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Abstract. In this paper we propose DeepSwarm, a novel neural archi-
tecture search (NAS) method based on Swarm Intelligence principles.
At its core DeepSwarm uses Ant Colony Optimization (ACO) to gener-
ate ant population which uses the pheromone information to collectively
search for the best neural architecture. Furthermore, by using local and
global pheromone update rules our method ensures the balance between
exploitation and exploration. On top of this, to make our method more
efficient we combine progressive neural architecture search with weight
reusability. Furthermore, due to the nature of ACO our method can in-
corporate heuristic information which can further speed up the search
process. After systematic and extensive evaluation, we discover that on
three different datasets (MNIST, Fashion-MNIST, and CIFAR-10) when
compared to existing systems our proposed method demonstrates com-
petitive performance. Finally, we open source DeepSwarnEI as a NAS
library and hope it can be used by more deep learning researchers and
practitioners.
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1 Introduction

In recent years it has become increasingly challenging for human engineers to
manually design deep neural architectures for specific tasks. This is mainly due
to the following two facts: (1) modern deep neural architectures tend to be very
complex with a lot of layers and hyperparameters; (2) one architecture might
perform well on one dataset or on one type of problems but poorly on others.
These two factors have resulted in a boom of research that tries to develop
methods that can automate the design of neural architectures, the so-called
neural architecture search [22].

In this paper we propose a novel neural architecture search method based
on Swarm Intelligence (SI). To start with, we focus on Convolutional Neural
Networks (CNN) [13], one of the most commonly used deep neural architectures.
To discover new CNN architectures our method uses Ant Colony Optimization
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(ACO) [B]. The motivation for using SI for NAS is due to the fact that SI
possesses many appealing properties that could be helpful when dealing with
NAS problems. This includes fault tolerance, decentralisation, scalability and
ability to share and combine the knowledge, just to name a few. In particular,
ACO has few distinct characteristics that make it naturally fit into the NAS
domain: ACO is good at solving discrete problems which can be represented
as graphs and it can easily adapt to dynamic environment (changing graph).
Another significant motivating factor to use SI is the fact that the majority of
its methods have not been explored in the context of NAS.
The novel contributions of this research are summarised as follows:

— We show that ACO can be used to effectively optimise CNNs.

— We use heuristic information when performing NAS based on ACO.

— We dynamically change the graph size and progressively search for the ar-
chitectures when performing NAS based on ACO.

The rest of the paper is organised as follows: Section [2| presents related work;
Section [3] introduces our proposed method; Section [4] presents the evaluation
of our method; and Section [5| concludes the paper and explores possible future
directions.

2 Related Work

Neural Architecture Search (NAS) is an automated process that aims to discover
the best performing neural network architectures for a specific problem. Even
though NAS research goes back as far as three decades [16], it has attracted new
attention in recent years with the rapid development of deep learning, significant
improvements in hardware, and growing interest of the machine learning com-
munity. Furthermore, even with this renewed interest from many deep learning
researchers and practitioners it still seems that most of the existing NAS research
predominantly focuses on using Evolutionary Algorithms [I9I2TIT5], Bayesian
Optimisation [4/10], and Reinforcement Learning [24|Tl25]. However, consider-
ing most of these approaches require huge amounts of computational resources,
some new work which tries to reduce the computational costs have emerged
[I7U8ITE]. For example, in [18] the authors proposed to use large computational
graph which stores all the weights, and they reported that sharing these weights
among child models could be 1000 times less computationally expensive than
standard NAS approaches.

To the best of our knowledge, ACO was first applied to NAS problem in 2014
[20], and in their work ACO was used to optimise feed-forward neural networks.
Furthermore, in their work the authors discovered that reusing the weights of
the best solution can further improve the performance of their method. In 2015
ACO was used to optimise the structure of deep recurrent neural networks [3],
where the authors try to address the problem of predicting general aviation flight
data. The authors reported that using ACO they could achieve better prediction
performance for airspeed, altitude, and pitch compared with the previous best
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published results. Finally, in more recent work [7], ACO was used to optimise long
short-term memory recurrent neural networks, and they achieved an increase in
prediction accuracy, while also reducing the number of trainable weights by 55%.

