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Abstract. Camera sensor noise is one of the most reliable device charac-
teristics in digital image forensics, enabling the unique linkage of images
to digital cameras. This so-called camera fingerprint gives rise to different
applications, such as image forensics and authentication. However, if
images are publicly available, an adversary can estimate the fingerprint
from her victim and plant it into spurious images. The concept of fragile
camera fingerprints addresses this attack by exploiting asymmetries in
data access: While the camera owner will always have access to a full fin-
gerprint from uncompressed images, the adversary has typically access to
compressed images and thus only to a truncated fingerprint. The security
of this defense, however, has not been systematically explored yet. This
paper provides the first comprehensive analysis of fragile camera finger-
prints under attack. A series of theoretical and practical tests demonstrate
that fragile camera fingerprints allow a reliable device identification for
common compression levels in an adversarial environment.
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1 Introduction

Minimal, inevitable manufacturing imperfections of digital camera sensors lead to
the photo-response non-uniformity (PRNU) signal, a highly unique and reliably
detectable camera device characteristic [8]. Similar to a robust digital watermark,
the PRNU signal is unnoticeably present in any image taken by the same camera,
but differs between images from different cameras. These properties make the
PRNU a natural camera fingerprint. It has found widespread applications in
forensics to attribute digital images to their source camera [8]. Recent works have
also proposed to use the PRNU as a means to link mobile device authentication
to inherent hardware characteristics of the mobile device [2, 26].

In practice, however, these use cases face the problem of fingerprint copy-
attacks [10, 19]. If Alice shares images from her camera with the public, Mallory
can estimate Alice’s fingerprint, plant it into her images, and pretend that an
arbitrary image was captured by Alice’s camera. The so-called triangle test [13]
detects such attacks ex post, but it potentially requires an exhaustive search over
all public images shared by Alice. A proactive defense based on the notion of fragile
camera fingerprints has recently been proposed by Quiring and Kirchner [23] for
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scenarios that warrant camera identification from high-quality (uncompressed)
images. Here, the camera owner Alice can exploit an asymmetry in the quality of
accessible data by only sharing JPEG-compressed images with the public while
retaining her uncompressed images private. As a result, she will always be able
to provide her full fingerprint from high-quality images when asked to do so. In
contrast, Mallory’s estimate of Alice’s fingerprint from public JPEG images will
only contain the part that is robust to lossy JPEG compression while lacking
the fragile component. A test for the presence of the fragile fingerprint will then
prevent Mallory from making an uncompressed image look like one of Alice’s
uncompressed images.

In forensics applications, fragile camera fingerprints are of particular relevance
to the prevention of fingerprint-copy attacks in support of high-quality image
forgeries, which may otherwise convey a false sense of trustworthiness [4]. Equally
important, fragile fingerprints are currently the only scalable approach to estab-
lish mobile device authentication based on physical camera characteristics that
mitigates fingerprint leakage from public images: conducting the triangle test [13]
on every authentication attempt is computationally infeasible, and an alternative
proposal for a targeted fingerprint-copy attack detector by Ba et al. [2] can be
defeated by an adversary with two cameras.

The practical applicability of fragile camera fingerprints in these security-
related scenarios crucially depends on their robustness against attacks. As Quiring
and Kirchner’s work [23] only provided preliminary results in this regard, this
paper sets out to deliver a thorough and more comprehensive security analysis.
Specifically, we examine the amount of information that Mallory can estimate,
recover and exploit in a series of theoretical and empirical considerations. First,
we analytically derive an upper bound on the correlation between Alice’s and
Mallory’s fingerprint estimates with respect to the JPEG quality of publicly
shared images Mallory has access to. Second, to test for dependencies beyond
linear correlation, a kernel statistical test is used to assess whether Alice’s
fragile fingerprint is statistically independent of Mallory’s fingerprint. Third, we
demonstrate that practical attempts to recover quantized JPEG coefficients from
potentially remaining dependencies do not increase Mallory’s ability to mount
successful attacks. Fourth, we test the resistance of fragile fingerprints against
practical fingerprint-copy attacks. We finally illustrate that fragile fingerprints
and the triangle test are a powerful combination in forensics applications.

The rest of this paper is organized as follows. Section 2 reviews the background
of sensor noise forensics before Section 3 discusses fragile fingerprints and their
possible applications. Section 4 provides a comprehensive analysis of Mallory’s
attack surface, while Section 5 reports on experiments around the applicability
of fragile fingerprints. Section 6 concludes the paper.

2 Background

Before introducing fragile fingerprints, we give a short primer on camera iden-
tification, the possible fingerprint-copy attack, and the triangle test as defense.
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Throughout our work, the notation is as follows: vectors and matrices are set in
boldface font. Operations on vectors and matrices are point-wise if not stated
otherwise; the operator • denotes matrix multiplication.

2.1 Camera Identification from Sensor Noise Fingerprints

Due to sensor element manufacturing imperfections, each camera image does not
only contain the original noise-free image content I0, but also the PRNU K as a
camera-specific, multiplicative noise factor. A common simplified model of the
image capturing process assumes the final image I to take the form [8]

I = I0 + I0K + Γ , (1)

where Γ reflects a variety of other additive noise terms. Due to its multiplicative
nature, the PRNU is not present in images with dark scene contents (i. e., I0 ≈ 0).
Extensive experiments have demonstrated that the PRNU factor K represents a
unique and robust camera fingerprint [14] that can be estimated from a number of
images I1, . . . , IN taken with a given camera of interest. The standard approach
utilizes a denoising filter F (·) and models noise residuals Wk = Ik −F (Ik) as [8]

Wk = IkK +Θk . (2)

Modeling noise Θ subsumes Γ and residues of the image content due to inher-
ent imperfections of the denoising filter in separating image content from noise.
Adopting an i.i.d. Gaussian noise assumption for Θ, the maximum likelihood
(ML) estimator of K is [8]

K̂ =

(
N∑

k=1

WkIk

)
·
(

N∑
k=1

(Ik)2

)−1
. (3)

A more simple estimator takes the pixel-wise average of the noise residuals [19].

A post-processing step is recommended to clean K̂ from so-called non-unique
artifacts, e. g., due to demosaicing or lens distortion correction [8, 11, 12]. Given
a query image J of unknown provenance, camera identification then works by
computing the residual WJ = J−F (J), and evaluating its similarity to a camera
fingerprint estimate against a set threshold τ ,

φWJ ,JK̂ = sim(WJ ,JK̂) ≷ τ. (4)

Suitable similarity measures for this task are normalized correlation or peak-to-
correlation energy (PCE) [8, 19].

2.2 Fingerprint-Copy Attack

Following the procedure described in Section 2.1, Mallory may obtain an estimate
of Alice’s camera fingerprint from a set of NE publicly available images. Denoting
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this estimate K̂E , Mallory can then attempt to make an arbitrary image J look
as if it was captured by Alice’s camera. The multiplicative nature of PRNU
suggests a fingerprint copy attack of the form [19]

J ′ = [J(1 + αK̂E)] , (5)

with α > 0 being the scalar fingerprint strength parameter. Attacks of this type
have been demonstrated to be effective, in the sense that they can successfully
mislead a camera identification algorithm in the form of Equation (4). However,
the attack’s success generally depends on a good choice of α: too low values mean
that the bogus image J ′ may not be assigned to Alice’s camera; a too strong
embedding will make the image appear suspicious [13, 20]. In practical scenarios,
Mallory may have to apply further processing to make her forgery more compelling,
e. g., removing the genuine camera fingerprint [7, 16], synthesizing demosaicing
artifacts [17], and removing or adding traces of JPEG compression [25].

2.3 Triangle Test

Under realistic assumptions, it is impossible to prevent Mallory from forcing a
high similarity score in Equation (4) for arbitrary images from a foreign camera.
Yet Alice can utilize that noise residuals computed with practical denoising
filters will always contain remnants of image content to establish that image J ′

underwent a fingerprint-copy attack [13]. The key observation here is that the
already existing similarity between a noise residual WI from an image I taken
with Alice’s camera and the noise residual WJ ′ due to a common PRNU term
will be slightly increased by some shared residual image content, if I contributed
to Mallory’s fingerprint estimate K̂E . Alice can thus test which of her public
images have been used by Mallory to mount the attack by evaluating whether
the similarity of their noise residuals WI with WJ ′ is suspiciously large.

Because the additional correlation imposed by shared image content is gener-
ally rather weak and also varies with macroscopic image characteristics, Goljan et
al. [13] propose a triangle test to calibrate the test statistic. Specifically, the test
does not only consider the observed correlation νWI ,WJ′ between residuals WI

and WJ ′ , but it also employs a correlation predictor to estimate the correlation
ν̃WI ,WJ′ between WI and WJ ′ if image I had not participated in the computa-

tion of K̂E . This predictor takes the correlation between Alice’s own fingerprint
and both WI and WJ ′ into account—hence the name triangle test. Assuming
a linear relationship between the observed and the predicted correlation, the
proposed test then evaluates

νWI ,WJ′ − θ ν̃WI ,WJ′ − µ ≷ t (6)

for a suitably chosen threshold t. The parameters θ and µ are estimated from a
set of safe images, for which it can be guaranteed that they have not been used by
Mallory. We refer to Goljan et al. [13] for a detailed exposition of the correlation
predictor and the parameter estimators. The test statistic in Equation (6) is
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expected to have zero mean when two noise residuals share only a common PRNU
term. A larger difference indicates an additional shared term, possibly due to
image I’s involvement in the attack. Observe that Alice may have to test all
images ever made public by her as part of a comprehensive defense. We finally
point out that a number of fingerprint-copy attack variations have been proposed
recently that are reportedly less likely to be exposed by the triangle test [e.g. 20].

3 Fragile Camera Fingerprint

As a novel and proactive defense against fingerprint-copy attacks, Quiring and
Kirchner [23] introduce the notion of fragile camera fingerprints that vanish
under lossy JPEG compression. The idea is based on two mild assumptions:
1) Alice’s device supports capturing images in uncompressed format, which is
true nowadays for many devices operating under mobile platforms, such as iOS
and Android; 2) Alice only shares JPEG images with the public, which is already
today’s quasi-standard for image online storage and sharing. When combined,
these two assumptions allow Alice to effectively exploit an asymmetry in the
quality of data access. With full access to her camera, Alice is always in the
position to present a fingerprint estimate K̂ from uncompressed images while
Mallory is restricted to estimate K̂E from JPEG-compressed images.

On a technical level, the concept of fragile camera fingerprints exploits the
lossy nature of JPEG compression. JPEG maps each non-overlapping 8× 8 pixel
block in an image to 8 × 8 discrete cosine transform (DCT) coefficients. Each
of the 64 coefficients quantifies the influence of a particular frequency subband
and will be quantized based on an 8 × 8 quantization table with quantization
factors for the 64 DCT subbands. Larger quantization factors mean that the
DCT coefficients in the corresponding subband are more likely to be quantized
to zero. Quantization factors generally increase with decreasing JPEG quality
and grow towards the bottom right corner of the quantization table to suppress
high-frequency image details more aggressively.

In consequence, Mallory’s camera fingerprint estimate from JPEG-compressed
images will be strongly distorted in the high-frequency DCT subbands due to
larger quantization errors. If the quantization is too strong, Mallory’s images will
lack high-frequency content altogether and so will her fingerprint estimate. In
other words, her estimate only comprises the fingerprint component that is robust
to JPEG compression. A fingerprint estimate from uncompressed images is in
turn distributed almost evenly over all subbands [23]. Hence, Alice has access to
a fragile camera fingerprint, computed from the high-frequency subbands only.

To obtain the fragile part, it is instructive to define a mode-selective highpass
filter Hc(·). Based on a binary multiplicative mask Hc = [hi,j ], 1 6 i, j 6 8, the
filter retains a defined set of DCT subbands and sets all other subband coefficients
to zero. Alice should choose Hc depending on the maximum JPEG quality of
her published images. For a sufficiently conservative choice, she can assume that
the retained subbands are available exclusively to her. Quiring and Kirchner [23]
propose to parameterize Hc with a cut-off along the (−c)-th anti-diagonal of the
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⊗
Fig. 1. Fragile fingerprint computation based on a subband-selective filter H1(X): Each
pixel block X is mapped to its DCT representation Y , element-wise multiplied by a
binary mask H1, and transformed back to the spatial domain to give X̃.

DCT coefficient matrix,

hi,j = [(i+ j − 8− c) > 0] , (7)

where [·] denotes the Iverson bracket. Figure 1 summarizes the internal steps of
Hc(·) for cut-off parameter c = 1, which retains all DCT subbands in the lower
right triangle. Equipped with Hc, a refined similarity test of the form

φWJ ,JK̂(c) = sim
(
Hc(WJ ), Hc(JK̂)

)
≷ τ . (8)

then establishes camera identification from fragile fingerprints, which is of partic-
ular relevance in the following two application scenarios.

Digital Image Forensics. Testing for the presence of camera fingerprints facilitates
device identification and image manipulation detection in forensic applications [8].
Fragile camera fingerprints can benefit scenarios that warrant the analysis of high-
quality images, for instance when uncompressed images ought to be presented
as a source of particularly high trustworthiness. In this case, Alice can establish
that a spurious image was not captured by her camera by having kept her
uncompressed images private. She presents the fragile fingerprint when needed,
potentially in combination with cryptographic safeguards [21] or in some form of
zero-knowledge proof to further secure her fragile fingerprint from leakage.

Mobile Device Authentication. Camera fingerprints have been proposed as build-
ing blocks for augmenting mobile device authentication schemes with physical
hardware characteristics [2, 5, 26]. Yet like with device signatures from other
types of hardware sensors, the vulnerability to fingerprint-copy / spoofing attacks
is of particular concern [1]. To the best of our knowledge, the concept of fragile
fingerprints is the only existing approach that would address the problem in a
proactive and scalable manner. Performing a triangle test upon every authentica-
tion attempt is computationally infeasible, let alone that Alice may object to the
idea of sharing all her images with the service she wants to authenticate to.

Ba et al. [2] attempt to work around that issue in their authentication protocol
by requiring the user to take two images of different visual codes during the
identification phase. Similar to the triangle test, the reasoning is that two spoofed
images will correlate implausibly strongly as they do not only share Alice’s
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fingerprint but also the one from Mallory’s camera. This measure can be easily
circumvented by an attacker who uses two different devices to take the respective
pictures however. In this way, Mallory prevents the additionally shared signal.

In summary, fragile camera fingerprints enable novel applications in image foren-
sics and mobile device authentication. Their applicability, however, depends on
the robustness against attacks. In the remainder of this work, we thus perform a
comprehensive security analysis.

4 Security Analysis

A secure application of fragile camera fingerprints demands that Mallory cannot
estimate the fragile fingerprint from JPEG-compressed images. We guide our
analysis along the following three questions:

(Q1) Can we bound the quality of Mallory’s fingerprint estimate K̂E?

(Q2) Can Mallory improve her fingerprint estimate by exploiting the quantized
high-frequency or robust low-frequency information?

(Q3) Can Mallory perform a successful fingerprint-copy attack?

4.1 Datasets and Experimental Setup

Where empirical tests are warranted, we adopt the setup described by Quiring and
Kirchner [23]. The dataset consists of images from the Dresden Image Database
[9] (DDB) and the RAISE Image Database [6], cf. Table 1. In particular, we use 25
homogeneously lit flat field images of each DDB camera to obtain uncompressed
fingerprint estimates. 1442 natural images serve as benchmark data. We present
aggregated results over the six cameras in the following, as all gave similar results.
The RAISE database only provides natural images. We randomly select 300 images
for fingerprint computation, leaving us with 4648 images for a benchmark set
that facilitates the study of attacks where Mallory has access to a large number
of public images. Note that the usage of 300 natural images for fingerprint
estimation can be attributed to the heterogenous content of natural images. In
an authentication scenario, a user can be asked to take a much smaller number of
suitable images (e. g. a white wall) without nuisance image content. If not stated
otherwise, we use the standard Wavelet denoiser to obtain noise residuals [19]
and the ML formulation in Equation (3) to estimate fingerprints.

