaled into a heptatonic scale in which the first-, third-,
and fifth-scale degrees play important roles. Composers con-
trol the musical tonality by adjusting the mode. Generally,
the mode is scaled into a heptationic scale, in which the first,
third, and fifth scale degrees play important roles. As stated
in [Miller, 2005], the mode is categorized into two groups:
major mode and minor mode. Specifically, the major mode is
constructed by adjusting the first-, third-, and fifth-scale de-
grees with a major triad, while the minor mode is constructed
by adjusting the first-, third-, and fifth-scale degrees with a
minor triad. Major modes tend to convey a sense of grace,
while minor modes imply anxiety and sadness. Studies show
that major mode is strongly correlated to grace, serene, and
solemn, while minor mode is strongly correlated to dreamy,
dignified, tension, disgust, and anger[Husain et al., 2002].
Thus, the major mode is used to invoke positive valence from
audiences, and the minor mode is used to induce negative va-
lence.

In this paper, we extract the mode features which ranges
between -1 and +1 with the MIR toolbox. After obtaining
the mode features, we adopt the median mode value as the
threshold and categorize the clips into major or minor tonal-
ity. Specifically, clips with mode values above the median
are considered major tonality, while clips with mode values
below the median are assigned minor tonality.

2.3 Timbre
Musical timbre is an important components constructing the
music piece. By playing music with different musical instru-
ments and equalizer, the composer can communicate the e-
motion of the music with the audiences. Composers typical-



ly compose the music in a bright tone for constructing joy-
ful, angry or thrill atmosphere, while compose the music in
dull sound for delivering the mood of tender or depression
[Gabrielsson and Lindström, 2010]. Thus, the bright sound is
used for invoking high valence from the audiences, while the
dull sound is used to induce low valence.

Audiences are more likely to feel high arousal
emotions[Trochidis and Lui, 2015], e.g., excitement
and astonishment while listening to bright sounds. Dull
sounds induce feelings of sadness or tenderness

In this paper, we adopt the brightness [Wessel, 1979] as
the feature of musical timbre. Specifically, brightness mea-
sures the proportion of high frequency components (above
1500HZ) in the music piece. The formulation is shown as
below:

Brightness = Xabove/Xtotal ∗ 100% (1)

where Xabove represents component whose the energy above
1500Hz, and Xtotal represents the total energy of the music.
We adopt the median brightness value as the threshold and
categorize the clips into high timbre or low timbre. Clips are
labelled as high timbre if their brightness values are above the
median, while clips are assigned to the low timbre category if
their brightness values are below the median.

2.4 Dynamics
In music, the dynamics of a piece is the variation in loud-
ness between notes or phrases. Musicians often make use of
loudness to create dynamic of a music piece. When playing a
song, singers and instrumentalists express emotions through
the loudness of the song. Specifically, they often refrain or
chorus the song in louder in order to induce the high arousal
from the audience. The volume of the music can strongly
influence arousal[Gabrielsson and Lindström, 2010]. Loud
sound usually conveys the emotion of anger, excitement, sur-
prise and great joy. On the contrary, soft sound expresses
peaceful mood, tender and sadness [Gabrielsson and Lind-
ström, 2010]. Audience tend to feel a high arousal mood
while listening to high dynamic songs, and tend to feel a low
arousal mood while listening to low dynamic songs.

Loudness is strongly associated with arousal of human’
emotion[Trochidis and Lui, 2015]. Specifically, loud sound
can raise intension or excitement from the audiences, while
low amplitude often soothes and pacify or deliver a sense of
melancholy.

In this paper, root-mean-square amplitude (rms) is used to
represent loudness. We extract the rms with the MIR tool-
box, which uses values between 0 and 1. To categorize the
rms, we adopt the median value as the threshold and separate
the dataset into high loudness and low loudness. Songs with
loudness larger than the median are assigned as high loud-
ness, while the rests are labelled as low loudness.