It is noted that another relevant work to our research is the Progressive
Neural Architecture Search (PNAS) approach [14]: similar to PNAS, the system
proposed in this paper explores enormous CNN search space by using small
incremental steps. In [14] the authors concluded that PNAS can achieve the
same level of performance as the previous NAS approach [25] while being 8
times faster in terms of the required total computational time.

3 DeepSwarm

In this section we first present the details of the proposed DeepSwarm, and then
we give the overall workflow.

As mentioned before, DeepSwarm search for new architectures in the order
of increasing complexity similar to PNAS. At the beginning of a NAS task,
DeepSwarm creates an internal graph which contains only the input node. Then
a specified number of ants are generated. Next, one by one each ant is placed
on the input node. After being placed on the input node each ant uses the Ant
Colony System (ACS) [6] selection rule to select one of the available nodes in
the next layer of CNN, and the ACS selection rule is as follows:

arg max{[7(r,u)] - [n(r,u)]?}, if ¢ <qo (exploitation).
s = w€ Jg (r) (1)
S, otherwise  (biased exploration),

In the above 7(r,u) denotes the pheromone amount on the edge that goes
from node r to node u and n(r,u) denotes the heuristic value associated with
the edge going from node r to node w. Furthermore, Ji(r) denotes a set of
nodes that are available to visit from node r. The value of ¢ is a random number
uniformly distributed over [0...1]. Parameters go € (0,1] and 3 € (0, inf) control
the algorithm’s greediness and the relative importance of heuristic information.
Finally, S is a random variable selected according to the probabilistic distribution
defined by Equation (2)):

, s
St 8 € Ji(r).
Pr(7,8) = S ueli) (2)
0, otherwise.

Once a node is selected the system checks if this node already exists in the
graph at the depth of the selection. If this node is a new one which does not exist
in the graph, it is added to the graph as a neighbour node to the previous node
(i.e., the node where the ant was before the selection) so the subsequent ants
can exploit the pheromone information. After an ant selects a particular node
it also performs the same selection rule as defined by Equations and to
select the attributes of that node (i.e. filter size, kernel size). When the selection
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is completed the node is added to the ant’s path. Once an ant reaches the
current maximum allowed depth, its path is transformed into a neural network
architecture which then gets evaluated. Furthermore, after an ant finishes a walk
it performs ACS local pheromone update as defined by Equation for each
edge it has used:

7(r,5) «— (1= p)-7(r,s) +p- 7o 3)

In the above, parameter p denotes the pheromone decay factor and parame-
ter 7o is the initial pheromone value. This local update rule decays pheromone
values so the other ants can be encouraged to explore other paths. After all ants
are evaluated the best ant is found (the ant which found the architecture with
the highest accuracy). This best ant then performs the ACS global pheromone
update as defined by Equation , which increases the pheromone values for the
edges found in the best path.

7(r,s) «— (1 —a) - 7(r,s) + a- Ar(r,s), (4)

where

Cgp, if (r,s) € global-best-tour.
0, otherwise.

Ar(r,s) = { ()

Here parameter « controls pheromone evaporation and its range is (0,1).
Cgp is the cost of the global best tour (the best model accuracy). After the
graph’s current maximum allowed depth is increased, a new population of ants
is generated. This cycle is repeated until the maximum depth (specified by the
user) is reached. An illustrative example of NAS performed by DeepSwarm can
be seen in Fig. [I} and the pseudocode is given in Algorithm

We point out several interesting outcomes of using ACO as a search strategy
as follows: (1) weight reusability is straightforward to implement: we find the
longest common sub-path in the graph and reuse the best weights from that
sub-path, (2) the search space can be explored progressively as ants can adapt
to the dynamic environment (when we expand the graph from depth n to n 41
we do not lose the information which was gathered up to depth n + 1), and (3)
because ACO uses domain-specific heuristics (Equations and (2))) domain
experts can easily provide their own knowledge to speed up the search further.

4 Experiments

For the experimental design, three different datasets were chosen: (1) MNIST
[12], (2) Fashion-MNIST [23], and (3) CIFAR-10 [II]. Each of these three datasets
is quite different from the others and requires different CNN architectures to
achieve the best results. As a result the combination of them is a good way
to test the algorithm’s robustness and performance. In order to evaluate our
proposed method the baselines taken from [I0] were used. All of our tests were
carried out in the Google Colab environment (1x Tesla K80 GPU) [J] using a
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Fig. 1. An overview of the NAS process of DeepSwarm. (1) The ant is placed on the
input node. (2) The ant checks what transitions are available. (3) The ant uses the ACS
selection rule to choose the next node. (4) After choosing the next node the ant selects
the node’s attributes. (5) After all ants finished their tour the pheromone is updated.
(6) The maximum allowed depth is increased and the new ant population is generated.
Note: Arrow thickness indicates the pheromone amount, meaning that thicker arrows
have more pheromone.

MacBook Pro (Early 2015 model) to interact with this environment. Note that
even though in [I0] they ran each method only for 12 hours, they used NVIDIA
GeForce GTX 1080 Ti GPU, which according to a few benchmarks is approx-
imately 2-3 times faster than our selected Tesla K80 GPU. This is the reason
why we are not going to constrain our runs to 12 hours.

4.1 Evaluation Procedure

When evaluating the system the following procedure was followed: (1) create a
new Google Colab instance, (2) import the source code of the library, (3) split
the training set 90-10 to training and validation sets, (4) run the algorithm until
the max depth is reached, (5) take the best found network, (6) for CIFAR-10
dataset apply standard data augmentation (random horizontal flips, rotation
and scaling) to the training data, (7) train the best found network for additional
50 epochs on the augmented data, (8) load the weights which showed the best
performance on the validation set during those 50 epochs, and (9) evaluate the
network with these best weights on the testing data.
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Algorithm 1: DeepSwarm

Function search():
graph = Graph() // build graph containing only the input node
while graph.current_depth < maz_depth do
ants = generate_ants()
best_ant = find_best(ants)
graph.global_pheromone_update(best_ant)
graph.increase_depth()

L return best_ant

Function generate_ants():

ants = [|

for i = 0 to ant_count do
ant = Ant()
ant.path = generate_path()
ant.evaluate()
ants.append(ant)
graph.local_pheromone_update(ant)

L return ants

Function generate_path():
current_node = graph.input_node
path = [current_node]
for i = 0 to current_max_depth do
if current_node.neighbours <— () then
L break

current_node = aco_select_rule(current_node.neighbours)
path.append(current_node)

completed_path = complete_path(path) // completes the path if needed
| return path

Function aco_select (neighbours):
foreach neighbour € neighbours do
probability = neighbour.pheromone x neighbour.heuristic
probabilities <— probability
denominator += probability
if random.uniform(0, 1) < greediness then
max_index = probabilities.index(max(probabilities))
L return neighbours[max_index]
probabilities = probabilities / denominator
neighbour_index = wheel_selection(probabilities)
return neighbours[neighbour_index]
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4.2 Ant Count

The ant count (the number of ants used during search) is one of the most impor-
tant hyperparameters in DeepSwarm. This is because it is a trade-off between
the performance of the final model and the run-time of the algorithm. In order to
find a good trade-off, we ran multiple tests by exponentially increasing the ant
count. Furthermore, we split the results into two parts: before and after the final
training. Before the final training is a part where DeepSwarm finds potentially
the best model and after the final training is the part where the best found
model is trained for an additional 50 epochs on augmented data. The reason
for this choice is that the results before the final training can reflect the real
implications that the ant count has on the error rate, whereas the results after
the final training can show how the ant count can affect the generalisation. This
follows from the fact that before the final training the models are trained on
the same data, whereas during the final training the models are trained on the
augmented data which can show how well they can learn. The results before the
final training are presented in Fig. 2] the results after the final training can be
seen in Fig.[3] and the run time is shown in Fig.
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Ant Count Ant Count

Fig. 2. The error rate on the CIFAR-10  Fig. 3. The error rate on the CIFAR-10
dataset before the final training across dataset after the final training across five
five separate trials. separate trials.

Looking at the results one can see that changing the ant count from 1 to
2 had a significant impact on the error rate. This finding was to be expected
because when only one ant exists both exploration and exploitation must suffer.
The exploration suffering is associated with the fact that the ant can only ex-
plore one architecture per depth, meaning that only a small subset of available
architectures will be explored. The exploitation degradation occurs because at
each depth acquired knowledge scales only linearly, for example, at depth 3 the
ant will only know about 2 other architectures. Furthermore, having only one
ant will result in rather greedy behaviour where the same ant will explore the
same sub-tree in the graph and will only rarely explore the parallel sub-trees. We
further noticed that even though doubling the ant count almost doubles the run
time, it will not always result in drastically improved performance. For example,
when we increased the ant count from 4 to 8 ants the run time increased from
7 hours to 18 hours, while the average error rate decreased only by 0.13%. The
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Fig. 4. The average run time (across five different trials) in hours for different ant
counts on the CIFAR-10 dataset.

most drastic changes in the error rate happened when the ant count was changed
from 1 to 2 (3.11% decrease) and from 8 to 16 (2.1% decrease). However, due
to the computational restrictions we did not test ant counts beyond 16 which
means that there might be even bigger performance improvements when going
beyond 16 ants.

4.3 Greediness

Another important hyperparameter of DeepSwarm is greediness. As mentioned
in Section [3] the greediness is used in Equation to decide how greedy each
ant should be. As greediness can be defined in the range from 0.0 to 1.0, we
test the greediness with its value increases from 0 to 1 at a step size of 0.25.
Furthermore, similarly to the ant count, the results were divided into before and
after the final training. The results before the final training are shown in Fig. [f]
and the results after the final training are shown in Fig. [6]
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Fig.5. The error rate on the CIFAR-10  Fig. 6. The error rate on the CIFAR-10
dataset before the final training across dataset after the final training across five
five separate trials. separate trials.
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Looking at the results it seems that when selecting the greediness for the
algorithm one should never go to extremes as this will most likely result in poor
performance. The more general insight we gathered from the results was that
selecting the greediness values which were close towards the middle (0.5) resulted
in the best performance. The reason why the extremely greedy ants perform
poorly is as follows: at the beginning of the search they base their search purely
on the heuristic information and then, once the pheromone is laid on the graph,
all of them will reuse the same path, therefore generating the same architecture.
Furthermore, the local pheromone update rule will not help here because once
the pheromone evaporates these greedy ants will use the same heuristics which
will result in the same paths being chosen again. In contrast, the ants with no
greediness will always base each of their decisions only on the wheel selection
without exploiting the gathered information (as the first part in Equation
is always skipped) and because during the path generation an ant needs to
make a lot of these decisions (choosing the next node and each attribute), a
substantial part of them will be random, which will result in a poor performance.
Another interesting observation was that the greedy models tend to generalise
worse than the less greedy ones. For example, the average error rate difference
before the final training between 0.25 greediness and 0.75 greediness was 1.32%
(18.12% and 16.80% respectively), but after the final training, the difference
was -0.83% (12.89% and 13.72% respectively). Furthermore, we noticed that the
greediness had some impact on the average network depth, for example, the best
architectures which were found using no greediness, were on average five layers
deeper than the ones which were found using 1.0 greediness. As a result of that,
these less greedy architectures had more regularisation and feature extraction.
We believe that this could be the reason why these less greedy architectures were
generalising better during the final training.

4.4 Accuracy

In order to compare the performance of DeepSwarm with that of other methods,
we report the average and best performance achieved during the five separate
runs on three different datasets. These results are shown in Table [l From these
results we can see that on the MNIST dataset from all of the methods Deep-
Swarm showed the best performance. When compared with the straightforward
methods (random and grid search [2]) DeepSwarm showed a significantly lower
error rate (1.79%, 1.68% versus 0.46%). On the Fashion-MNIST dataset, Deep-
Swarm achieved the lowest error rate and once again proved to be superior to
the straightforward methods which had almost a two times bigger error rate
(11.36%, 10.28% versus 6.75%). Finally, on the CIFAR-10 dataset, even though
DeepSwarm managed to find the architecture with the lowest error rate (11.31%),
on average its performance was not as good as some other methods. Overall on
all of the three datasets, DeepSwarm still produced very competitive and promis-
ing results. To see the best architectures discovered by DeepSwarm please refer
to Appendix [A]
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Method MNIST Fashion-MNIST CIFAR-10
RANDOM 1.79% 11.36% 16.86%
GRID 1.68% 10.28% 17.17%
SPMT 1.36% 9.62% 14.68%
SMAC 1.43% 10.87% 15.04%
SEAS 1.07% 8.05% 12.43%
NASBOT N/A N/A 12.30%
AutoKeras BFS  1.56% 9.13% 13.84%
AutoKeras BO 1.83% 7.99% 12.90%
AutoKeras BFS  0.55% 7.42% 11.44%
DeepSwarm Average 0.46% 6.75% 12.70%
DeepSwarm Best  0.39% 6.44% 11.31%

Table 1. The error rates on the CIFAR-10 dataset.

4.5 Discussion

Even though there exists a NAS approach developed by Google Brain [25] which
can achieve better results than DeepSwarm on the CIFAR-10 dataset, we think
that it would be not fair to compare our work with theirs for the following rea-
sons: (1) they used 400 GPUs (also their GPUs were much more powerful than
the one used in our experiments) for 4 days, (2) they used skip and add connec-
tions which are not implemented into DeepSwarm yet. We also point out that as
they did not open source their code, it is not easy for us to test their approach in
our environment to compare the performance difference. Nevertheless, based on
the results seen in Section [£.4) DeepSwarm proved to be a competitive approach
against already existing NAS methods. However, there is still some work that
needs to be done in order to further improve DeepSwarm. We think that the
two main components that can be added in the future are skip and add nodes.
Adding these two components would allow DeepSwarm to search for more com-
plex architectures which in turn could substantially improve the overall learning
performance. Finally, we list the main advantages of DeepSwarm compared with
other existing NAS systems as follows:

— DeepSwarm offers competitive performance. As shown in Section [£:4] on all
3 datasets DeepSwarm can achieve comparable or better results than the
other NAS systems.

— DeepSwarm can look for diverse structures. DeepSwarm does not enforce a
specific structure, which allows it to find novel and interesting architectures.

— DeepSwarm can offer fast search. As mentioned earlier, DeepSwarm is built
to search for architectures progressively and has a mechanism to reuse the
old weights which boosts its performance.

— DeepSwarm allows the users to provide heuristic information which can fur-
ther speed up the search process.

— DeepSwarm is easy to use. To start the neural architecture search a user just
needs to write a few lines of code (see detailed instructions on DeepSwarm’s
GitHub page).
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— DeepSwarm is easy to be further developed and extended. As we open source
DeepSwarm and share it with the wider machine learning community, other
researchers can further develop and extend DeepSwarm.

5 Conclusion and Future Work

In this paper we presented DeepSwarm and demonstrated that Swarm Intelli-
gence can be used to effectively tackle NAS problems. After evaluating Deep-
Swarm we discovered that when compared to other similar methods it can show
competitive performance. Furthermore, we open source DeepSwarHﬂ and share
it with the community, and we hope more people will benefit from it and further
develop it.

The main contribution of this work is to show that ACO can be used to
effectively search for optimal CNN architectures. Our second contribution is to
demonstrate that domain expert knowledge can be successfully incorporated into
ACO based NAS. The final contribution of this work is to show that progressive
architecture search approach can be applied to ACO based NAS methods.

For future work we propose to explore the following directions: (1) implement
skip and add connections which would allow ants to look for more complex
architectures, (2) try to use ACO to perform cell based search (similar to [25])
rather than the full architecture search, (3) compare conventional search method
with the progressive search when ACO is applied to NAS problem, and (4)
explore ACO in other deep learning contexts i.e. find which neurons to drop in
the dropout layer.
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A Appendix
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pool size: 2, 2 kernel size: 5, 5
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pool size: 2, 2 kernel size: 5, 5
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pool size: 2, 2
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Fig. 7. The best architectures discovered by DeepSwarm.
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