Table 1. Number of images per test set and camera.

Database Camera model
Fingerprint estimate Benchmark data

Camera 0 Camera 1 Camera 0 Camera 1

Dresden [9]
Nikon D70 25 25 175 188
Nikon D70s 25 25 175 174
Nikon D200 25 25 360 370

RAISE [6] Nikon D7000 300 — 4648 —
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In order to also guide our evaluation at the practically used JPEG quality,
we collected over 1.4 Million JPEG images from Twitter, Instagram, Imgur,
Deviantart and Flickr. The average JPEG quality is 83.5 with a standard deviation
of 9.2. This, for instance, fits to recommendations from Flickr, Wikimedia and
the official Android documentation that recommend qualities less than 90.

4.2 (Q1) Analytical Quality of Fingerprint Estimation

Our first objective is to establish a bound on the quality of Mallory’s fingerprint
estimate from Alice’s camera irrespective of a concrete image data set to reflect
Mallory’s chances of performing a successful fingerprint-copy attack. In particular,
we adopt the notion of quality of fingerprint estimation by Goljan et al. [13]. We
derive an analytical expression for the correlation between Alice’s fingerprint from
uncompressed images, K̂, and Mallory’s fingerprint from compressed images, K̂E ,

cor(Hc(K̂), Hc(K̂E) ) . (9)

This quantity can be seen as a simplified version of the similarity measure in
Eq. (8) for images taken under ideal conditions, e.g. homogeneously lit. As we
focus on high-frequency subbands only, less image content disturbs the fingerprint
calculation. Thus, Hc(JK̂) resembles Hc(K̂), as well Hc(WJ ) ≈ Hc(K̂E).

We make three assumptions to simplify the calculation. First, Mallory com-
putes her fingerprint from the same, but compressed, image set that Alice uses
for her uncompressed estimate. This will yield a loose upper bound for cases
where Mallory obtains a different JPEG-compressed image set that Alice has
not used. Moreover, we apply a simple fingerprint estimator that takes the
pixel-wise average of noise residuals. Finally, we assume a negligible correlation
between individual DCT subbands and across images. The first and the second
assumption imply that the fingerprint calculation can be modeled as pixel-wise
averaging. Denote Xi the i-th uncompressed image from Alice’s camera and X̃i

its JPEG-compressed version to rewrite Equation (9) as

cor(Hc(K̂), Hc(K̂E) ) = cor
(∑

iHc(Xi),
∑

iHc(X̃i)
)
. (10)

Appendix A establishes that the sample correlation coefficient based on Equa-
tion (10), r(c), can be computed in the DCT domain directly. We write Yi and
Ỹi for the DCT representations of Xi and X̃i, respectively, to obtain

r(c) ∼= cor
(∑

i(Hc Yi),
∑

i(Hc Ỹi)
)
. (11)

The coefficient is parametrized by the cut-off c from Equation (7). High-pass filter
Hc is now made explicit through the DCT mask Hc (see Section 3), yielding a
convenient formulation to compute the sample correlation coefficient between
Alice’s and Mallory’s fingerprint directly in the DCT domain. This formulation
thus allows us to use known statistical distribution models for DCT coefficients.

We continue to derive the population correlation coefficient by assuming a
Laplacian distribution for the AC DCT coefficients [24]. Specifically, denote Yi,s
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the random variable representing the s-th subband of the i-the uncompressed
image. Equivalently, denote Ỹi,s the respective quantized counterpart to reflect
the effect of JPEG compression on Yi,s. Appendix B establishes the general
relation between the two random variables in terms of their covariance, which
can be expressed solely on the basis of the distribution of the uncompressed
variable Yi,s. We highlight this by defining Cov+(Yi,s) = Cov(Yi,s, Ỹi,s). A similar

derivation for the variance yields Var+(Yi,s) = Var(Ỹi,s). Appendix B shows how
aggregating these quantities over the various subbands s ∈ Sc as specified by
filter Hc of various images leads to the following formulation for the population
correlation coefficient:

ρ(c) ∼=
∑

i

∑
s∈Sc

Cov+(Yi,s)√∑
i

∑
s∈Sc

Var(Yi,s)
√∑

i

∑
s∈Sc

Var+(Yi,s)
. (12)

This equation is a first step towards an analytical understanding of the impact of
JPEG-induced quantization on the ability to estimate fragile camera fingerprints.
Specifically, it allows Alice to deduce the expected correlation of Mallory’s
fingerprint with her fingerprint based on general DCT distribution assumptions.
Note that the derived correlation is computed under the assumption of a strong
attacker: Mallory bases her fingerprint estimation on the same image set as
Alice; her images only differ in that they are JPEG-compressed. Consequently,
Equation (12) can serve as upper bound for the more realistic scenario when
Mallory has only access to a different image set. Alice, as camera owner, will always
be able to create new images for her fingerprint. The next section demonstrates the
validity of our analytical derivation under practical conditions for both scenarios.

4.3 (Q1) Empirical Quality of Fingerprint Estimation

We start with the quality of Mallory’s fingerprint estimate when Alice and Mallory
operate on the same image set, and then continue with different image sets.

Same image sets. In a first step, we compute the population correlation coeffi-
cient ρ from Equation (12) on a set of 250 synthetic images. Each image follows
a zero-mean Laplacian distribution with a randomly generated scale parameter.
This allows us to examine ρ on idealized conditions. We compare ρ with its
empirical counterpart, r, as given in Equation (11). Figure 2a shows that the two
derived quantities are consistent under varying JPEG compression levels.

In the next experiment, we use natural images from the Nikon D7000. We
give Mallory access to NE = 250 JPEG-compressed images, derived from the
same set that Alice uses for her fingerprint. Varying the JPEG quality and
cut-off parameter c, we compute ρ and r. The computation of ρ involved a
standard maximum likelihood estimator to obtain the Laplace scale parameter
for each DCT subband per image. For benchmark purposes, we also include the
sample correlation coefficient φ1 between Alice’s and Mallory’s fingerprint, both
calculated with the ML formulation in Equation (3). We repeat the experiments
five times and report averaged results for ρ, r and φ1 in Figures 2b–2c for c ∈ {1, 2}.
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ρ: Population Correlation φ1: Fingerprints from same set

r: Empirical Correlation φ2: Fingerprints from diff. set

Fig. 2. Quality of fingerprint estimation. Results from (a) NE = 250 synthetic images
and (b)-(c) NE = 250 natural Nikon D7000 images.

The curves resemble each other reasonably well, with r generally predicting
a slightly higher fingerprint quality than ρ due to the implied independence
assumptions in the latter. As c increases, ρ slowly approaches φ1. This indicates
that the analytically derived ρ is a good approximation of Mallory’s fingerprint
quality under idealized conditions particularly in high-frequency DCT subbands.

Different image sets. In a more realistic scenario, we assume Alice and Mallory
to work on different image sets. Figures 2b and 2c thus include φ2, the corre-
sponding sample correlation coefficient between Alice’s and Mallory’s fingerprints
as obtained with the ML estimator, averaged over five randomly compiled JPEG
image sets of size NE = 250 that Alice has not used for computing K̂. Alice’s
camera-specific fingerprint from 300 images was kept constant throughout all rep-
etitions. Not surprisingly, the population correlation coefficient ρ is a loose upper
bound to the observed correlation φ2 when Mallory operates on a different image
set: φ2 approaches zero quickly with increasing c and decreasing JPEG quality.
Appendix C gives additional insights by reporting the correlations for a much
larger number of JPEG images, NE . Mallory’s fingerprint quality increases only
slowly with the number of available JPEG images. For a suitable combination of
JPEG quality and cut-off parameter c, the correlation remains extremely small.
As a result, less restrictive quality and cut-off parameters are possible compared
to the contrived situation where Alice and Mallory access the same images.

Analysis summary. Overall, strong guarantees for a scenario where Mallory
has access to JPEG-compressed versions of the very images Alice used for her
fingerprint are possible for JPEG qualities of 70 or smaller. In a more realistic
scenario with different image sets, a secure operation is already possible with
JPEG quality factors 90 or lower. For JPEG 85—the average quality factor on
various image platforms (see Section 4.1)—Alice may choose c > 3 to ensure a
reliable identification in an adversarial environment.
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4.4 (Q2) Independence Test

The previous section has analyzed the correlation between Alice’s and Mallory’s
high-frequency fingerprint estimates—deriving first bounds when Alice’s fin-
gerprint remains private. We continue with this analysis under the scenario of
different image sets in the following sections.

Quiring and Kirchner have shown [23] that the high-frequency pixel part
kept by Hc is uncorrelated to the complementary low-frequency part kept by
Lc = Hc XOR 1. Consequently, Mallory cannot exploit linear dependencies be-
tween her robust low-frequency fingerprint and Alice’s fragile fingerprint. However,
correlation does not cover all modes of dependence. In this section, we thus exam-
ine if Mallory can exploit non-linear dependencies and conduct a kernel statistical
test of independence. In particular, we choose the Hilbert-Schmidt independence
criterion3 (HSIC)[15]. In simplified terms, this test maps the possibly non-linear
dependencies to a linear space where independence is tested. The test is con-
sistent in the sense that the level of alpha controls the type I error (detects
dependence although independence is true) while the type II errors goes to zero
for an increasing sample size [15].

We consider the following two scenarios. First, we test if Alice’s high frequency
fingerprint is independent to Mallory’s high-frequency fingerprint from JPEG-
compressed images:

H0 : Hc(K̂) ⊥⊥ Hc(K̂E) . (13)

Equivalently, the second scenario tests if Alice’s high frequency fingerprint is
independent to Mallory’s full fingerprint from JPEG-compressed images:

H0 : Hc(K̂) ⊥⊥ K̂E . (14)

We grant Mallory access to NE = 150 images of each DDB camera and NE = 1000
RAISE images. We aggregate results over ten randomly compiled sets of size NE .

For both scenarios, Figure 3 depicts the observed H0 acceptance rates, i. e. the
percentage of cases for which we cannot detect a measurable dependence between
the two quantities under test. This rate increases with lower JPEG qualities
or larger cut-off parameters c. In the first scenario, the test statistic suggests
independence at a considerable rate for c = 4 and JPEG quality 90 for all cameras.
Interestingly, the second scenario—where Alice’s high frequency fingerprint is
tested against Mallory’s full fingerprint—is characterized by a lower rate of
independence. A comparison of both scenarios thus suggests that remaining
dependencies may result from the low-frequency part. This dependency would
have to be non-linear, as the low- and high-frequency signal are not correlated to
each other. As we show in the next section, it is unclear how Mallory can exploit
these potentially remaining dependencies in practice, however.

We surmise that the notably less conclusive results on the RAISE data
are due to non-trivial remnants of image content in the noise residuals. In

3 We use a Gaussian kernel, an alpha value of 0.05, and split the images into 320× 320
pixel blocks with varying offsets to keep the sample size manageable.
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Fig. 3. Kernel statistical test of independence. Plots (a) and (b) depict the first scenario;
Plots (c) and (d) the second scenario for both databases.

contrast to the Dresden database, Alice’s fingerprint is here calculated from
natural instead of homogeneously lit images, raising the bar for establishing
independence considerably.

Analysis summary. The chosen HSIC test establishes statistical independence
for suitable JPEG and cut-off parameters, which gives a strong evidence that
Mallory cannot exploit any dependence to recover Alice’s fingerprint. Considering
the high-frequency signals, Alice may choose c > 3 for quality factor 85.

4.5 (Q2) DCT Recovery

In the next experiment, we examine if Mallory can exploit remaining dependencies
to recover DCT coefficients. Although a DCT coefficient that is quantized to zero
does not reveal information about the fingerprint, non-zero coefficients may leak
information at least with their sign. By averaging enough images, Mallory may
thus obtain a coarse fingerprint estimate. We test below if Mallory can improve
her fingerprint by recovering DCT coefficients that were quantized to zero.

We adapt the systematic approach by Li et al. [18], since it is in principle
also applicable to the recovery of high-frequency DCT coefficients. The recovery
is a linear optimization problem with the objective to minimize the spatial
distance of neighboring pixels within and across the 8 × 8 pixel blocks from
JPEG compression. The first constraint is that the recovered pixel values must
correspond to their DCT coefficients. Second, DCT coefficients that should not
be recovered are fixed. Finally, the pixel and DCT coefficients have to be within
their dynamic range. The optimization problem can be summarized as

min
∑

l,l′ |X(l)−X(l′)| (15)

s.t. X −D> • Y •D = 0 , (16)

Y (s) = Y ∗(s) , (17)

X(l) ∈ [xmin, xmax], Y (s) ∈ [ymin, ymax], (18)



Security and Applicability of Fragile Camera Fingerprints 13

Table 2. Contingency table of DCT recovery from 50 Nikon D70 images

Fraction Predicted Sign
JPEG 100 JPEG 95

neg zero pos neg zero pos

Fraction
True Sign

neg 0.08 0.09 0.05 0.11 0.15 0.09
zero 0.16 0.08 0.16 0.07 0.11 0.07
pos 0.05 0.09 0.24 0.09 0.15 0.17

where l and l′ are the indices of neighboring pixels in the spatial domain, D de-
notes the DCT transformation matrix, and s is the index of a DCT subband.
The second constraint fixes with Y ∗ all DCT coefficients that are not part of the
subbands retained by filter Hc or are non-zero in the subbands retained by Hc.
As a result, we recover only zero-valued DCT coefficients that Hc retains. For
each image, and for each 8 × 8 pixel block, we set up such an optimization
problem and include its direct neighboring blocks.

We report results for 50 images from a Nikon D70 over the JPEG qualities 100
and 95 as well as the cut-off frequency c = 1. The performance does not change
considerably for smaller JPEG qualities or larger cut-off frequencies and thus are
omitted. Table 2 depicts a contingency table that summarizes the frequency of
correctly predicted signs. This is the case when the sign of the predicted DCT
coefficient equals the sign from the corresponding original uncompressed image or
both the predicted and uncompressed coefficient lie in the zero range [−0.25, 0.25].
Even for JPEG quality 100, the recovery cannot reliably predict the sign. The
correct distinction drops further for a smaller JPEG quality and tends towards
a random classifier. In each case, the correlation to Alice’s fragile fingerprint
decreases when Mallory uses the recovered images for her estimate. In contrast,
the recovery of low-frequency subbands is successful with an average recovery
rate of 70%. However, only the correlation to Alice’s low-frequency fingerprint
increases in our experiments.

Analysis summary. The recovery of the correct sign is partly possible for low-
frequency subbands, while the recovery of high-frequency subbands is already
difficult for JPEG quality 100. Mallory can thus not improve her estimate of
Alice’s fragile fingerprint through a DCT recovery.

4.6 (Q3) Fingerprint-Copy Attack

We finally consider a realistic fingerprint-copy attack where Mallory plants her
calculated fingerprint estimate K̂E from Alice’s camera into 100 randomly chosen
uncompressed images taken by a different camera (see Section 2.2). Figure 4
depicts the average PCE values with respect to the embedding strength for
varying JPEG qualities. We present results only for the Nikon D7000 from the
RAISE database with NE = 4648. This allows us to depict the effect when Mallory
uses a large number of public images. We refer to Quiring and Kirchner [23] for
results from the DDB, which are similar to the results reported here.
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Fig. 4. Fingerprint-copy attack with fragile fingerprints. Average PCE values as a
function of the embedding strength α with NE = 4648 (Nikon D7000) for different
JPEG qualities.

As expected, high-quality JPEG 100 images enable Mallory to perform a
successful attack due to the negligible quantization (Fig. 4(a)). The situation
is substantially different with stronger compression. For JPEG 90, only the full
fingerprint gives high PCE values for small embedding strengths. Yet, larger
cut-offs demand extremely strong embeddings to achieve high PCEs. For JPEG
quality 85, no choice of α will produce Mallory’s desired result with c > 3.

Analysis summary. Fragile fingerprints allow a secure identification starting
from JPEG 90 and lower. In accordance to our results from previous sections, no
choice of α will allow an attack with c > 3 for quality factor 85.

5 Application Analysis

We finally examine the application of fragile sensor noise fingerprints. First, we
verify that they are still discriminative enough to distinguish different cameras.
Second, we compare them with the triangle test against fingerprint-copy attacks.

5.1 Camera Identification

In the following, we show that fragile fingerprints allow a reliable camera iden-
tification compared to traditional full camera fingerprints. We only consider
uncompressed images here by the very nature of fragile fingerprints. The PCE
is used as similarity measure for images of each camera (true positives) and all
remaining natural images from the Dresden Image Database (true negatives).
Figure 5a shows the ROC curves for different cut-off frequencies c—aggregated
over 1442 images from the six DDB cameras. The full frequency range is included
for comparison.

Although a fragile fingerprint with c = 1 employs only 28 DCT coefficients in
each block, it achieves the same detection performance as the full fingerprint with
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Fig. 5. Applications. Plot (a) shows the camera identification of uncompressed images.
Plot (b) depicts the defense performance against fingerprint-copy attack using the
triangle test and fragile fingerprints (JPEG quality 90, c = 1).

64 coefficients. An almost perfect detection is possible with c 6 4 for the Dresden
database. The results for the Nikon D7000 camera are comparable for c 6 3. We
contribute this smaller choice of c to a more perturbed fingerprint estimate of
this camera—due to more image content in the respective noise residuals.

Analysis summary. Fragile fingerprints allow a reliable camera identification.
Together with our security analysis, for a common JPEG quality factor of 85,
Alice can choose c = 3 to achieve both a reliable camera identification and attack
resistance.

5.2 Comparison with Triangle Test

While the triangle test cannot be recommended for authentication, it is a rea-
sonable defense in digital image forensics. Our final experiment highlights its
powerful combination with fragile fingerprints in forensic applications against
fingerprint-copy attacks. Our previous results underline that remaining fingerprint
information after quantization are usable for large embedding strengths with too
small cut-off parameters (c 6 2). However, the triangle test shows its strengths
exactly in these cases, as the additional residual image content from the forgery
process emerges more clearly with a larger embedding strength [13].

In the following, we assume Mallory to have access to NE = 150 public JPEG
images with quality factor 90 from Alice’s Nikon D200 camera. Mallory embeds
her spoofed fingerprint into an uncompressed image from another camera while
varying α as defined in the previous section. On the defender side, the linear
parameters θ and µ of the test statistic are estimated from 200 images that
Mallory has not used, cf. Eq. (6). We set the threshold t such that the false
alarm probability is 10−3. Finally, Alice reports her security ratio: the percentage
of images that Mallory has used and that are correctly marked as those. We
repeat the process over 100 randomly chosen uncompressed images where Mallory
embeds her spoofed fingerprint. Figure 5b depicts the averaged security ratio.
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For reference, we include the corresponding results with the fragile fingerprint
approach. We focus on c = 1 and JPEG quality 90, where Mallory obtains
considerably high PCE values with a fingerprint-copy attack (see Figure 4(b)).
In particular, we estimate the distribution of the PCE values from uncompressed
images with a Gaussian kernel density estimator. The PCE threshold under
which an image is not assumed as one from Alice’s camera is set such that the
false positive probability is 10−3. Alice’s security ratio expresses the percentage
of Mallory’s images that do not exceed the PCE threshold and thus are correctly
identified as being not from Alice’s camera.

Figure 5b emphasizes that both approaches are a powerful combination when
Mallory has just access to JPEG images. At the point where Mallory starts to
circumvent fragile fingerprints, the triangle test already detects more than 50%
of images that are involved in Mallory’s attack; usually enough to raise suspicion
that Mallory has forged the image under investigation. In summary, Mallory faces
the following dilemma: A too strong fingerprint strength is likely to be uncovered
by the triangle test; with a too weak embedding, Mallory’s forged image will
not be identified as one of Alice’s images. By using the triangle test in addition,
Alice can even use smaller cut-off values for her fragile fingerprint.