2.5 Pitch
Pitch is another fundamental feature of music, which repre-
sents the judgement of frequency of notes. However, the ob-
servations and conclusions of the current studies regarding
valence and arousal vary widely.

Specifically, in the valence space, some works [Collier and
Hubbard, 1998; Hevner, 1937] states that high pitch can re-
sult in high valence emotions such as joy, happiness, and glad,
while low pitch tends to provoke low valence feelings of sad-
ness, agitation. However, there also exists works [Ilie and
Thompson, 2006; Scherer and Oshinsky, 1977] noting that
high pitch can lead to low valence emotion, e.g. anger and
fear, while low pitch can induce high valence emotions such
as pleasure from audiences.

The relation between arousal and pitch is also debated.
Some works [Coutinho and Cangelosi, 2009; Scherer and
Oshinsky, 1977] point out that high pitch level can provoke
high arousal emotions from audiences, e.g. tension, excite-
ment and anger. However, other work [Hevner, 1937] s-
tates that high pitch level may also lead to some low arousal
emotions from the audiences like serene and grateful. S-
tatements in [Hevner, 1937; Scherer and Oshinsky, 1977;
Rigg, 1940] also demonstrates the contradictory in relations
between low pitch level and emotions.

Although several researches note that pitch level has an ef-
fect on an audience’ mood, the association between pitch and
emotions is still obscure.

In conclusion, the dependencies between emotions and
main musical dimensions including rhythm, tonality, timbre
and dynamics discussed above are shown in Table 1.

3 Proposed Method
3.1 Problem Statement
Denote three tuple S = {(xi, hi, yi)|i = 1, ..., N}, where xi
represents D-dimensional features, hi = (hti, h

m
i , h

b
i , h

l
i) ∈

{0, 1} represents the binarized tempo values, mode values,
brightness values and loudness values respectively, yi ∈
{yvi , yai | − 1 ≤ yvi , y

a
i ≤ 1} represents continuous valence

and arousal values, and N is the number of training samples.
The goal is to learn a classifier f(x,w) as follows:

min
w

N∑
i=1

α`(fθ(xi), yi) +

N∑
i=1

βL(xi, hi, yi) (2)

where α and β are the coefficients, `(fθ(xi), yi) represents
the basic loss function, and L(xi, hi, yi) captures the domain
knowledge between music elements h and the emotion values
y. The first term represents the loss function over training
samples. The second term represents the regularization term
reflecting domain knowledge.

For the first term, any loss function can be used. In this
paper, we adopt the support vector regression as the basic loss
function:

`(fθ(xi), yi) =
1

2
||w||2 + α

N∑
i=1

`ε(f(xi, w)− yi) (3)

where the function `ε(z) satisfy the below:

`ε(z) =

{
0, if |z| ≤ ε
|z| − ε, otherwise.

(4)

where ε is a constant which defines the maximum deviation
allowed for a prediction to be considered as correct; α is used



as a trade-off between the model complexity and regression
loss.

For the second term, any domain knowledge, i.e, the rela-
tions between music elements and emotions, can be exploited
to build better emotion classifiers from music. In this paper,
domain knowledge of four music elements, i.e., tempo, mode
brightness and loudness are discussed, with respect to dynam-
ic, rhythm, timbre and tonality of the music dimension.

3.2 Representation of Domain Knowledge
Domain knowledge in arousal space From Table 1, tem-
po, brightness and loudness have the strong relationship with
musical emotion in the arousal space. Fast tempo features,
high brightness and high loudness are more possible to in-
voke high arousal mood of audiences, while the slow tempo
features, low brightness and low loudness are more likely to
invoke the low arousal of the audiences. Thus we can infer
the probabilistic dependencies between tempo and arousal e-
motion as:

p(ŷa ≥ 0|h{t,b,l} = 1) > p(ŷa < 0|h{t,b,l} = 1)

p(ŷa < 0|h{t,b,l} = 0) > p(ŷa ≥ 0|h{t,b,l} = 0)
(5)

where p(ŷa ≥ 0|h{t,b,l} = 1) and p(ŷa < 0|h{t,b,l} = 1)
indicate the probabilities of high arousal and low arousal re-
spectively, when observing fast tempo, high brightness and
loudness. p(ŷa < 0|h{t,b,l} = 0) and p(ŷa ≥ 0|h{t,b,l} = 0)
indicate the probabilities of low arousal and high arousal re-
spectively, when given slow tempo, low brightness and low
loudness.

In this paper, we adopt ReLU function to penalize the sam-
ples violating the domain knowledge. The corresponding
penalty l{ta,ba,la}i (xi, hi, ŷi) from the domain knowledge ac-
cording to Eq. 5 is encoded as below :

`
{ta,ba,la}
i (xi, hi, ŷi)

= h
{t,b,l}
i ∗ [p(ŷa < 0|h{t,b,l} = 1)− p(ŷa ≥ 0|h{t,b,l} = 1)]++

(1− h{t,b,l}i ) ∗ [p(ŷa ≥ 0|h{t,b,l} = 0)− p(ŷa < 0|h{t,b,l} = 0)]+

= h
{t,b,l}
i ∗ [1− 2 ∗ p(ŷa ≥ 0|h{t,b,l} = 1)]+

+ (1− h{t,b,l}i ) ∗ [2 ∗ p(ŷa ≥ 0|h{t,b,l} = 0)− 1]+
(6)

where [·] = max(·, 0).
Since there is no obvious relationship between mode and

arousal, we treat the major mode and minor equal importan-
t. In other words, major mode and minor mode have equal
chances to invoke low arousal mood or high arousal mood
from audiences. Hence, mode information is not used in
arousal space.

Domain knowledge in valence space From Table 1, ma-
jor mode(high-value mode) features are more possible to in-
voke high valence mood from audiences, while the minor
mode(low-value mode) features are more likely to invoke the
low valence of the audiences in the valence space. Thus we
can infer the probabilistic dependencies between mode and
valence emotion as:

p(ŷv ≥ 0|hm = 1) > p(ŷv < 0|hm = 1)

p(ŷv < 0|hm = 0) > p(ŷv ≥ 0|hm = 0)
(7)

Thus the corresponding constraint lmvi (xi, hi, ŷi) for valence
according to Eq. 7 is encoded as below:

`mvi (xi, hi, ŷi) = hmi ∗ [p(ŷv < 0|hm = 1)− p(ŷv ≥ 0|hm = 1)]+

+ (1− hmi ) ∗ [p(ŷv ≥ 0|hm = 0)− p(ŷv < 0|hm = 0)]+

= hmi ∗ [1− 2 ∗ p(ŷv ≥ 0|hm = 1)]+

+ (1− hmi ) ∗ [2 ∗ p(ŷv ≥ 0|hm = 0)− 1]+
(8)

Since there is no obvious relationship between valence and
another elements, e.g. tempo, brightness, loudness, the
information of tempo, brightness and loudness is not used in
valence space.

3.3 Proposed Model
We propose to learn classifier with the objectives as below:

F {a,v} =
1

2
wTw + α

N∑
i=1

`ε(f(xi, w)− yi)+

βt
N∑
i=1

`
{ta}
i (xi, h

t
i, ŷi) + βm

N∑
i=1

`
{mv}
i (xi, h

m
i , ŷi)+

βb
N∑
i=1

`
{ba}
i (xi, h

b
i , ŷi) + βl

N∑
i=1

`
{la}
i (xi, h

l
i, ŷi)

(9)

where w is the parameter of the classifier, α, βt, βm, βb and
βl are coefficients. In this model, we use f(x,w) = w · φ(x)
as our score function where φ(x) maps the features space into
the kernel space. According to the property of logistic regres-
sion, we apply sigmoid function to replace the probalilistic
dependencies between audio elements and emotion labels as
follow:

p(ŷ > 0|h) = σ(f(x,w))

p(ŷ ≤ 0|h) = 1− σ(f(x,w)) (10)

where σ(x) = 1
1+e−x .

