
Multi-agent Hierarchical Reinforcement
Learning with Dynamic Termination

Dongge Han, Wendelin Böhmer, Michael Wooldridge, and Alex Rogers

Dept. Computer Science, University of Oxford, Oxford, UK
{dongge.han, wendelin.boehmer, michael.wooldridge,

alex.rogers}@cs.ox.ac.uk

Abstract. In a multi-agent system, an agent’s optimal policy will typ-
ically depend on the policies chosen by others. Therefore, a key issue
in multi-agent systems research is that of predicting the behaviours of
others, and responding promptly to changes in such behaviours. One ob-
vious possibility is for each agent to broadcast their current intention,
for example, the currently executed option in a hierarchical reinforce-
ment learning framework. However, this approach results in inflexibility
of agents if options have an extended duration and are dynamic. While
adjusting the executed option at each step improves flexibility from a
single-agent perspective, frequent changes in options can induce incon-
sistency between an agent’s actual behaviour and its broadcast intention.
In order to balance flexibility and predictability, we propose a dynamic
termination Bellman equation that allows the agents to flexibly terminate
their options. We evaluate our model empirically on a set of multi-agent
pursuit and taxi tasks, and show that our agents learn to adapt flexibly
across scenarios that require different termination behaviours.

Keywords: Multi-agent Learning · Hierarchcial Reinforcement Learning

1 Introduction

Many important real-world tasks are multi-agent by nature, such as taxi coor-
dination [10], supply chain management [6], and distributed sensing [9]. Despite
the success of single-agent reinforcement learning (RL) [17,13], multi-agent RL
has remained as an open problem. A challenge unique to multi-agent RL is that
an agent’s optimal policy typically depends on the policies chosen by others [16].
Therefore, it is essential that an agent takes into account the behaviours of oth-
ers when choosing its own actions. One possible solution is to let each agent
model and broadcast its intention, in order to indicate the agent’s subsequent
behaviours [3]. As an example, Figure 1(a) shows a taxi pickup scenario where
taxi A is choosing its next direction. Given the information that taxi B is cur-
rently heading towards Q, taxi A can determine passenger P as its preferred
option over Q.

* Preprint presented at PRICAI 2019. The final authenticated version is available online at
https://doi.org/10.1007/978-3-030-29911-8_7.

ar
X

iv
:1

91
0.

09
50

8v
1

 [
cs

.M
A

]
 2

1
O

ct
 2

01
9

https://doi.org/10.1007/978-3-030-29911-8_7

2 D. Han et al.

(a) Taxi A choosing a target (b) Taxi B switching target

Fig. 1: Taxi Scenario Examples

0 10000 20000 30000 40000
episodes

1

0

1

2

3

4

5

6

7

a
v
e
ra

g
e
 r

e
w

a
rd

s
p
e
r

e
p
is

o
d
e

4

5

6

7

30000 40000

T = 1

T = 2

T = 3

T = 4

T = 5

Fig. 2: The effect of terminating options early, i.e., after T steps

Fortunately, hierarchical RL provides a simple solution for modeling agents’
intentions by allowing them to use options, which are subgoals that an agent aims
to achieve in a finite horizon. Makar et al. [11] proposed multi-agent hierarchical
RL, where hierarchical agents broadcast their current options to the others.
However, despite the advantage brought by using options, there can be a delay
in an agent’s responses towards changes in the environment or others’ behaviours,
due to the temporally-extended nature of options, which forbids the agents from
switching to another option before the current one is terminated. In the scenario
depicted in Figure 1(b), while taxi A is going for passenger R, taxi B finished
picking up passenger Q and also switched towards R. In this case, taxi A will
miss the target R, but it cannot immediately switch its target.

A potential solution to the delayed response challenge is to terminate options
prematurely. Figure 2 shows the performance of a multi-agent taxi experiment
where the agents’ current options are interrupted after T timesteps. By reduc-
ing T , the agents gain higher flexibility for option switching, which also leads to
increasing rewards. This has been studied previously to address the problem of
imperfect options in single-agent settings, where an agent can improve its per-
formance by terminating and switching to an optimal option at each step [18].
However, this approach may no longer prove advantageous in a multi-agent sce-
nario. When an agent frequently switches options, the broadcast option will be
inconsistent with its subsequent behaviour. Consequently, the agent’s behaviour
becomes less predictable and the advantage of broadcasting options is dimin-
ished.

