Skip to main content

Sparse Ordinal Regression via Factorization Machines

  • Conference paper
  • First Online:
Book cover PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

  • 2612 Accesses

Abstract

Most existing ordinal regression methods are adapted from traditional supervised learning algorithms (e.g., support vector machines and neural networks) which have shown to work well mostly on dense data. However, the use of existing ordinal regression methods on sparse data has received less scrutiny. This paper proposes to address the sparsity issue arose in many real-world ordinal regression applications by leveraging the feature interaction modeling techniques. Following the popular threshold methodology in ordinal regression studies, we extend Factorization Machines, an effective solution to modeling pairwise feature interactions in sparse feature space, to ordinal regression. The proposed model, namely Factorization Machines for Ordinal Regression (FMOR), combines the ability of threshold methodology in predicting targets of ordinal scale with the advantages of factorization models in handling high-dimensional sparse data. Through extensive experimental studies, we show that the proposed FMOR is both effective and efficient against state-of-the-art baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.work.caltech.edu/~htlin/program/orensemble/.

    http://www.gatsby.ucl.ac.uk/~chuwei/svor.htm.

    http://www.libfm.org/.

  2. 2.

    https://archive.ics.uci.edu/ml/.

    https://www.openml.org.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/User+Knowledge+Modeling.

References

  1. Alp, A.: Structural shifts in credit rating standards. J. Financ. 68(6), 2435–2470 (2013)

    Article  Google Scholar 

  2. Beckham, C., Pal, C.: Unimodal probability distributions for deep ordinal classification, pp. 411–419 (2017)

    Google Scholar 

  3. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In: Proceedings of the 22nd International Conference on Machine Learning, pp. 145–152 (2005)

    Google Scholar 

  4. Goh, C.K., Liu, Y., Kong, A.W.: A constrained deep neural network for ordinal regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2018)

    Google Scholar 

  5. Gutierrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127–146 (2016)

    Article  Google Scholar 

  6. Gutiérrez, P.A., Tiňo, P., Hervás-Martínez, C.: Ordinal regression neural networks based on concentric hyperspheres. Neural Netw. 59, 51–60 (2014)

    Article  Google Scholar 

  7. Huang, X., Zhang, L., Wang, B., Zhang, Z., Li, F.: Feature weight estimation based on dynamic representation and neighbor sparse reconstruction. Pattern Recogn. 81, 388–403 (2018)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Koren, Y., Sill, J.: Collaborative filtering on ordinal user feedback. In: Proceedings of the 23th International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  10. Li, L., Lin, H.T.: Ordinal regression by extended binary classification. In: Advances in Neural Information Processing Systems, pp. 865–872 (2007)

    Google Scholar 

  11. Lin, H.T., Li, L.: Large-margin thresholded ensembles for ordinal regression: theory and practice. In: Proceedings of the International Conference on Algorithmic Learning Theory, pp. 319–333 (2006)

    Google Scholar 

  12. Lin, H.T., Li, L.: Reduction from cost-sensitive ordinal ranking to weighted binary classification. Neural Comput. 24(5), 1329–1367 (2012)

    Article  Google Scholar 

  13. Liu, X., Zou, Y., Song, Y., Yang, C., You, J., Kumar, B.V.K.V.: Ordinal regression with neuron stick-breaking for medical diagnosis. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 335–344. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_23

    Chapter  Google Scholar 

  14. Liu, Y., Kong, A.W.K., Goh, C.K.: Deep ordinal regression based on data relationship for small datasets. In: Proceedings of the 26th International Joint Conferences on Artificial Intelligence, pp. 2372–2378 (2017)

    Google Scholar 

  15. McCullagh, P.: Regression models for ordinal data. J. Roy. Stat. Soc.: Ser. B (Methodol.) 42(2), 109–127 (1980)

    MathSciNet  MATH  Google Scholar 

  16. Ni, W., Liu, T., Zeng, Q., Zhang, X., Duan, H., Xie, N.: Robust factorization machines for credit default prediction. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 941–953. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97304-3_72

    Chapter  Google Scholar 

  17. Pan, Z., Chen, E., Liu, Q., Xu, T., Ma, H., Lin, H.: Sparse factorization machines for click-through rate prediction. In: Proceedings of the IEEE 16th International Conference on Data Mining, pp. 400–409 (2016)

    Google Scholar 

  18. Qiang, R., Liang, F., Yang, J.: Exploiting ranking factorization machines for microblog retrieval. In: Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management, pp. 1783–1788 (2013)

    Google Scholar 

  19. Rendle, S.: Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3(3), 57 (2012)

    Article  Google Scholar 

  20. Shashua, A., Levin, A.: Ranking with large margin principle: two approaches. In: Advances in Neural Information Processing Systems, pp. 961–968 (2003)

    Google Scholar 

  21. Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Trans. Knowl. Data Eng. 22(6), 906–910 (2010)

    Article  Google Scholar 

  22. Tian, Q., Zhang, W., Wang, L., Chen, S., Yin, H.: Robust ordinal regression induced by lp-centroid. Neurocomputing 313, 184–195 (2018)

    Article  Google Scholar 

  23. Tran, T., Phung, D., Luo, W., Venkatesh, S.: Stabilized sparse ordinal regression for medical risk stratification. Knowl. Inf. Syst. 43(3), 555–582 (2015)

    Article  Google Scholar 

  24. Wang, H., Shi, Y., Niu, L., Tian, Y.: Nonparallel support vector ordinal regression. IEEE Trans. Cybern. 47(10), 3306–3317 (2017)

    Article  Google Scholar 

  25. Zhu, M., Aggarwal, C.C., Ma, S., Zhang, H., Huai, J.: Outlier detection in sparse data with factorization machines. In: Proceedings of the 2017 ACM Conference on Information and Knowledge Management, pp. 817–826 (2017)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by Natural Science Foundation of China (61602278, 71704096 and 31671588), Sci. & Tech. Development Fund of Shandong Province of China (ZR2017MF027), the Humanities and Social Science Research Project of the Ministry of Education (18YJAZH017), the Taishan Scholar Climbing Program of Shandong Province, and SDUST Research Fund (2015TDJH102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, W., Liu, T., Zeng, Q. (2019). Sparse Ordinal Regression via Factorization Machines. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics