Skip to main content

Efficient Identification of Critical Links Based on Reachability Under the Presence of Time Constraint

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Abstract

In this paper, we focus on an emergency situation in the real-world such as disaster evacuation and propose an algorithm that can efficiently identify critical links in a spatial network that substantially degrade network performance if they fail to function. For that purpose, we quantify the network performance by node reachability from/to one of target facilities within the prespecified time limitation, which corresponds to the number of people who can safely evacuate in a disaster. Using a real-world road network and geographical information of actual facilities, we demonstrated that the proposed method is much more efficient than the method based on the betweenness centrality that is one of the representative centrality measures and that the critical links detected by our method cannot be identified by using a straightforward extension of the betweenness centrality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://openstreetmap.jp/.

  2. 2.

    http://nlftp.mlit.go.jp/ksj-e/index.html.

  3. 3.

    https://www.e-stat.go.jp/gis/.

References

  1. Akram, V.K., Dagdeviren, O.: Breadth-first search-based single-phase algorithms for bridge detection in wireless sensor networks. Sensors 13(7), 8786–8813 (2013)

    Article  Google Scholar 

  2. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  3. Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations. LNCS, vol. 3418. Springer, Heidelberg (2005). https://doi.org/10.1007/b106453

    Book  MATH  Google Scholar 

  4. Burckhart, K., Martin, O.J.: An interpretation of the recent evolution of the city of barcelona through the traffic maps. J. Geogr. Inf. Syst. 4(4), 298–311 (2012)

    Google Scholar 

  5. Crucitti, P., Latora, V., Porta, S.: Centrality measures in spatial networks of urban streets. Phys. Rev. E 73(3), 036125 (2006)

    Article  Google Scholar 

  6. Fang, Y.P., Pedroni, N., Zio, E.: Comparing network-centric and power flow models for the optimal allocation of link capacities in a cascade-resilient power transmission network. IEEE Syst. J. 99, 1–12 (2014)

    Google Scholar 

  7. Grady, D., Thiemann, C., Brockmann, D.: Robust classification of salient links in complex networks. Nature Commun. 3(864), 1–10 (2012)

    Google Scholar 

  8. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 3, 9:1–9:23 (2009)

    Article  Google Scholar 

  9. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_3

    Chapter  Google Scholar 

  10. Montis, D.A., Barthelemy, M., Chessa, A., Vespignani, A.: The structure of interurban traffic: a weighted network analysis. Environ. Plan. 34(5), 905–924 (2007)

    Article  Google Scholar 

  11. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Accelerating computation of distance based centrality measures for spatial networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 376–391. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_24

    Chapter  Google Scholar 

  12. Ohara, K., Saito, K., Kimura, M., Motoda, H.: Maximizing network performance based on group centrality by creating most effective k-links. In: Proceedings of the 4th IEEE International Conference on Data Science and Advanced Analytics (DSAA 2017), pp. 561–570 (2017)

    Google Scholar 

  13. Oliveira, E.L., Portugal, L.S., Junior, W.P.: Determining critical links in a road network: vulnerability and congestion indicators. Procedia Soc. Behav. Sci. 162, 158–167 (2014)

    Article  Google Scholar 

  14. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)

    Article  Google Scholar 

  15. Park, K., Yilmaz, A.: A social network analysis approach to analyze road networks. In: Proceedings of the ASPRS Annual Conference 2010 (2010)

    Google Scholar 

  16. Piraveenan, M., Prokopenko, M., Hossein, L.: Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks. PLoS ONE 8(1), 1–14 (2013)

    Article  Google Scholar 

  17. Saito, K., Ohara, K., Kimura, M., Motoda, H.: Accurate and efficient detection of critical links in network to minimize information loss. J. Intell. Inf. Syst. 51(2), 235–255 (2018)

    Article  Google Scholar 

  18. Saito, K., Ohara, K., Kimura, M., Motoda, H.: Efficient detection of critical links to maintain performance of network with uncertain connectivity. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11012, pp. 282–295. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97304-3_22

    Chapter  Google Scholar 

  19. Sariyüce, A.E., Kaya, K., Saule, E., Çatalyürek, U.V.: Graph manipulations for fast centrality computation. ACM Trans. Knowl. Discov. Data 11(3), 26:1–26:25 (2017)

    Article  Google Scholar 

  20. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Trans. Networking 21(3), 963–973 (2013)

    Article  Google Scholar 

  21. Tarjan, R.E.: A note on finding the bridges of a graph. Inf. Process. Lett. 2(6), 160–161 (1974)

    Article  MathSciNet  Google Scholar 

  22. Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., Gonzalez, M.C.: Understanding road usage patterns in urban areas. Sci. Rep. 2, 1001:1–1001:6 (2012)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by JSPS Grant-in-Aid for Scientific Research (C) (No. 17K00314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumi Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saito, K., Ohara, K., Kimura, M., Motoda, H. (2019). Efficient Identification of Critical Links Based on Reachability Under the Presence of Time Constraint. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics