Skip to main content

Contourlet Transform Based Seismic Signal Denoising via Multi-scale Information Distillation Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Abstract

Recently, convolutional neural network (CNN) based models have achieved great success in many multimedia applications. Seismic signals as one kind of important multimedia resources are often interfered by noise in practice, which bring difficulties for utilizing these resources effectively. To this end, this paper presents a novel CNN architecture in the contourlet transform (CT) domain for seismic signal denoising. First of all, we propose multi-scale information distillation (MSID) module to fully exploit features from seismic signals. And then, a series of MSIDs are cascaded in a coarse-to-fine manner to restore the noisy seismic signals, which is named as deep multi-scale information distillation network (D-MSIDN). In addition, we propose to formulate the denoising problem as the prediction of CT coefficients, which is able to make D-MSIDN further remove noise and preserve richer structure details than that in spatial domain. We use synthetic seismic signals and public Society of Exploration Geophysicists (SEG) and European Association of Geoscientists & Engineers (EAGE) salt and overthrust seismic data to demonstrate the superior performance of the proposed method over other state-of-the-art methods. From some qualitative and quantitative results, we find that our method is capable of obtaining data with higher quality assessment and preserving much more useful signals than other methods. In particular, our denoising performances are more considerable for seismic data with lower signal-to-noise ratio.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Canales, L.L.: Random noise reduction. In: 54th Annual International Meeting of SEG Technical Program Expanded Abstracts, pp. 525–527 (1984)

    Google Scholar 

  2. Zhang, J.H., Lu, J.M.: Application of wavelet transform in removing noise and improving resolution of seismic data. J. Univ. Petrol. Ed. Natural Sci. 31(12), 1975–1981 (1997)

    Google Scholar 

  3. Neelamani, R., Baumstein, A., Gillard, D., Hadidi, M., Soroka, W.: Coherent and random noise attenuation using the curvelet transform. Lead. Edge 27, 240–248 (2008)

    Article  Google Scholar 

  4. Bonar, D., Sacchi, M.: Denoising seismic data using the nonlocal means algorithm. Geophysics 77(1), A5–A8 (2012)

    Article  Google Scholar 

  5. Xu, J., Wang, W., Gao, J.H., Chen, W.C.: Monochromatic noise removal via sparsity-enabled signal decomposition method. IEEE Geosci. Remote Sens. Lett. 10(3), 533–537 (2013)

    Article  Google Scholar 

  6. Chen, Y., Fomel, S.: EMD-seislet transform. In: 85th Annual International Meeting of SEG Technical Program Expanded Abstracts, pp. 4775–4778 (2015)

    Google Scholar 

  7. Liu, W., Cao, S., Chen, Y., Zu, S.: An effective approach to attenuate random noise based on compressive sensing and curvelet transform. J. Geophys. Eng. 13, 135–145 (2016)

    Article  Google Scholar 

  8. Beckouche, S., Ma, J.W.: Simultaneous dictionary learning and denoising for seismic data. Geophysics 79(3), A27–A31 (2014)

    Article  Google Scholar 

  9. Chen, Y.K.: Fast dictionary learning for noise attenuation of multidimensional seismic data. Geophys. J. Int. 209(1), 21–31 (2017)

    Google Scholar 

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  11. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  12. Kim, J., Lee J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  13. Tai, Y., Yang, J., Liu, X.M.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3147–3155 (2017)

    Google Scholar 

  14. Tai, Y., Yang, J., Liu, X.M., Xu, C.Y.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4539–4547 (2017)

    Google Scholar 

  15. Hui, Z., Wang, X.M., Gao, X.B.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 723–731 (2018)

    Google Scholar 

  16. Li, J., Fang, F., Mei, K., Zhang, G.: Multi-scale residual network for image super-resolution. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 527–542. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_32

    Chapter  Google Scholar 

  17. Zhang, Y.L., Tian, Y.P., Kong, Y., Zhong, B.N., Fu, Y.: Residual dense network for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  18. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  19. Guo, T.T., Mousavi, H.S., Vu, T.H., Monga, V.: Deep wavelet prediction for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 104–113 (2017)

    Google Scholar 

  20. Guo, T.T., Mousavi, H.S., Monga, V.: Orthogonally regularized deep networks for image super-resolution. arXiv preprint arXiv:1802.02018 (2018)

  21. Huang, H.B., He, R., Sun, Z.N., Tan, T.N.: Wavelet-SRNet: a wavelet-based cnn for multi-scale face super resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1689–1697 (2017)

    Google Scholar 

  22. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), pp. 136–144 (2017)

    Google Scholar 

  23. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2160 (2005)

    Article  Google Scholar 

  24. Mallat, S.: A Wavelet Tour of Signal Processing: the Sparse Way. Academic Press, Boston (2008)

    MATH  Google Scholar 

  25. Shahdoosti, H.R., Khayat, O.: Image denoising using sparse representation classification and non-subsampled shearlet transform. SIViP 10(6), 1–7 (2016)

    Article  Google Scholar 

  26. Aminzadeh, F., Burkhard, N., Kunz, T., Nicoletis, L.: 3-D modeling project: 3rd report. Lead. Edge 14, 125–128 (1995)

    Article  Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of China under Grant Nos. 61602226, 61772249, 61772112; in part by the PhD Startup Foundation of Liaoning Technical University of China under Grant No. 18-1021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sang, Y., Sun, J., Wang, S., Meng, X., Qi, H. (2019). Contourlet Transform Based Seismic Signal Denoising via Multi-scale Information Distillation Network. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics