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Abstract. As voice interfaces become more widely available they in-
creasingly implement speaker recognition, to provide both personalized
functionalities and security via authentication. In this paper, we present
a method that transforms the voice of one person so that it resembles
the voice of a victim, such that it can be used to deceive speaker recogni-
tion systems into believing an utterance was spoken by the victim. The
transformation only requires short pieces of audio recordings from the
source and victim voices, and does not require specific words to be spo-
ken by the victim. We show that the attack can be improved by using a
population of source voices and we provide a metric to identify promising
source voices, from within such a population.
We evaluate our attack along a set of dimensions, including: varying
quantity, quality and types of known victim audio, verification and iden-
tification systems, white- and black-box models and both over-the-wire
and over-the-air access. We test the audio transformation on two differ-
ent proprietary models: (i) the Azure Speaker Recognition API and (ii)
the Siri voice activation of an Apple iPhone, showing that individuals can
easily be impersonated by obtaining as little as one minute of their au-
dio, even when such audio is recorded in noisy conditions. With attempts
from only three source voices, our attack achieves success rates of over
40% in the weakest assumption scenario against the Azure Verification
API and rates of over 80% in all scenarios against Siri.
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1 Introduction

As voice interfaces become more popular, voice-based devices are now adding
speaker recognition to their capabilities, so they can understand both what has
been said (speech recognition) and who has said it (speaker recognition). Speaker
recognition allows for customized functionality, as well as authentication, remov-
ing the burden of other less user-friendly authentication approaches (e.g., PINs
or passwords). Nowadays, speaker recognition is available in commercial prod-
ucts such as Google Home [16] or Apple Siri [2]. Additionally, speaker recognition
is increasingly been deployed for over the phone authentication by companies in
the financial sector (e.g., HSBC [18], Lloyds Bank [25]).

Recent studies have focused on analyzing the security of speech recognition
systems [7,8,33,35,36], often with attacks which use adversarial machine learn-
ing techniques to craft malicious audio. These studies have shown that many
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voice assistants are vulnerable to these types of attacks, and that commands
can inconspicuously be injected or hidden in other sounds, such as songs [35].
However, as speaker recognition becomes widely available and used for sensitive
functions, additional investigations are needed to assess its security guarantees.
When targeting a speaker recognition system, rather than inconspicuously inject
voice commands, the adversary’s goal is to unlock access to a voice-protected
device by replaying audio that resembles the device owner’s voice.

Previous work in this area focused on creating complex and expensive mod-
els for synthesizing audio or converting one’s own voice into the voice of the
victim [10, 13, 19, 21, 26, 31]. Generally the training audio is collected in a well-
isolated studio environment and the ultimate goal of the generated audio is to
deceive a human listener. However, from an adversarial perspective, obtaining
audio of spoken utterances could be suspicious or unfeasible for certain vic-
tims. The unavailability of long samples of victim audio brings two limitations
in re-creating the victim’s voice: (i) models based on parallel datasets for voice
conversion can not be used and (ii) synthesizers or conversion methods based
on deep models do not reach sufficient accuracy, as intra-user variability is not
efficiently captured. A detailed analysis of related work is given in Section 2.

In this paper, we present a voice conversion attack that manipulates individ-
ual phonemes from a source voice into sounding like those of a target voice. This
attack is not aimed at deceiving humans, but at deceiving speaker recognition
systems. The transformation is based on morphing phoneme-related features in
the Mel frequency cepstrum space [27], which is a representation of sound com-
monly used as feature inputs for voice recognition systems. Our transformation
only requires knowledge of the number of phonemes in the target language and a
piece of audio from the victim. We show that such an attack can be improved by
using a population of candidate source voices (easily available online), as some
voices are better transformed into others. We provide a method of identifying
which source voices are likely to succeed in impersonating a target voice.

We evaluate the transformation on different speaker recognition systems.
We use a white-box model to learn how to improve the voice conversion and
we show that the attack can successfully fool black-box models in both over-
the-wire and over-the-air access. We conduct our evaluation across a different
set of assumptions for the adversary, including (i) amount of known audio and
(ii) recording noise. We further show that our transformation can be used on
verification systems unlocked with a text-dependent keyphrase, as well as text-
independent voice identification systems.

The main contributions of this paper are the following:

– We propose a new voice conversion method based on the creation of a
phoneme mapping function between a source and a target voice in MFCC
space, which only requires knowledge of the language’s number of phonemes.

– We analyze the effectiveness of the transformation across different assump-
tions regarding quantity and quality of training data, identification and ver-
ification use-cases. We show that only few authentication attempts can de-
ceive the proprietary models of the Azure Speaker Recognition APIs.
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– We further test the attack over-the-air on the Siri assistant of Apple iOS,
achieving success rates of over 50% with only one authentication attempt in
the worst case.

2 Related Work

Prior work in this area focused on two different domains. The first consists of at-
tacks on speech recognition, where the aim is to inconspicuously inject malicious
commands into voice assistants (e.g., “delete my contact list”). This is done both
by generating new audio that is inaudible to the user or by modifying existing
audio in a way that is non-perceivable by a human. The second domain consists
of attacks on speaker recognition, where an adversary attempts to impersonate a
victim’s voice. Impersonation attacks are particularly threatening in verification
(authentication) scenarios, where a system uses voice-based access control, but
can also be dangerous in identification use-cases, where an adversary could fool
the system about their identity. We cover both domains in this section.

2.1 Speech Recognition

For speech recognition, several works attempted to create inconspicuous ways
to embed or hide speech commands which trigger specific actions on voice as-
sistants. Vaidya et al. [33] introduced obfuscated voice commands, which are
recognized and executed by voice systems but unintelligible to a human listener.
This is done through repeated application of a Mel Frequency Cepstrum Coefi-
cient (MFCC) based audio mangler, which applies and then inverts the MFCC
transform. This work is extended in [7], showing that an attacker can perform
this attack even in more realistic conditions, such as black-box models, and in
the presence of background noise, while retaining the non-intelligibility of the
commands for humans. Yuan et al. [35] demonstrate a technique which allows
an adversary to embed speech commands into songs, which allows an attack to
be conducted in front of a victim with greater ease. In [8] this is extended to
allow any pre-chosen command to be embedded into a given audio sample, such
that a human does not perceive the command. This allows a human to hear one
utterance but the system to believe it is has heard something entirely different.
A slightly different approach is taken in [36], where Zhang et al. demonstrate
embedding commands entirely in (human-)inaudible frequency range, but which
are still accepted by voice assistants.

Our Work. As opposed to speech recognition, we specifically focus on the secu-
rity of speaker recognition systems. This means that our work is related to speech
recognition, but does not overlap directly. An adversary could design a way to
combine our method with a speech recognition attack to bypass impersonation
while still achieving inconspicuous malicious transcription. Compared to speech
recognition attacks, we do not require the audio to have non-intelligible or
inaudible properties. Since the adversary wants to be able to interact with the
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voice-based system directly to perform some malicious activity, they require tem-
porary unsupervised access to the device, and as such nothing is gained by the
audio being imperceptible. We also retain the goal of correct transcription,
so that keyphrases are still accepted by the system.

2.2 Speaker Recognition

The goal of attacks on speaker recognition systems is to impersonate users, that
is to create audio that is incorrectly interpreted by the system as belonging to
a specific user. Attacks against speaker recognition systems can be divided into
four categories: (i) impersonation, (ii) replay, (iii) speech synthesis and (iv) voice
conversion [14]. In mimicry attacks, human impersonators attempt to alter their
own voice in order to mimic another person’s voice [23]. Replay attacks involve
replaying (with a loudspeaker) audio samples to the system, either in whole
or by merging parts of other audio files together [24]. Speech synthesis aims
to create a model for generating completely artificial speech. In [10] De Leon
et al. proposed a technique based on a Hidden Markov Model (HMM), which
adapts a background model in order to derive an audio synthesizer. The analysis
show that such a synthesizer can impersonate users in the well known Gaussian
Mixture Model (GMM) [3] 81% of the time.

The method presented in this paper falls in the voice conversion category,
where the goal is to convert the perceived speaker identity of a given utterance.
Many works have addressed the problem of voice conversion and recently the
popularity of the Voice Conversion Challenge [32] gave way to a numerous set
of works [13, 19, 21, 26, 31]. Approaches such as [26] use a probabilistic mapping
of vocal tract models to convert between speakers, where as [21] use a GMM
trained on aligned audio from victim and attacker, which can then be applied
to the source audio.

Both speech synthesis and voice conversion approaches have been shown to
achieve good results in re-creating a person’s voice. However, these approaches
are designed for non-adversarial scenarios, where large volumes of high-quality
audio for each speaker are available to train models. Additionally, voice con-
version approaches often require labelled parallel training data: both source and
target speaker uttering the same known sentences, so that a model can be trained
by mapping them on a one-to-one basis. Furthermore, these approaches are gen-
erally targeted at fooling human listeners, imposing many constraints on how
realistic the voice sounds.
Our Work. We address the voice conversion problem from an adversarial per-
spective, which brings limited availability of audio: both in quantity and
in quality (noise). Additionally, we focus on fooling systems rather than hu-
man listeners. Fooling a human listener would not provide an advantage to the
adversary in our case (the system is unsupervised at the time of the attack).

In our approach we learn a phoneme-specific transformation from a source
voice to the victim voice, guaranteeing that each phoneme from the source can
be transformed to a similarly-sounding phoneme for the victim. This allows the
correct transcription to be retained for the speech recognition, while at the same
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Fig. 1: Threat model. The adversary initially records audio of the victim. This is used
to create a transformation, which is applied to some source audio and replayed to the
device (e.g., with a loudspeaker).

time transforms the source voice so that it resembles the victim’s voice. The
method works with limited amounts of text-independent voice data, and even in
the presence of noise, and only requires knowledge of the approximate number
of phonemes in a language. The goal of our analysis is to evaluate the security
of speaker recognition systems in realistic threat scenarios.

3 Threat Model

The phases of an attack are shown in Figure 1. The adversary first records
the victim speaking and then constructs a mapping function between another
individual’s voice and the victim’s voice. They then use this function to transform
the other individual’s voice into the victim’s and replays the transformed audio
into the system, with the goal of impersonating the victim.

Background. Users interact with a speaker recognition system, either verifi-
cation or identification. In the case of verification, the system requires users to
utter a specific sentence, hereafter keyphrase, and uses such utterance to recog-
nize users, in either authentication or identification use cases. As an example, a
laptop could use speaker authentication with the “Hey Siri, it’s me” keyphrase
in order to be unlocked (rather than typing a password). The keyphrase could
either be fixed or contain a challenge, such as asking to speak today’s date or
utter a set of numbers being shown on the screen at the time of authentication.

Capabilities. Adversaries can: (i) record audio of the victims talking, (ii) replay
audio to the voice recognition system (e.g., with a loudspeaker).

Knowledge. Following from the capabilities, adversaries have some knowledge
of the victims voice trait (from recording audio of them talking). Additionally,
the adversary has a set of audio samples containing spoken words for a popula-
tion of individuals. This can be achieved easily by utilizing free speech datasets
such as VoxForge [34]. However, adversaries are limited along the following di-
mensions:

1. black-box model : adversaries do not know what voice processing and recog-
nition algorithms are in place, and thus cannot optimize their attack for a
specific method.
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Fig. 2: Sound wave of the utterance “Hey Siri”. Within the same phoneme (/i/) a wave
pattern repeats itself, depending on the fundamental frequency of voice [15].

2. recorded utterances: adversaries cannot record victims uttering the exact
keyphrase required for authentication, nor its individual words (not all of
them). This is straightforward when the keyphrase includes a challenge, but
also reasonable when it does not. Keyphrases are typically designed so that
they do not occur in normal day-to-day speech, to avoid unwanted authenti-
cations.

3. audio quality : adversaries may only be able to record audio in public settings.
This means that the recorded audio would have poor quality, as it involves
a combination of (i) background noise, (ii) recording from a distance, (iii)
recorded audio being emitted by loudspeakers rather than victims themselves.

4. audio duration: adversaries can only record the victim for a limited amount
of time before raising suspicion. Consequently, they might have a weak rep-
resentation of victims vocal characteristics, increasing modelling difficulty.

Scenarios. Following from the considerations of the previous paragraphs, we
define three different scenarios that represent realistic attack situations.
– Conference: the attacker is attending a conference where the victim is giving

a talk, and records the victim speaking during their talk. The recorded audio
is not of the victim directly, but is a recording of the room speakers connected
to the victim’s microphone.

– Cafe: the attacker is at the same cafe where the victim is enjoying a coffee
while having a conversation with other people. The victim’s audio is recorded
from a distance and is subject to background noise.

– Ideal : the attacker obtains high quality audio of the victim from the internet
and uses it for their attack. The audio is extracted from a source such as a
podcast, or a video of the victim speaking.

All attackers finalize the attack by playing their generated audio to the device.
If attackers want to avoid detection, depending on the scenario, they can wait
for the device to be left unattended before replaying audio to the device. These
adversaries guide our experimental design. We further discuss how we model
them in Section 5.

4 Attack Method

Overview. We construct the attack using the concept of phonemes, which are
the individually perceivable units of sound in spoken language. We show in
Figure 2 how phonemes appear in an audio wave of a spoken word: each phoneme
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Fig. 3: Steps to craft transformed utterances. In the first and second step the adversary
computes the optimal mapping between the source and the target phonemes, in the
third step they use the mapping to transform a specific utterance from the source.

is composed of a repeating wave pattern. The attack aims to transform each of
these phoneme-related patterns so that they closely resemble the victim’s. This
is done by deriving a function which maps phonemes spoken by a known speaker
into phonemes that resembles those spoken by the victim. The strength of using
such an approach is that all knowledge requirements about the structure of the
spoken language are removed. This way, an attacker can also afford to ignore the
relationship between these phonemes and utterances (i.e., whether a particular
phoneme occurs in an audio sample). In fact, no phoneme extraction is necessary,
knowing the approximate number of phonemes for the language is sufficient (in
spoken British English there are 44 phonemes [17]). We construct the mapping
in the MFCC domain, as opposed to modifying the raw audio wave. We show
that mapping the outputs of the MFCC extraction and reconstructing the audio
wave afterwards is sufficient for the transformation to work.

4.1 Formulation

Given two speakers S and T (source and target) and a set of known audio
recordings produced by them si, tj , the transformation works as follows. Initially,
the audio recordings are transformed into the MFCC spectrum, for a single audio
file a we obtain a set of samples (due to the windowing process) as follows:

mfcc(a) = {m(a)
0 , . . . ,m(a)

n } (1)

where the number of points n depends on the audio length. We extract MFCC
features for all audio recordings ai belonging to a speaker. Then we use K -means
clustering, where K is the number of phonemes in the language, (K = 44 in our

case) on all the samples (separately for T and S) to infer the clusters C
(S)
k , C

(T )
k ,

where each cluster represents a phoneme. With the clusters, we also obtain the
cluster centroids CS = {s1, . . . , sK} and CT = {t1, . . . , tK}.

Afterwards, we compute an optimal mapping between individual cluster cen-
troids from the two sets CS , CT . We formulate the optimization as an assignment
problem, which we solve with the Hungarian algorithm [22]. We use l1 as the
distance function between two centroids. The output of the mapping consists in
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a set of pairs (k, j) where k, j ∈ {1, . . . ,K} and the pair (k, j) indicates that
points belonging to cluster k for speaker S should be transformed into points
belonging to cluster j for the speaker T to maximize the similarity.

We implement the above transformation using a linear shift in MFCC space.

Given m
(a)
i ∈ C(S)

k and given the optimal mapping for cluster k, pair (k, j), we

compute a transformed sample o
(a)
i as follows:

o
(a)
i = m

(a)
i + tj − sk. (2)

For an entire audio recording a, Equation 2 is applied sequentially to each sample

m
(a)
i in mfcc(a), resulting in a set of transformed samples {o(a)0 , . . . , o

(a)
n }. Fi-

nally we invert the MFCC transformation using the method shown by Ellis [12],
to give the transformed audio a∗:

a∗ = mfcc−1({o(a)0 , . . . , o(a)n }) (3)

4.2 Attack Execution

There are three steps to generate the attack audio, shown in Figure 3. In the first
step, adversaries compute the phoneme clustering for a source voice, which can
be their own. In the second step, they obtain a recording of the target’s voice
and compute clustering for this data. Immediately afterwards, the adversary
can compute the optimal phoneme mappings between the source and the target
clusters. In the final step the adversary selects a source utterance, usually the
keyphrase or a voice command used by the system, applies the transformation in
Equation 2 and creates a transformed utterance audio to be played to the system.
The first step can always be computed offline, that is before the adversary selects
a target, while the remaining steps depend on when the adversary is able to
record the victim speaking and when they obtain physical access to the system.
Choice of Source Speaker. We found that the selection of source speaker
greatly affects the quality of the transformation, meaning that certain voices
can be more accurately mapped to certain targets. We therefore extend our
attack to consider a population of individuals as sources, that the adversary
can obtain by downloading online voice datasets, or recruiting a population of
people to provide a set of potential source voices. This way, the adversary can
compute mappings for each individual in the population, and later has several
candidates to choose as the source utterance in the last phase of the attack (see
Figure 3). As it is reasonable for adversaries to limit the number of failed attempts
(i.e., playing an attack utterance and being rejected or wrongly classified by the
system), one strategy is to estimate the chance of successful impersonation based
on the mapping output.

Following these considerations, given a mapping composed of a set of pairs
(k1, j1), . . . , (kK , jK) we use the sum of the L1 norm of paired cluster centroids
as an indicator:

ε =

K∑
i=1

||ski
− tji ||1 (4)
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Intuitively, the lower the distance (error, ε) between the mapped clusters, the
more accurate the transformation becomes. Therefore, whenever the adversary
carries out an attack they sort the possible source voices based on increasing ε
and use them as sources in this order.

5 Experimental Design

In this section we describe our data collection method, then present how we
model the adversaries of Section 3 and describe the target systems considered
for the evaluation.

5.1 Data Collection

Collection Procedure. We collected audio data from 20 male native English
speakers, recruited mainly through social media and mailing lists. Participants
were mostly from southern England, and aged between 18 and 30. Recording
sessions took place in an isolated room in a university building, taking approxi-
mately 30 minutes. Recordings were conducted using an AmazonBasics Portable
USB Condenser Microphone, connected to a Windows laptop. Recordings used
the inbuilt “Voice Recorder” software. Participants were instructed to keep the
distance between themselves and the microphone between 5 and 15cm. The data
collection was approved by an ethical review board at our University, Reference:
SSD/CUREC1A CS C1A 18 032. Participants were informed of the purpose of
the study and informed consent was obtained from them prior to commencing
any recording sessions. As voice is personally identifying information, we do not
publicly share the voice dataset.
Transcripts. The participants were required to utter sentences from four dif-
ferent categories: (i) conference transcripts, (ii) conversation transcripts, (iii)
commands and (iv) enrollment transcripts. Each utterance source is designed to
re-create the scenarios mentioned in Section 3. The enrollment and commands
transcripts are identical for every participant, while for conference and conversa-
tion, to increase the dissimilarity of spoken words, we randomly assign one out
of five transcripts to each user1. Transcripts were split into utterances of roughly
equal length, with an utterance typically containing a single sentence.

5.2 Adversary Modelling

Conference Attacker. This attacker only obtains audio samples coming from
utterances from the conference transcripts. In order to recreate the “confer-
ence” effect (the recorded audio coming from distant loudspeakers), we apply
the following processing to the original audio. First we apply the Freeverb [30]
algorithm to generate reverberation in the audio (following data augmentation
practices used in Kaldi [29]). To simulate recording from a distance, we apply a