In order to solve the optimization we adopt the stochastic
gradient descent(SGD) to solve the problem. The updating
rule is shown as follows:

w(t+1) = w(t) − η(t) ∂F
{a,v}

∂w
(11)

where t and η indicate the number of iterations and the learn-
ing rate respectively.

The gradient of loss function to the weight can be comput-
ed as below:

∂F {a,v}

∂w
= w + α

N∑
i=1

∂`i(f(xi, w)− yi)
∂w

+ βt
N∑
i=1

∂`
{ta}
i (f(xi, h

t
i, ŷi)

∂w
+ βm

N∑
i=1

∂`
{mv}
i (f(xi, h

m
i , ŷi))

∂w
+

βb
N∑
i=1

∂`
{ba}
i (f(xi, h

b
i , ŷi))

∂w
+ βl

N∑
i=1

∂`
{la}
i (f(xi, h

l
i, ŷi))

∂w

(12)



where the specific gradient of loss function to the weight is
computed as:
∂`i(f(xi, w)− yi)

∂w
=

{
0, if |f(xi)− yi| ≤ ε
φ(x), otherwise.

(13)

∂`tai (f(xi, h
t
i, ŷi))

∂w
=



− 2σ(f(xi, w))[1− σ(f(xi, w))]φ(xi),
if hti = 1 and 1− 2σ(f(xi, w)) ≥ 0

2σ(f(xi, w))[1− σ(f(xi, w))]φ(xi),
if hti = 0 and 2σ(f(xi, w))− 1 ≥ 0

0, otherwise.
(14)

Gradients of `tai , `mvi , `bai and `lai can be computed as Eq. 14
similarly.

The learning algorithm is shown in Algorithm 1.

Algorithm 1 Training algorithm of the proposed model

Input:
training samples(xi, hi, yi),
coefficient α, βt, βm, βb and βl learning rate η

Output: Model parameters w
Randomly initialize w;
repeat

for each training sample (xi, hi, yi) do
Calculate the probabilistic dependencies p(ŷ > 0|h)
and p(ŷ ≤ 0|h) as Eq.10;
Calculate the specific gradient as Eq.13 and Eq.14;

end for
Calculate ∂F{a,v}

∂w as Eq.12

w ← w − η(∂F
{a,v}

∂w )
until
Converges
return w

After learning, the proposed approach can infer the affec-
tive value for testing samples according to function f(x,w).

4 Experiments
4.1 Experimental conditions
To demonstrate the effectiveness of the proposed method, we
conduct experiments on two benchmark databases: the Music
Emotion in 2015 database [Aljanaki et al., 2015] and the All
Music Guide 1608 database(AMG1608) [Chen et al., 2015].

The Music Emotion in 2015 database consists of royalty-
free music, with diverse genres of rock, classical, pop, jazz,
country, folk, rap etc.[Bittner et al., 2014]. The database is
divided into two subsets: the development set and the test
set. Specifically, the development set consists of 430 clips
of 45 seconds, and the test set is comprised of 58 complete
music pieces with an average duration of 234 ±105.7 sec-
onds. We use 260 low-level feature set provided by [Aljanaki
et al., 2015], which are extracted using openSMILE features.
The 260 dimensional feature set represent the music from 65
dimensional mean deviation, 65 dimensional standard devi-
ation, and their first-order derivatives from acoustic descrip-
tors. We also extract tempo, mode, brightness, loudness with
MIR toolbox.

The AMG1608 database consists of 1608 preview clips of
Western songs, collected from a popular music stream service
named 7digit. Each preview clips is 30-second long. For
experiments, we adopt the four-fold cross-validation on the
database. We use the public feature set provided by [Chen et
al., 2015], including MFCC, Tonal, Spectral and Temporal.
We also extract tempo, mode, brightness, loudness with MIR
toolbox.