6 Conclusion

This paper contributes to a thorough understanding of fragile camera fingerprints
by providing a comprehensive security analysis. In multiple tests, we confirm
that Mallory cannot estimate Alice’s camera fingerprint from JPEG-compressed
images with common compression levels. Our analysis thus motivates the usage
of fragile fingerprints in various applications, such as authentication or digital
image forensics. Finally, we note that the concept of fragile fingerprints effec-
tively demonstrates how asymmetries in the quality of accessible data can be
exploited. In the context of recent unification attempts between related research
disciplines [3, 22], this may foster novel strategies in adversarial machine learning
or signal processing.
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A Sample Correlation Coefficient

The objective is to compute Pearson’s sample correlation coefficient between two
images u and v equivalently in the DCT domain. Without loss of generality, we
focus on an 8× 8 pixel block, so that the correlation is given as

r =
n
∑
u(l)v(l)−∑u(l)

∑
v(l)

n

√∑
u(l)2 − (

∑
u(l))

2
√∑

v(l)2 − (
∑
v(l))

2
(19)

where u(l) and v(l) are the pixel values. The total number of pixel values or
DCT coefficients is given by n, thus for one block n = 64. To obtain the same
correlation value just with the DCT representation U and V of both images, we



Security and Applicability of Fragile Camera Fingerprints 19

use the following identities between spatial pixels and DCT coefficients:

n
∑

u(l)v(l) = n
∑

U(l)V (l) (20)∑
u(l)

∑
v(l) = n2 ū v̄ = n U(0)V (0) (21)

n
∑

u(l)2 = n
∑

U(l)2 (22)(∑
u(l)

)2
= (n ū)2 = n U(0)2 . (23)

Incorporating these identities in Eq. (19) and canceling n, we obtain the following
correlation equation for one 8× 8 pixel block:

r =

∑
U(l)V (l)−U(0)V (0)√∑

(U(l)2)−U(0)2
√∑

(V (l)2)− V (0)2
(24)

The generalization over all image blocks yields the same result. If we now just
focus on AC coefficients, the DC coefficient U(0) and V (0) become zero. As the
AC coefficient’s mean goes to zero, Eq. (24) corresponds to Eq. (19). In other
words, we can directly feed the AC DCT coefficients into the standard Pearson
correlation equation.

B Population Correlation Coefficient

Given a quantizer and uniform step size q, we denote by U an uncompressed
image as random variable and by V its quantized output, V = bU/q + 0.5c · q.
The objective is to compute the population correlation coefficient between U
and V :

ρ =
Cov(U, V )√

Var(U)
√

Var(V )
. (25)

The following general relations between the random variable U and output V
can be established when U is assumed to have a symmetrical and zero-mean pdf
fU (x) with characteristic function ΦU (x) [27]:

Var(V ) = Var(U) +
q2

12
+
q2

π2

∞∑
k=1

ΦU

(
2πk

q

)
· (−1)k

k2

+
2q

π

∞∑
k=1

Φ
′

U

(
2πk

q

)
(−1)k+1

k
(26)

Cov(U, V ) = Var(U) +
q

π

∞∑
k=1

Φ
′

U

(
2πk

q

)
(−1)k+1

k
(27)

For a zero-mean Laplacian distribution with parameter λ, the characteristic
function is given as:

ΦU (x) =
λ2

x2 + λ2
. (28)
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To highlight that the covariance and variance terms are only based on variable U ,
we write Cov(U, V ) = Cov+(U) and Var(V ) = Var+(U).

In the next step, to determine the fingerprint quality, we need to calculate
the correlation after averaging the uncompressed images and their compressed
counterparts, respectively:

cor (
∑

i Ui,
∑

i Vi) . (29)

We start with the distribution on one subband and denote by Ui,s and Vi,s the
s-th subband of the i-th image and its compressed version. The aggregation
over various subbands follows from the linear property of the covariance and the
assumption of uncorrelated DCT subbands:

Cov (
∑

s Ui,s,
∑

s Vi,s) =
∑

s Cov(Ui,s, Vi,s) . (30)

This is also possible for the variance of a sum of random variables. Finally, we
assume the images to be uncorrelated to average the covariance over all images:

Cov (
∑

i Ui,
∑

i Vi) =
∑

i

∑
s Cov(Ui,s, Vi,s) . (31)

Taking all together, the population correlation coefficient is given as

ρ (
∑

i Ui,
∑

i Vi) =

∑
i

∑
s Cov+(Ui,s)√∑

i

∑
s Var(Ui,s)

√∑
i

∑
s Var+(Ui,s)

. (32)

C Empirical Quality of Fingerprint Estimation

For the different image set scenario, Table 3 shows the correlations for NE = 2000
and NE = 4648 JPEG images. NE = 4648 is the maximum number of available
images in our setup, so that its values are from a single instance of the experiment.

Table 3. Quality of fingerprint estimation (RAISE)

NE JPEG
c

full 1 2 3 4 5

2000

100 0.6241 0.6070 0.5613 0.4867 0.3858 0.2654
95 0.5484 0.3853 0.2694 0.1622 0.0824 0.0551
90 0.4633 0.1588 0.0793 0.0375 0.0181 0.0185
85 0.4030 0.0550 0.0178 0.0071 0.0031 0.0065
80 0.3619 0.0195 0.0026 -0.0003 0.0002 0.0045
75 0.3301 0.0070 -0.0029 -0.0024 0.0004 0.0023
70 0.3093 0.0035 -0.0042 -0.0036 -0.0001 0.0017

4648

100 0.6526 0.6387 0.5968 0.5279 0.4330 0.3151
95 0.5890 0.4654 0.3531 0.2269 0.1208 0.0808
90 0.5054 0.2162 0.1130 0.0543 0.0264 0.0277
85 0.4451 0.0757 0.0248 0.0099 0.0040 0.0094
80 0.4045 0.0272 0.0033 -0.0008 -0.0005 0.0047
75 0.3732 0.0100 -0.0044 -0.0035 0.0006 0.0033
70 0.3535 0.0053 -0.0058 -0.0053 -0.0003 0.0022
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