1 Transcript summaries are available in appendix A
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low-pass filter (with cutoff at 8Khz) to attenuate higher frequencies, and scale
the amplitude of the signal to reduce the volume.
Cafe Attacker. This attacker only obtains audio samples coming from utter-
ances from the conversation transcripts. In order to recreate the “cafe” effect
(recording from a distance plus background chatter and noise), we apply the
same processing used for Conference Attacker (with less reverberation). Addi-
tionally, we mix the audio file with common cafe background noise2 (the overlaid
noise segment is chosen randomly per sample).
Ideal Attacker. This attacker uses the clean recorded audio from the data
collection, with no post-processing or noise applied to it. The Ideal Attacker
represents a worst-case scenario where the adversary obtains good quality audio
samples, and we use it as an indication of the empirical upper bound for the
attacker’s success rate.
Audio Duration. In order to evaluate the effect of different amounts of audio on
the attack success, we model two different audio durations in our experiments: all
and one minute. The all case represents the case where we use all audio collected
for a given scenario (either conference or cafe). The audio quantity averages 317.7
seconds for the Conference Attacker and 330.5 seconds for the Cafe Attacker,
including pre- and post- speech silence. Ideal Attacker uses all the audio available
for that victim, giving an average of 648.2 seconds per victim. In the one minute
case, we randomly sample utterances from the related transcripts until we reach
a cumulative total of 60 seconds of audio, including silence parts. We choose to
systematically analyze each combination of these, creating six different scenarios
(three attackers, two audio lengths).

5.3 Target Systems

We evaluate our experiments against speaker recognition systems, both in the
identification and verification use-case. We use three different systems for the
evaluation: (i) Spear [20] (ii) Azure Speaker Recognition APIs3 and (iii) Apple
iOS Siri (“Hey Siri”). The Spear toolbox is a set of libraries used to train and
evaluate speaker recognition models, which we download and train locally with
the VoxForge [34] dataset. Meanwhile, Azure Speaker Recognition only offers
online (subscription-based) API access. Microsoft reported that the verification
API has performance “competitive with the best published number” and that
the identification API has “high precision (above 90%) [which] is obtained at
around a 5% rejection rate” [28]4. Apple iOS Siri provides a real world test of
the attack against a widely deployed system, which is used for accessing functions
on iOS devices. Apple reports that the end-to-end performance of the system
has an imposter acceptance rate of 3.2% [2] and an EER of 4.3% on the speaker
recognition task alone (i.e not including keyphrase matching). In all cases, we
treat the system as a black-box model: we never change nor adapt the method
of Section 4.
2 https://youtube.com/watch?v=BOdLmxy06H0
3 https://azure.microsoft.com/en-us/services/cognitive-services/
4 We conducted our experiments against the Microsoft APIs in January 2019.
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6 Experimental Evaluation

In this section we first show some preliminary results on the Spear system, then
show the results on the Azure Speaker API and finally on the Apple iPhone Siri.

6.1 Spear Toolkit

Setup. We use the Spear toolkit to train a GMM-based classifier, with 20 MFCC
features plus their first and second derivatives as input features. Throughout our
Spear experiments we use audio data obtained from the VoxForge [34] database.
Specifically, we use data from users who define themselves as speaking “American
English” and take the 63 users with the longest total amount of recorded audio.
The users are then randomly split into three groups of 15 plus one of 18: (i)
one group for training the background model, (ii) one for refining the model
parameters (development set), (iii) one enrolled into the system (test set), and
we use the larger (iv) fourth group as voice sources for the attack.

The classifier decides whether an input audio file belongs to certain enrolled
user by computing a similarity score between the audio and the enrolled tem-
plate for every user (identification), with larger scores being closer matches. We
compute the EER on the development set by varying the score threshold for
acceptance, we find EER to be 7% corresponding to a decision boundary thresh-
old of 1.38. We use the learned threshold on the (unseen) test set to compute
the system recognition rates, which leads to a false accept rate of 3.7% and a
false reject rate of 0%. Since we are using Spear as a baseline system to quickly
evaluate the attack, we only consider the Ideal attacker in this section.

Results. Figure 4 shows two frequency distributions of distance scores from the
acceptance decision boundary (vertical dashed line, set at the EER). The origi-
nal distribution corresponds to distances obtained by testing an impersonation
attack with non-modified voice samples (zero-effort attack), all possible source-
target pairs (15×18) are used for the visualization. The transformed distribution
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Fig. 6: Results of the different attackers on ASV, considering different amounts of
audio. Shaded areas show results within one standard deviation, averaged over the
four keyphrases.

shows the distance scores for the same samples, but when applying the trans-
formation of Section 4, no population is used in this case. Figure 4 shows that
applying the transformation greatly increases the likelihood of the sample lying
above the decision threshold and therefore being accepted.

Figure 5 shows how the mapping accuracy affects the success rate of the at-
tack. The figure reports the distance from the decision boundary (score) of trans-
formed samples, as a function of the error ε measuring the mapping (in)accuracy
(see Section 4.2): lower error is correlated with higher matching score (r = .48).
In Figure 5, each marker identifies all the data points related to a particular
source voice (i.e., for source voice i, each i → j transformation with j being a
target voice). For each source, we fit a linear regression curve to highlight this
trend and we can see that as the distance (error) ε increases, the score of trans-
formed samples decreases. Figure 5 also shows how some victim voices are more
vulnerable to being impersonated than others, with clusters of higher scoring
points belonging to some victims. In the next section we build on these results
to evaluate the attack against the Azure APIs.

6.2 Azure Speaker Verification

Setup. The idea behind this experiment is to see whether the attack can be
successfully conducted against a commercially available API, with a proprietary
model for speaker verification. The Azure Speaker Verification API (hereafter
ASV) is text-dependent and has a set of keyphrases that can be used with it.
We collected audio of five of these keyphrases, which we require each participant
to speak four times. Each user is enrolled using four samples of a given phrase
(ASV requires at least three samples). There are no parameters within ASV to
modify its performance, and as such no way to adjust any thresholds associated
with acceptance or rejection5.

We generate attack samples for these keyphrases using each of our partici-
pants as a victim, and using all the remaining participants as source voices, for

5 We had to remove one phrase, “Houston we have had a problem”, as participants
spoke the phrase as “Houston we have a problem”, a popular misconception.
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Ideal Conference Cafe

Keyphrase 1 min all 1 min all 1 min all
KP1 :“my voice is stronger than passwords” 26.3% 52.6% 47.4% 57.9% 42.1% 57.9%
KP2 :“my password is not your business” 68.4% 94.7% 84.2% 89.5% 89.5% 89.5%

KP3 :“apple juice tastes funny after toothpaste” 21.1% 42.1% 15.8% 31.6% 21.1% 42.1%
KP4 :“you can activate security system now” 63.2% 73.7% 31.6% 52.6% 47.4% 73.7%

Table 1: Percentage of successful attacks using up to three source voices on ASV,
computed for all scenarios and keyphrases.

each of our scenarios in turn. As we have four repetitions of each keyphrase, the
attacker performs four authentication attempts for one source before moving to
the next source. We submit each of these attack samples to ASV and receive
a reject/accept response. Across all scenarios we create and evaluate a total of
38,400 attack samples, which we use to evaluate the performance of our attack.

Results. Table 1 shows the results of verification experiments, for each scenario
and keyphrase. The values in Table 1 are the percentages of successful imperson-
ation attacks, which are calculated in the following way: the adversary attempts
impersonation with the first three sources in the ε-ranked list (see Section 4), if
any of these are successful then we count this as a successful attack.

There is significant variability in the results between different keyphrases:
KP2 obtains the highest success rate on average (85%), while KP3 performs the
lowest (28%). This might be related to the mapping accuracy of the phonemes
that form these utterances, which degrades when some phonemes are under-
represented (i.e., they occur in low number) in the known victim audio. For
example, the phonemes [dZ], [U] and [T] all occur in KP3 , and are the 7th, 4th

and 3rd least common phonemes respectively [6], and therefore likely to be under
represented. We see differing success rates across scenarios and amount of known
audio, with the one minute audio scenario performing consistently worse (-16%)
than the all audio scenario. Ideal Attacker performs the best, but even the noisy
audio of Conference and Cafe Attacker achieves high success rates.

Figure 6 shows the cumulative successful attacks as the adversary attempts
impersonation with each source voice in his dataset (sources are ranked by ε).
Unexpectedly, Cafe and Conference attacker do not seem to greatly suffer from
the additional audio noise in comparison to Ideal. This suggests that even noisy
recordings of the victim audio might carry sufficient information about his vocal
tracts and further confirms that most of the distinctiveness of one’s voice comes
from lower frequencies, which best survive noise during the recording. The plots
additionally show how one minute of audio is also sufficient (though with a
slight decrease in success rate when compared to all audio) to re-create one’s
voice. The curve slope indicates that the ranking of possible sources brings a
greater percentage of successes in the beginning, where promising sources are
tested first. We can see that at around three attempted sources (corresponding
to 12 authentication attempts), the adversary can get up to 60% success rate
depending on the scenario. Even if there are only marginal increments in the
successful attacks after testing 15 sources, using a larger population of sources
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(b) Per-victim Analysis.

Fig. 7: Average successful impersonations on ASI. Results show that changes in audio
quantity and quality only have small effects on success rate. Plots show the successful
attacks for each scenario.

would increase overall attack effectiveness, as this increases the likelihood of
having promising source voices, which can be mapped accurately to the victim.

6.3 Azure Speaker Identification

Setup. The Azure Speaker Identification API (hereafter ASI) is text-independent
and requires a set of users to be enrolled, which are candidate users for who is
speaking. In this case, enrollment requires a minimum of 30 seconds of audio
per speaker, once silence is removed. To enroll users, we use audio specifically
collected for this purpose, enrolling half of our participants in the system (see
Appendix A for details). This gives us 10 potential victims, and 10 attackers,
for a total of 100 source-victim pairs.

ASI accepts an audio sample as input and replies with the inferred identity
from the list of the 10 enrolled users, or an empty reply when an audio sample
does not match any of them. It is not possible to adjust any threshold for ASI,
and as such there is no way of adjusting the threshold for when empty set is
returned. We send all command utterances that have been transformed between
a particular source and victim to ASI, but we concatenate audio files together
into groups of four to obtain audio samples of approximately 8 seconds. This is
because ASI is designed for longer audio samples, and without this concatenation
the system returns none, as the samples are too short to make a decision. In total
we submit 5,400 requests to ASI to conduct our experiments.
Results. Figure 7a shows the overall success rate for ASI for the three attackers
and the two audio length combinations. In this use case each success corresponds
to a submitted audio sample that is identified by the system as belonging to the
victim. We see that the performance is broadly consistent across the scenarios,
with a slight worsening of the recognition rates for the Cafe Attacker in particular
(though not statistically significant, averaged over the 100 source-victim pairs)
The performance slightly decreases in the one minute of audio case, but again
with a minimal effect in the overall success.

Interestingly our results also reveal more information about ASI and its sen-
sitivity. Table 2 shows that for all scenarios ASI was more likely to assign a
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Ideal Conference Cafe

1 min all 1 min all 1 min all
Misclassified 31.1% 27.6% 28.1% 26.4% 31.9% 29.2%

None 19.9% 16.0% 17.4% 16.9% 19.0% 17.3%

Table 2: Percentage of incorrect and empty responses for the experiment on ASI, for
each attacker and audio duration. ASI returns empty when the provided audio does
not match any of the enrolled users. We report Misclassified whenever the returned
identity does not match the target victim.

speaker to an incorrect label than it was to return the empty user classification.
This suggests that the decision boundaries across different users are not very
conservative and that generally they can not deal well with outliers.

Figure 7b shows how the successful attacks distribute over different victims.
The plot highlights that certain voices are more vulnerable to this type of attack
than others: comparing the hardest to attack with the easiest to attack victim we
get a difference of around 40% in the success rate. Similar uneven distributions of
rates have been noticed before in previous work [1,11]. This suggests that some
voices might be inherently harder to replicate, however, in our data, this might
be due to a sample bias: some voices might significantly differ from our “average
voice”. A larger dataset would be required to investigate further whether this is
the case.

6.4 Apple iPhone’s Siri

Setup. In order to measure the capability of the attack of being conducted
over-the-air we test the samples against the voice activation functionality of the
Apple’s Siri digital assistant on an iPhone 6S, running iOS version 12.2. We use
the collected voice recordings of each of our 20 participants to enrol them onto
the device. For both enrolment and attacks, we use a Bose SoundLink Mini 2
speaker to replay the participants audio samples. The speaker is placed 6 cen-
timeters away from the smartphone in an office environment. Initial enrolment
requires the user to pronounce four different phrases, which we construct by
combining the original recordings of the collected “Hey Siri” utterance with the
remaining words of the enrollment utterance added by splicing together audio
from other recordings of the same individual. Siri speaker recognition updates
the user template after a successful access [2]. Therefore, after a successful attack
we erase the user profile and repeat the enrollment process.

We test the system along the same dimensions as our previous experiments.
When conducting the attack, we play a single transformed utterance of the
keyphrase (“Hey Siri”), from each source voice, in the order suggested by our
error function (nearest to furthest). If Siri activates, i.e., the voice is recognized
as belonging to the legitimate user, we consider the attack successful and we do
not present further samples. At the time of writing, Apple claimed Siri had an
imposter accept rate of 3.2% [2].
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Fig. 8: Results for different attackers on Siri. Plots show ratio of successful imperson-
ations as the adversary consecutively attempts the attack with different source voices.

Results. Figure 8 shows the percentage of victims successfully impersonated
after a given number of attempts, for each attacker and the two known audio
amounts. The results show that performance is consistent with previous exper-
iments, in that the differing scenarios lead to slightly worse success rate, and
that performance is also worse in the one minute audio case. Our results demon-
strate that the Siri voice activation is easily fooled by our attack. For all scenario
and amount of known audio combinations over 70% of victims can be attacked
in three attempts or fewer. Excluding one individual in two of the one minute
scenario-time combinations, who could not be impersonated, all other attacks
were successfully conducted in 8 attempts or fewer. In our dataset an utter-
ance of “Hey Siri” took approximately 2 seconds, meaning that in most cases 20
seconds would suffice to successfully carry the attack out.

7 Discussion

Implications. The attack presented in this paper shows that a minimal amount
of voice from a victim can be sufficient for an adversary to impersonate that vic-
tim with a high success rate. The attack’s only requirement is to obtain a record-
ing of the victim talking. Sources such as social media, podcasts and recordings
of public speaking events are all easily available sources of such audio. Conse-
quently, the audio becomes even easier to gather for higher profile targets. The
ease of collection of voice samples in adversarial scenarios brings an inherent
security vulnerability of voice-based systems, as highlighted by our analysis. We
point out this vulnerability in order to raise awareness of the limitations of such
authentication mechanisms, so that they can be accounted for during the the
design of voice-based systems.

Our analysis highlights the weaknesses of voice-based authentication (and
identification) in adversarial scenarios. This is not strictly due to the recogni-
tion algorithms themselves but rather to the availability and ease of collection of
voice biometric samples. We point out this vulnerability in order to raise aware-
ness to the limitations of such authentication mechanisms, so that these can be
accounted for during the the design of voice-based systems.
Replay Detection. Similarly to other voice-based attacks, our method involves
replaying audio to the system microphone via a speaker. This is necessary for
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all attacks on voice systems that use only over-the-air interaction, and do not
require harder to obtain over-the-wire access. A set of works have addressed
the detection of replay attacks on such systems [4,5,9,13,14,37]. Some detection
techniques rely on a combination of better hardware (e.g., multiple microphones)
or require additional interactions from the user. Often replay detection evolves
into an arms race with the adversaries improving their audio sample to present
the features required to bypass detection. This work is orthogonal to replay
detection, which could be bypassed with enough investment from an attacker.

Rate-Limiting. Oftentimes in verification systems, the number of failed au-
thentication attempts can be used to temporarily block the authentication or
swap it with more secure alternatives. For example, in Apple FaceID the face
recognition is disabled after five failed authentication attempts, at which point
a PIN is required to unlock the phone. We find that even if the 5-attempts limit
were the same for Siri, a high percentage of victims would still be attack-able
(90% in the 1 minute ideal scenario). Keeping the number of sequentially allowed
failures low before locking the system becomes an immediate an effective way to
prevent our and other population-based attacks.

8 Conclusions

In this paper, we describe a method to transform a source voice into a victim’s
voice to deceive speaker recognition systems. The transformation maps individ-
ual phonemes between the source and target voices and only requires knowledge
of the number of language phonemes, a set of source voices (easily available on-
line) and an audio sample of the victim speaking. Furthermore, we identify a
metric for determining which voice among a group of voices is most likely to
lead to a successful authentication.

We evaluate the attack under a set of scenarios that include different amounts
and quality of victim audio and different systems. We test our attack on both
the Azure Speaker Recognitions APIs and the Apple iOS Siri voice assistant. On
Azure, for verification, we show that 12 authentication attempts are sufficient
to successfully impersonate victims in 40% up to 68% of cases, using just one
minute of victim audio for training, even in noisy recordings conditions. For
identification, the method achieves much higher success rates reaching over 50%
on average with a single attempt. We demonstrate that high success rates can
be obtained even when testing the attack over-the-air on Siri: 80% of victims
can be impersonated within three attempts, which correspond to only 8 seconds
of audio in total.

Compared to previous work, these findings reveal that limited quantity and
quality of audio have only limited impacts on the overall success of this at-
tack. Given the increasing availability of potential victim’s audio, our analysis
highlights the vulnerability of using voice as a biometric for access control in
adversarial settings, suggesting that such weakness should be included in the
design phase of such systems.
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A Audio Collected

A.1 Commands

Command data was sourced as both utterances that could be presented to sys-
tems in existence, as well as commands used specifically by the Azure Speaker
recognition system for verification. The utterances recorded were as follows:

1. Hey Siri (Repeated 4 times)
2. Ok Google (Repeated 4 times)
3. What is the weather like?
4. What time is it?
5. Who am I?
6. How tall is the shard?
7. My voice is stronger than passwords (Repeated 4 times)
8. My password is not your business (Repeated 4 times)
9. Apple juice tastes funny after toothpaste (Repeated 4 times)

10. Houston we have had a problem (Repeated 4 times)
11. You can activate security system now (Repeated 4 times)
12. My voice is my password (Repeated 4 times)

A.2 Conference

Conference talk transcripts were obtained from popular TED talks. The tran-
scripts were shortened, so that they contained approximately the first 6 minutes
of a given talk. The transcripts were then split into individual utterances, with
each utterance being recorded as a separate audio file by the participant. Five
different conference talk transcripts were used, which are the following:

1. Do schools kill creativity? by Sir Ken Robinson -
www.ted.com/talks/ken_robinson_says_schools_kill_creativity/transcript
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2. Your body language may shape who you are by Amy Cuddy -
www.ted.com/talks/amy_cuddy_your_body_language_shapes_who_you_are/

transcript

3. What makes a good life? by Robert Waldinger -
www.ted.com/talks/robert_waldinger_what_makes_a_good_life_lessons_

from_the_longest_study_on_happiness/transcript

4. How great leaders inspire action by Simon Sinek -
www.ted.com/talks/simon_sinek_how_great_leaders_inspire_action/

transcript

5. The power of vulnerability by Brené Brown -
www.ted.com/talks/brene_brown_on_vulnerability/transcript

A.3 Cafe

Our conversation audio is derived from TED talks where two people are having
a conversation. A single speakers audio was extracted from each transcript, and
the transcript was shortened until it was approximately 6 minutes in length.
Five different conversation transcripts were used, which were dervied from the
following talks:

1. SpaceX’s plan to fly you across the globe in 20 minutes - Gwynne Shotwell -
https://www.ted.com/talks/gwynne_shotwell_spacex_s_plan_to_fly_

you_across_the_globe_in_30_minutes/transcript

2. How Netflix changed entertainment - Reed Hastings -
https://www.ted.com/talks/reed_hastings_how_netflix_changed_entertainment_

and_where_it_s_headed/transcript

3. Mammoths resurrected, geoengineering and other thoughts from a futurist -
Stewart Brand -
https://www.ted.com/talks/stewart_brand_and_chris_anderson_mammoths_

resurrected_geoengineering_and_other_thoughts_from_a_futurist/transcript

4. The future we’re building and boring - Elon Musk - https://www.ted.com/
talks/elon_musk_the_future_we_re_building_and_boring/transcript

5. What everyday citizens can do to claim power on the internet - Fadi Cehadé -
https://www.ted.com/talks/fadi_chehade_what_everyday_citizens_can_

do_to_claim_power_on_the_internet/transcript

A.4 Enrolment

Enrolment audio was used to enroll individual speakers with the Azure Speaker
Recognition API for identification. Participants were asked to read the first 6
paragraphs of the speech given by UK Prime Minister David Cameron at the
start of the London 2012 Olympics. The speech can be found on the UK govern-
ment speeches website at the following URL: https://www.gov.uk/government/
speeches/pms-speech-at-olympics-press-conference