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 3

This poses a dilemma that is specific to multi-agent systems: excessive termi-
nations makes an agent’s behaviour unpredictable, while insufficient termination
of options results in agents’ inflexibility towards changes[8]. We will refer to an
agent’s flexibility as the ability to switch options in response to changes in oth-
ers or the environment. Furthermore, we will use predictability to measure how
far an agent will commit to its broadcast option. In this paper, we propose an
approach called dynamic termination, which allows an agent to choose whether
to terminate its current option according to the state and others’ options. This
approach balances flexibility and predictability, combining the advantages of
both.

An obvious approach to modelling dynamic termination is to use an addi-
tional controller, which decides whether to terminate or to continue with the
current option at each step. In this paper, we incorporate termination as an
additional option for the high-level controller. In this way, the Q-value of the
newly introduced option is associated consistently with the Q-values of the orig-
inal options, and our approach introduces negligible additional complexity to the
original model. We evaluate our model on the standard multi-agent pursuit and
taxi coordination tasks across a range of parameters. The results demonstrate
that our dynamic termination model can significantly improve hierarchical multi-
agent coordination and that it outperforms relevant state-of-the-art algorithms.
The contributions of our work are as follows:

1. Based on the decentralized multi-agent options framework, we propose a
novel dynamic termination scheme which allows an agent to flexibly termi-
nate its current option. We show empirically that our model can greatly
improve multi-agent coordination

2. We propose a delayed communication method for an agent to approximate
the joint Q-value. This method allows us to use intra-option learning, and
reduces potentially costly communication

3. We incorporate dynamic termination as an option to the high level controller
network. This design introduces little additional model complexity, and al-
lows us to represent the termination of all options in a consistent manner

In addition, we adopted several methods that benefits the model architecture
and training: deep Q networks and parameter sharing reduce state space and
model complexity; adapting intra-option learning [18] to multiple agents yields
better sample efficiency; and an off-policy training scheme [7] for exploration.

2 Related Work

Makar et al.[11] appear to have been the first to combine multi-agent and hi-
erarchical RL, through the MaxQ framework [2]. We build on their work, with
the following changes: First, the use of tabular Q-learning is insufficient for large
state spaces. Therefore, we adopt deep Q networks for parameterizing state and
action spaces. Second, we adapt intra-option learning to multi-agent systems [18],

4 D. Han et al.

which greatly improves the sample efficiency. Third, we adopt a delayed com-
munication channel to prevent costly communication, and joint optimization.
And finally, as options cannot be terminated before their predefined termination
condition, tasks are limited to the use of perfect options and agents experience
the delayed response problem.

Our solution to the delayed response problem is related to works on inter-
rupting imperfect options, i.e., when the set of available options are not perfectly
suited to the task, an agent can choose to terminate its options dynamically in
order to improve its performance. Sutton et al.[18] introduced a mechanism for
interrupting options whenever a better option appears, and Harutyunyan et al.[7]
proposed a termination framework which improves upon this idea with better
exploration. This is achieved by off-policy learning, which uses an additional
behaviour policy for longer options.

Bacon et al.[1] proposed a dynamically terminating model for their Option-
critic framework. In comparison, we use the Q-learning framework instead of
policy gradient; and we focus on addressing the coordination problems in a
multi-agent system. Moreover, our Q-value for dynamic termination does not
depend on the currently executing option, which significantly reduces the model
complexity and also improve sample efficiency due to off-policy training, i.e., the
value of terminating can be learned with any executed option.

In the multi-agent learning literature, Riedmiller et al.[15] proposed the
multi-option framework. This is a centralized model in which multiple agents are
considered as a single meta-agent that chooses a joint option o = (o1, . . . , on).
In contrast, our model uses a decentralized scheme where each agent i chooses
and executes its own option oi. This reduces the action space of the high level
controller from |O|n to |O|, where O is the set of all options, and n is the number
of agents.

Our model also draws upon the independent Q-learning framework proposed
by Tan[20], where each agent independently learns its own policy on primitive
actions, while treating other agents as part of the environment. Additionally
in our model, each agent conditions on the others’ broadcast options as part
of its observation when choosing the next option. We will discuss the detailed
formulation in section 4.

3 Basic Definitions

We first introduce the essential concepts in reinforcement learning (RL), fol-
lowed by multi-agent RL, hierarchical RL, intra-option learning and off-policy
termination.

A Markov Decision Process [17] is given by a tuple 〈S,A, R, P, γ〉, where S
denotes a set of states, A a set of actions, P the stationary transition probability
P (st+1|st, at) from state st to state st+1 after executing action at, R is the aver-
age reward function rt := R(st, at), and γ ∈ [0, 1) is the discount factor. A policy
π(at|st) is a distribution over actions at given the state st. The objective of a
RL agent is to learn an optimal policy π∗, which maximizes the expected cumu-

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 5

lative discounted future rewards. The Q-value of the optimal policy conditions
this return on an action at that has been selected in a state st:

Q∗(st, at) = E
[∞∑
τ=0

γτrt+τ

]
= rt + γmax

a′
E
[
Q∗(st+1, a

′)
]
. (1)

Q-learning learns the Q-value of the optimal policy by interacting with a discrete
environment [22]. Continuous and high-dimensional states require function ap-
proximation [17], for example deep convolutional neural networks (DQN) [12,13].
To improve the stability of gradient decent, DQN introduces an experience replay
buffer to store transitions that have already been seen. Each update step samples
a batch of past transitions and minimizes the mean-squared error between the
left and right side of Equation 1.

In multi-agent reinforcement learning, n agents interact with the same envi-
ronment. The major difference to the single agent case is that the joint action
space A = A1 × · · · × An of all agents grows exponential in n. Independent
Q-learning addresses this by decentralizing decisions [20]: each agent learns a Q-
value function that is independent of the actions of all other agents. This treats
others as part of the environment and can lead to unstable DQN learning [5].
Other approaches combine decentralized functions with a learned centralized
network [14] or train decentralized Actor-Critic architectures with centralized
baselines [4].

We now describe some important concepts related to hierarchical reinforce-
ment learning (HRL). The Options Framework [18] is one of the most common
HRL frameworks, which defines a two-level hierarchy, and introduces options as
temporally extended actions. Options o are defined as triples 〈Io, βo, πo〉, where
Io ⊆ S is the initiation set and βo : S → [0, 1] is the option termination condi-
tion. πo : S → A is a deterministic option policy that selects primitive actions
to achieve the target of the option. On reaching the termination condition in
state s′, an agent can select a new option from the set O(s′) := {o | s′ ∈ Io}. A
Semi-Markov Decision Process (SMDP) [18] defines the optimal Q-value:

Q(st, ot) = E
[k−1∑
τ=0

γτrt+τ + γk max
o′∈O(st+k)

Q(st+k, o
′)
]
, (2)

where k refers to the number of steps until the termination condition βot(st+k) =
1 is fulfilled.

To improve sample efficiency, Intra-option Learning [18,19] was proposed as
an off-policy learning method which at each time step t updates all options that
are in agreement with the executed action, i.e. ∀o ∈ {o |πo(st) = at} holds:

Q(st, o) = rt + γ E
[
U(st+1, o)

]
(3)

U(s, o) =
(
1− βo(s)

)
Q(s, o) + βo(s) max

o′∈O(s)
Q(s, o′).

Here U(st+1, o) is the TD-target [21]: if o is terminating in the next state, the
TD-target will be the value of choosing the next optimal option. If not, the
target will be the value of continuing with option o. Updating multiple options
vastly improves the efficiency of training. Consider a grid-world navigation case

6 D. Han et al.

Convolution

Fully-connected
O1
O2
O3
…
Oi
…
On
T

Other agents’
 options

(0,1)
(0,1)

Gridworld Image

Agent
Other Agents

Passengers

Gridworld Image

Fig. 3: Dynamic termination Q-value network architecture.

where an agent is going for some goal location, and each coordinate corresponds
to the sub-goal of an option. When the agent takes a primitive action ajt and
reaches the next position, all options oj that would have chosen that action
will be updated. Each transition updates therefore a significant fraction of the
options, which massively improves sample efficiency.

As introduced by Sutton et al. [18], when the set of available options are
not suited to the task, an agent can improve its performance by terminating at
each step and switching to an optimal option. Harutyunyan et al. [7] have shown
that this approach improves the agent’s performance significantly, but has an
adverse effect on exploration: temporally extended options can explore the state
space more consistently, which is lost by early termination. The authors therefore
advocate the use of intra-option learning to update the Q-value off-policy, while
executing a different exploration policy that follows a selected option for multiple
steps before terminating.

4 Method

In this section we will present our framework for deep decentralized hierarchical
multi-agent Q-learning. Our model uses delayed communication to approximate
the decisions of a centralized joint policy, which avoids many problems usually
associated with joint optimization. This induces new challenges such as a delayed
response of agents, and requires us to define a novel dynamic termination update
equation.

Delayed Communication: A straightforward application of decentralized multi-
agent approaches like independent Q-learning (IQL) [20] to the Options frame-
work [18] would yield agents that make decisions independent of each other.
Agent j would estimate the Q-value (see Equation 2)

Qjiql(st, o
j
t) := E

[k−1∑
τ=0

γτrt+τ+γk max
o′j∈Oj

Qjiql(st+k, o
′j)
]
, (4)

and select the option ojt that maximizes it. Here other agents are treated as
stationary parts of the environment, which can lead to unstable training when

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 7

those agents change their policy. The best way to avoid this instability would
be learn the Q-value w.r.t. the joint option of all agents ot := (o1

t , . . . , o
n
t),

i.e. Qjoint(st,ot) [15]. While these joint Q-values allow training in a stationary
environment, decisions require to maximize over Q-values of all possible joint
options. As the number of joint options grows exponentially in the number of
agents n, and joint optimization would require a vast communication overhead,
this approach is not feasible in decentralized scenarios.

Instead we propose to use a delayed communication channel over which agents
signal the new option they switched to after each termination. This reduces po-
tentially costly communication and allows each agent j access to all other agents’
options of the previous time step o−jt−1 := (o1

t−1, . . . , o
j−1
t−1 , o

j+1
t−1 , . . . , o

n
t−1). Agents

can approximate the joint Q-value by conditioning on this information, that is,
by choosing options ojt that maximize the delayed Q-value Qj(st,o

−j
t−1, o

j
t). Note

that the approximation is exact if no other agent terminates at time t. The op-
timality of the agents’ decisions depends therefore on the frequency with which
agents terminate their options.

Multi-agent Intra-Option Learning: As introduced in the previous section,
the intra-option learning method (Equation 3) efficiently associates options with
primitive actions. In our decentralized multi-agent options model, agent j selects
an option according to Qj(st,o

−j
t−1, o

j), which is defined as

Qj(st,o
−j
t−1, o

j) := E
[
rt + γU j(st+1,o

−j
t , oj)

]
(5)

U j(st+1,o
−j
t , oj) :=

(
1− βo

j

(st+1)
)
Qj(st+1,o

−j
t , oj)

+βo
j

(st+1) max
o′j∈Oj

Qj(st+1,o
−j
t , o′j).

We can learn Qj by, for example, minimizing the mean-squared TD error [17]
between the left and right side of Equation 5. In line with intra-option learning,
we update the Q-values of all options oj that would have executed the same
action ajt as the actually executed option ojt . Note that due to our delayed com-
munication channel, the executed options of all other agents are known after the
transition to st+1 and can thus be used to compute the target U j(st+1,o

−j
t , oj),

that is, the Q-value of either following the option oj if βo
j

(st+1) = 0, or termi-

nating and choosing another option greedily if βo
j

(st+1) = 1.

Dynamic Option Termination: As mentioned above, the delayed Q-value
defined in Equation 5 only approximates the joint Q-value function. This ap-
proximation will deteriorate when other agents terminate, but sometimes agents
can also benefit from early termination, as shown in Figure 1(b). Additionally,
options are usually pre-trained and have to cover a large range of tasks, without
being able to solve any one task perfectly. Being able to prematurely terminate
options can increase the expressiveness of the learned policy dramatically.

The easiest way to use partial options is to modify the termination conditions
βo

j

(s). In particular, we denote choosing the option with the largest Q-value
(Eq. 5) at each time step as greedy termination. Following [7] we combined this
approach with an exploration policy that terminates executed options with a

8 D. Han et al.

fixed probability ρ = 0.5 to allow for temporally extended exploration. During
testing the agent is nonetheless allowed to terminate greedily at every step if the
Q-value of another option is larger.

Although greedy termination has been shown to improve the performance of
individual agents with imperfect options [7], the agent’s behaviour will become
less predictable for others. In particular, agents that utilize the delayed Q-value
of Equation 5 will make sub-optimal decisions whenever another agent termi-
nates. To increase the predictability of agents, while allowing them to terminate
flexibly when the task demands it, we propose to put a price δ on the deci-
sion to terminate the current option. Option termination is therefore no longer
hard-coded, but becomes part of the agent’s policy, which we call dynamic ter-
mination. This can be represented by an additional option oj = T for agent j
to terminate. Note that, unlike in the Options framework, we no longer need
a termination function βo

j

(st) for each option oj . It is sufficient to compare
the value of the previous option Qj(st,o

−j
t−1, o

j
t−1) with the value of termination

Qj(st,o
−j
t−1, T). Evaluating oj = T is computationally similar to evaluating the

termination condition βo. Dynamic termination therefore has a similar cost to
traditional termination.

The optimal behaviour for a given punishment δ is the fix-point of the novel
dynamic termination Bellman equation:

Qj(st,o
−j
t−1, o

j 6=T) := E
[
rt+ γ max

o′j∈{oj ,T}
Qj(st+1,o

−j
t , o
′j)
]
,

Qj(st,o
−j
t−1, o

j=T) := max
o′j∈Oj

Qj(st,o
−j
t−1, o

′j) − δ . (6)

Similarly to Equation 5, Equation 6 allows intra-option learning and can be
applied to all options oj that would have selected the same action as the executed
option ojt . Note that the termination option T can always be updated, as it does
not depend on the transition.

Deep Q-learning: A group of n agents can be trained using a deep Q-network
Qθ [12], parameterized by θ. The architecture is shown in Figure 3: each agent
j selects and executes the next option based on the current state (i.e. grid-word
image) st and the last known options o−jt−1 of all the other agents. A centralized
manager is not needed, and the options must only be broadcast after an agent
chose to select a new option. The Q-value of choosing an option is updated
by temporal difference learning with experience replay, which is the established
standard procedure in deep Q-learning [12]. To reduce the number of parameters,
we let all the agents share θ, and the model is thus updated using the experiences
collected by all the agents. To differentiate the behaviour of different agents, the
presented grid-world image contains a dedicated channel that encodes the current
agent’s state. These design decisions follow previous work in deep multi-agent
learning [4,14] and drastically reduce training time with very little impact on
the performance in large domains.

At each transition t, the Q-values of all options oj , that would execute the
same action as the executed option ojt , and the termination option T are updated

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 9

Fig. 4: Example 16× 16 Grid-world

predictability flexibility

option
changes

option
changes

steps to
change

all near far all all

dynamic 24.1% 28.1% 16.8% 63% 1.61

greedy 59.9% 57.9% 52.8% 77% 1.15

option 10.9% 10.9% 9.5% 3% 6.86

Table 1: Flexibility and Predictability Results.
Near/far refers to whether an agent is within
distance = 4 to a passenger. Steps to change
denotes the number of steps from the new pas-
senger is placed to the agent’s option change.

by gradient descent on the sum of their respective losses

Loj,t
[
θ
]

:=
(
rt+γ max

o′∈{o,T}
Qθ(st+1,o

−j
t , o
′)−Qθ(st,o−jt−1, o)

)2
,

LTj,t
[
θ
]

:=
(

max
o′∈Oj

Qθ(st,o
−j
t−1, o

′)− δ −Qθ(st,o−jt−1, T)
)2
.

The total loss for a batch of m transitions with n agents is

L
[
θ
]

:=
1

mn

m−1∑
t=0

n∑
j=1

(
LTj,t

[
θ
]

+
∑

πo(st)=a
j
t

Loj,t
[
θ
])
. (7)

5 Experiments

We will first evaluate the flexibility and predictability of our dynamically ter-
minating agent, followed by the impact of dynamic termination on the agents’
performance.

Experimental Setup: Figure 4 shows a 16×16 grid-world of the taxi pickup as
observed by the green agent, which includes the passengers, the other agents and
their broadcast options. The landmarks of distance L = 3 show the destinations
of options that are currently visible to the agent. This raises our first challenge:
in order to reach a passenger that stands outside the landmarks, an agent needs
to correctly switch between options.

In the Taxi Pickup Task m passengers are randomly distributed in each
episode. An agent is rewarded r = 1 when occupying the same grid as a passen-
ger, and each step incurs a cost of −0.01. Apart from landmark switching, the
agents need to interpret others’ behaviours to avoid choosing the same passen-
ger, as well as responding quickly to changes such as when a passenger is picked
up by another agent.

In the Pursuit Task agents try to catch randomly distributed prey by coop-
erating with others. We refer to the task as k-agent pursuit, where a successful
capture requires at least k agents occupying k positions adjacent to the prey,

10 D. Han et al.

which rewards each participating agent r = 1. This task relies heavily on agents
coordination. In particular, when close to a specific prey, agents need to observe
others and switch between options to surround the prey; whereas when faraway,
agents need to agree on and commit to go for the same prey.

Algorithms and Training: Having described the settings, we now introduce
the detailed training procedures of the SMDP and option policies, before com-
paring the four types of agents.

The Policy of Options adopts a local perspective, and navigates the agent
to the option’s destination. Specifically, we use a DQN of 2 convolutional lay-
ers (kernel size 2) with max-pooling, followed by 4 fully-connected layers (size
300). The input is the destination coordinate with the grid-world image, and the
output is a primitive action in {N, S, E, W, Stay}.

The SMDP Policies are trained through intra-option learning for all agent
types. The inputs are 4-channel grid-world images as in Figure 3, which rep-
resents the agent, the preys (or passengers), the other agents, and lastly, the
options broadcast by other agents (except for IQL). The DQN contains 2 con-
volutional layers (kernel size 3), max pooling, and 4 fully-connected layers (size
512). We use experience replay with a replay buffer of size 100,000.

Self-Play is used in the experiments, and our decentralized agents share the
same DQN parameters (not states) [14]. This allows us to scale up the number
of agents without additional parameters; and the trained model can directly
transfer to more agents during testing. Moreover, self-play creates an important
link between the predictability of an individual agent and of the society.

The four types of agents are as follows:

1. Option Termination Agent executes its option until the natural termination
condition is met.

2. Greedy Termination Agent terminates every step and switches to the optimal
option. For better exploration during training, an additional behaviour policy
is used for experience collection. For fairness of comparison, this exploration
policy which terminates with probability ρ = 0.5 (tuned for the greedy agent)
is applied across all agent types.

3. Dynamic Termination Agent is our proposed algorithm that chooses whether
to terminate the current option at each step. δ is the termination penalty.

4. IQL is independent Q-learning, where agents option broadcasts are disabled.
IQL (greedy) and IQL (δ) refers to IQL agents using greedy or dynamic
termination.

Results: The delayed response problem reveals that agents need to be flexible
enough to change their options when the situation changes, but also predictable
enough not to interfere in other agents’ plans too frequently. Table 1 shows
experimental measurements to showcase these conflicting goals for the investi-
gated termination methods. We measure the agents’ flexibility in the single-agent
taxi domain. 100 episodes are initialized with 5 random passengers. During each
episode, one additional passenger is placed near the agent at step T and we

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 11

0 10000 20000 30000 40000 50000 60000
episodes

−2

0

2

4

6

8

10

12

14

16

av
er

ag
e

re
w

ar
ds

pe
r

ep
is

od
e

dynamic (δ = 0.15)
dynamic (δ = 0)
greedy
option
IQL (δ = 0.15)
IQL (greedy)

(a) 19× 19 taxi with 10 agents

0 5000 10000 15000 20000 25000 30000 35000 40000
episodes

−2

0

2

4

6

8

10

12

14

av
er

ag
e

re
w

ar
ds

pe
r

ep
is

od
e

dynamic (δ = 0.1)
dynamic (δ = 0)
greedy
option
IQL (δ = 0.1)
IQL (greedy)

(b) 19× 19 pursuit with 10 agents

Fig. 5: Results from Taxi Pickup and Pursuit Tasks
Note: Every point per 500 episode is the testing result averaged over 100 random
episodes and 5 seeds. The shaded area shows standard deviation across seeds.

taxi 2 agent pursuit 3 agent pursuit

n=5, m=10 n=10, m=20 n=3, m=5 n=10, m=10 n=3, m=5

Agents 19x19 25x25 19x19
16x16
(r=1)

19x19
(r=1)

19x19
(r=1)

10x10
(r=1)

16x16
(r=2)

Dynamic
δ = 0.1 7.89 5.75 15.29 10.24 9.30 12.50 6.71 10.38

δ = 0 6.58 3.28 11.81 6.73 4.07 5.38 5.53 6.54

Greedy 6.62 3.23 12.39 7.36 3.74 4.65 5.89 6.40

Option -0.32 -0.94 0.52 5.47 -1.82 -1.42 -3.77 5.20

IQL
δ = 0.1 7.11 5.09 12.02 -1.57 -2.29 -0.84 -1.62 -0.59

greedy 6.08 2.79 9.06 -2.12 -2.49 -1.64 -2.13 -0.42

Table 2: Average reward after training for Taxi and Pursuit tasks. n is the number
of agents and m is the number of passengers (preys). NxN denotes grid-world
size, k agent pursuit denotes the required number of agents for capture, and r is
the capture range.

observe how quickly the agent adjusts to the new situation. We report the per-
centage of option changes at step T + 1 and the average number of steps till the
agent changes options. Note that dynamic termination allows to react almost as
flexible to the changed situation as the greedy termination.

For predictability, we measure the average probability to change the option
in the multi-agent taxi task for two cases: when the agent is near (within dis-
tance 4) or far from its closest passenger. This is an imperfect measurement, as
we cannot distinguish the effect of termination on other agents. While options
need to change close to a passenger due to imperfect options, the behavior of
dynamic termination is much closer to standard option termination when far
away. Note that this effect is marginal for the other techniques, which indicates
that our method may purposefully refrain from changing to better options to
avoid interrupting other agent’s plans.

12 D. Han et al.

Performance: Figure 5(a) shows the results from the taxi pickup task. The
option termination agent fails due to its inflexibility to switch options. In con-
trast, our dynamic (δ = 0.15) agent is highly flexible. Moreover compared with
greedy and IQL, its high predictability indeed helps the agents to interpret oth-
ers’ intentions and better distribute their target passengers. Figure 5(b) shows
the results on the pursuit task, where at least two agents need to surround a prey
within capture range = 1. Seen from the IQL agents’ low performance, option
broadcasting and interpreting others’ behaviours are crucial to this task. Our
dynamic termination agent (δ = 0.1) significantly outperforms all other agents.
Compared with the greedy agents, we can conclude that predictability signifi-
cantly helps our dynamic agents to stay committed and succeed in cooperation.

Finally, we present the performance of all agents across different tasks and
varying parameters in Table 2. Firstly, the option termination agent has diffi-
culty with tasks which require higher level of accuracy and quick responses, such
as the taxi tasks and pursuit with capture range = 1. However, it works well
with tasks which require coordination but less flexibility, such as the 16 × 16 3
agent pursuit with capture range 2, which shows the advantage of predictability
on cooperation. The performance of greedy termination agents decreases signif-
icantly in larger grid-world sizes, and when commitment is essential, such as
the 16× 16 3 agent pursuit with capture range 2. Our dynamically terminating
agent performs well across all tasks, as it balances well between flexibility and
predictability. The IQL agents performs well in the taxi task. However, they
fail to learn the pursuit tasks where foreseeing others’ behaviours is essential to
coordination.

6 Conclusions and Future Work

In this paper, we identified the delayed response problem, that occurs when hi-
erarchical RL is combined with multi-agent learning. To address this challenge,
we investigated existing approaches of greedy option termination in single agent
learning. However, this method introduces a new dilemma specific to multi-agent
systems: as an agent broadcasts its current options to indicate its subsequent
behaviours, frequent changes in options will result in its behaviour being less
predictable by others. Therefore, to balance flexibility with predictability, we in-
troduced dynamic termination, which enables agents to terminate their options
flexibly according to the current state. We compared our model with current
state of the art algorithms on multi-agent pursuit and taxi tasks with varying
task parameters, and demonstrated that our approach outperformed the base-
lines through flexibly adapting to the task requirements. For future work, we are
interested in applying the dynamic termination framework to traffic simulations,
such as junction and highway management.

References

1. Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: AAAI. pp.
1726–1734 (2017)

Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination 13

2. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research 13, 227–303 (2000)

3. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate
with deep multi-agent reinforcement learning. In: Advances in Neural Information
Processing Systems. pp. 2137–2145 (2016)

4. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual
multi-agent policy gradients. arXiv preprint arXiv:1705.08926 (2017)

5. Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P.H.S., Kohli, P., White-
son, S.: Stabilising experience replay for deep multi-agent reinforcement learn-
ing. In: Proceedings of the 34th International Conference on Machine Learn-
ing. Proceedings of Machine Learning Research, vol. 70, pp. 1146–1155 (2017),
http://proceedings.mlr.press/v70/foerster17b.html

6. Giannakis, M., Louis, M.: A multi-agent based system with big data processing
for enhanced supply chain agility. Journal of Enterprise Information Management
29(5), 706–727 (2016)

7. Harutyunyan, A., Vrancx, P., Bacon, P.L., Precup, D., Nowe, A.: Learning with
options that terminate off-policy. arXiv preprint arXiv:1711.03817 (2017)

8. Jennings, N.R.: Commitments and conventions: The foundation of coordination in
multi-agent systems. The knowledge engineering review 8(3), 223–250 (1993)

9. Lesser, V., Ortiz Jr, C.L., Tambe, M.: Distributed sensor networks: A multiagent
perspective, vol. 9. Springer Science & Business Media (2012)

10. Lin, K., Zhao, R., Xu, Z., Zhou, J.: Efficient large-scale fleet management via
multi-agent deep reinforcement learning. arXiv preprint arXiv:1802.06444 (2018)

11. Makar, R., Mahadevan, S., Ghavamzadeh, M.: Hierarchical multi-agent reinforce-
ment learning. In: Proceedings of the fifth international conference on Autonomous
agents. pp. 246–253. ACM (2001)

12. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with deep reinforcement learning. In: NIPS Deep
Learning Workshop (2013)

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

14. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J., Whiteson, S.:
Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485 (2018)

15. Riedmiller, M., Withopf, D.: Effective methods for reinforcement learning in large
multi-agent domains (leistungsfähige verfahren für das reinforcement lernen in
komplexen multi-agenten-umgebungen). it-Information Technology 47(5), 241–249
(2005)

16. Stone, P., Veloso, M.: Multiagent systems: A survey from a machine learning per-
spective. Autonomous Robots 8(3), 345–383 (2000)

17. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)

18. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2),
181–211 (1999)

19. Sutton, R.S., Precup, D., Singh, S.P.: Intra-option learning about temporally ab-
stract actions. In: ICML. vol. 98, pp. 556–564 (1998)

20. Tan, M.: Readings in agents. chap. Multi-agent Reinforcement Learning: Indepen-
dent vs. Cooperative Agents, pp. 487–494 (1998)

http://proceedings.mlr.press/v70/foerster17b.html

14 D. Han et al.

21. Tesauro, G.: Temporal difference learning and td-gammon. Communications of the
ACM 38(3), 58–68 (1995)

22. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

	Multi-agent Hierarchical Reinforcement Learning with Dynamic Termination