To further demonstrate the effectiveness of domain knowl-
edge, we conduct the following experiments in the arousal
space: music audio emotion analysis ignoring all domain
knowledge (none), music audio emotion analysis only ex-
ploiting single domain knowledge (tempo, brightness, loud-
ness), music audio emotion analysis exploiting two of domain
knowledge(tempo+brightness, tempo+loudness, bright-
ness+loudness) and music audio emotion analysis exploiting
all domain knowledge (tempo+brightness+loudness). In the
valence space, since mode is the only musical elements that
affects the valence, we conduct experiments as: music audio
emotion analysis ignoring all domain knowledge (none), and
music audio emotion analysis exploiting mode (mode). We
also conduct experiments using music audio emotion analysis
fusing the musical elements as features (fusion).

Root-Mean-Square Error(RMSE) and Pearson Correla-
tion(R) is adopted to evaluate the effectiveness of the pro-
posed method.

During model training, we first initialize the weights to s-
mall random number, then we conduct model selection with
grid search, by choosing the hyper parameter α, βt, βm, βb
and βl ranging from {0.1, 1, 10, 20, 50} for simplicity. For
each method, we monitor the objective cost on the training
set and choose the hyper parameters with the smallest objec-
tive cost. On the Music Emotion in 2015 database, a fixed
split of training/validation/testing 400/30/58 is adapted. On
the AMG1608 database, we adopt 4-fold cross-validation.

Table 2: Music emotion analyses results on the music in 2015
database and the AMG1608 database in valence space

Music in 2015 database AMG1608 database
RMSE R RMSE R2

none 0.357 0.012 0.275 0.064
fusion 0.351 0.019 0.272 0.063
mode 0.318 0.044 0.254 0.140

Table 3: Music emotion analyses results on the music in 2015
database and the AMG1608 database in arousal space

Music in 2015 database AMG1608 database
RMSE R RMSE R2

none 0.270 0.3740 0.2670 0.5680
fusion 0.270 0.377 0.262 0.589
tempo 0.2626 0.4649 0.265 0.5975

brightness 0.2650 0.4887 0.266 0.6257
loudness 0.2618 0.4759 0.252 0.6068

tempo+brightness 0.2454 0.5185 0.264 0.6395
tempo+loudness 0.2550 0.5417 0.246 0.6162

brightness+loudness 0.2566 0.5782 0.244 0.6461
tempo+brightness+loudness 0.2340 0.5970 0.240 0.669



4.2 Experimental results and analysis
Table 2 and Table 3 show the music audio analyses results
on the Music Emotion in 2015 database and the AMG1608
database in the valence space and arousal space. From Table 2
and Table 3, we observe as follows:

First, the proposed method exploiting all domain knowl-
edge has the best performance among all methods with the
lowest RMSE and highest Pearson correlation. Specifical-
ly, compared with music audio analyses ignoring all domain
knowledge, the proposed method achieves 0.039 and 0.021
decrement of RMSE, and 0.032 and 0.076 increment of Pear-
son correlation, with respect to the Music Emotion in 2015
database and the AMG1608 database in the valence space. In
the arousal space, the proposed method decrease the RMSE
of 0.036 and 0.027, and increase the Pearson correlation of
0.223 and 0.101 on the Music Emotion in 2015 database and
the AMG1608 database respectively. The method ignoring
domain knowledge is totally data-driven method, which only
learns the mapping from the extracted features to the predic-
tions and it ignores the well-established music knowledge.
On the contrary, the proposed method leverages both domain
knowledge and training data, and thus achieves better perfor-
mance.

Second, the methods leveraging more domain knowledge
have better performance than that exploiting less domain
knowledge. Specifically, in the arousal space, the methods
leveraging one domain knowledge is inferior to the methods
leveraging two domain knowledge. Since temp, brightness,
and loudness describes the music from different aspects, the
effects of these musical elements on the music emotion anal-
yses are complementary. Thus, the methods leveraging more
domain knowledge can capture more relations between music
elements and emotion, and achieves better performance.

4.3 Comparison with related work
To further demonstrate the effectiveness of the proposed
method, we compared the proposed method with the state of
art.

On the Music Emotion in 2015 database, we compare the
proposed method with Aljanaki’s [Aljanaki et al., 2015], Li-
u’s [Liu et al., 2015], Chin’s [Chin and Wang, 2015], Marko-
r’s [Markov and Matsui, 2015], and Patra’s[Patra et al., 2015].
Specifically, Aljanaki et al. provided the baseline for Medi-
aEval 2015. Liu et al. proposed Arousal-Valence Similar-
ity Preserving Embedding (AV-SPE) to extract the intrinsic
features embedded in music signal, and train the SVR which
takes the extracted features as the input and the emotion val-
ues as labels; Chin et al. adopted deep recurrent neural net-
work to predict the valence and arousal for each moment of
a song; Markor et al. used Kernel Bayes Filter (KBF) for
predicting the valence and arousal. Patra et al. proposed the
music emotion recognition system consisting of feed-forward
neural networks, which predicts the dynamic valence and
arousal values continuously. The comparisons are shown in
Table 4. From the table, we observe as follows:

Compared with the others’ works, the proposed method
has best performance in most cases. The state of the art on-
ly learns the maps from the features, and makes prediction
of the music emotion. On the contrary, the proposed method

not only learns the mapping from the features, but also cap-
tures the dependencies between musical elements and emo-
tions through domain knowledge. Thus the proposed capture
more information, and achieves better performance.

Table 4: Comparison with related works on the Music Emotion in
2015 database

Database Music emotion in 2015

Models Arousal Valence

RMSE R RMSE R

Our Model 0.234 0.597 0.318 0.044
Baseline 0.27 0.36 0.37 0.01
Liu et al.’s 0.2377 0.5610 0.3834 -0.0217
Chin et al.’s 0.2555 0.3417 0.3359 -0.0103
Markov et al.’s 0.419 0.498 0.620 -0.035
Patra et al.’s 0.2689 0.4678 0.3538 -0.0082

Table 5: Comparison with related work on the AMG1608 database

Database AMG1608

Models Arousal Valence

AED R2 AED R2

Our Model 0.240 0.669 0.254 0.140
Baseline 0.288 0.651 0.288 0.120

Rare work is conducted on the AMG1608 database. Thus,
we only compare the proposed method with the baseline
methods provided in [Chen et al., 2015]. In [Chen et al.,
2015], Chen et al. adopted the Music emotion recognition
(MER) system to recognize music emotion on the AMG1608
database. We adapted the Average Euclidean Distance (AED)
and Pearson correlation as evaluation. The comparison is
shown in Table. 5. From the table, we observe as follows:

Compared with baseline method, the proposed method
achieve better performance of AED and Pearson correlation.
Since the proposed method captures the more information by
constraints of domain knowledge, it is reasonable that the pro-
posed method achieves better performance.

Taking the comparisons above into consideration, the pro-
posed method has an excellent generalization ability with re-
spect to affective audio music analysis. This demonstrates the
effectiveness of the proposed method.

5 Conclusion
In this paper, we propose a novel method to analyze music
emotion recognition through exploring domain knowledge.
We first investigate the probabilistic dependencies between
emotions and music elements, i.e., tempo, mode, brightness
and loudness. Then we transfer such probabilistic dependen-
cies to the domain knowledge constraints for music emotion
recognition. The experimental results on the Music emotion
in 2015 database and the AMG1608 database demonstrate the
importance of the domain knowledge. This further demon-
strates the superiority of the proposed method to music emo-
tion recognition.
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