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Abstract. We have seen a rise in mized (MR) and augmented real-
ity (AR) applications and devices in recent years. Subsequently, we have
become familiar with the sensing power of these applications and devices,
and we are only starting to realize the nascent risks that these technology
puts over our privacy and security. Current privacy protection measures
are primarily aimed towards known and well-utilised data types (i.e.
location, on-line activity, biometric, and so on) while a few works have
focused on looking into the security and privacy risks of and provid-
ing protection on MR, data, particularly on 3D MR data. In this work,
we primarily reveal the privacy leakage from released 3D MR data and
how the leakage persist even after implementing spatial generalizations
and abstractions. Firstly, we formalize the spatial privacy problem in 3D
mixed reality data as well as the adversary model. Then, we demonstrate
through an inference model how adversaries can identify 3D spaces and,
potentially, infer more spatial information. Moreover, we also demon-
strate how compact 3D MR Data can be in terms of memory usage
which allows adversaries to create lightweight 3D inference models of
user spaces.

Keywords: Mixed and augmented reality - 3D data -
Point cloud data * Security and privacy

1 Introduction

Pokémon Go’s release in 2016 arguably marked the beginning of augmented
reality (AR) and mixed reality (MR) to be part of the mainstream mobile
market. Soon after, Apple launched the ARKit in 2017 and, halfway through
2018, Google followed with the ARCore.! Microsoft, on the other hand, focused
on the head-mounted displays (or HMDs) with the HoloLens and other OEM
headsets running their Windows Mixed Reality platform.? These developments

! See https://developer.apple.com/documentation/arkit for Apple’s ARKit See
https://developers.google.com/ar/ for Google’s ARCore.

2 https://developer.microsoft.com/en-us/windows/mixed-reality.
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undoubtedly signifies the very near future with AR and MR being ubiquitous.
(Henceforth, following Milgram’s definition [18], we will be collectively calling
both augmented and mixed reality as mixed reality or MR.)

Most mobile MR development platforms (i.e. ARCore, and ARKit) utilise
a form of visual odometry combined with motion or inertial information to
map the device’s position relative to the real-world, while dedicated HMDs
(i.e. HoloLens), leverage multiple cameras with depth sensors to understand
the environment and create a virtual 3D map. Once a good mapping has been
created, the virtual space (or a coordinate system) is shared with applications
to allow synthetic or augmented content to interact with the physical world such
as anchoring a virtual object on your desk.

However, this environment understanding capability required by MR poses
unforeseen privacy risks for users. Once these captured 3D maps have been
revealed to untrusted parties, potentially sensitive spatial information about the
users’ space are disclosed. Adversaries can vary from a background service that
delivers unsolicited ads based on the objects detected from the user’s surround-
ings to burglars who are able to map the user’s house, and, perhaps, the locations
and dimensions of specific objects in their house based on the released 3D data.
Furthermore, turning off GPS tracking for location privacy may no longer be suf-
ficient once the user starts using MR applications that can expose their locations
through the 3D and visual data that are exposed.?

The recent EU-GDPR ruling aims to address these issues from a policy app-
roach. It aims to empower the users and protect their data privacy. This high-
lights the importance of designing and developing privacy-enhancing technologies
(PETSs). Currently, there are numerous PETs designed for structured data such
as k-anonymity [23], and differential privacy [4], as well as techniques for data
aggregation during information collection [9]. However, current techniques pro-
tecting media are mostly for conventional data types, and are primarily focusing
on facial de-identification for identity privacy [7,19,27] as well as protection
against visual capture recording mechanisms [1,28]. (See [8] for a survey of MR-
related security and privacy protection approaches.)

In this work, we focus on the nascent risks from captured and collected 3D
data used for MR processing. To demonstrate the privacy leakage, we utilize
actual 3D point cloud data, captured by a Microsoft HoloLens, to construct
an adversarial inferrer that can identify spaces from the revealed 3D data. The
inference performance is evaluated over both raw data and different 3D data
generalizations. And we show how such generalizations are ineffective even with
a simple matching-based inference attack. To the best of our knowledge, this

3 For example, Google has unveiled their Visual Positioning Service (or VPS) using
3D data to locate users in space — an offshoot of Project Tango — during their 2018
I/O keynote event.
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Fig. 1. Information flow (following the green solid arrows) for a desired MR functional-
ity G with an intermediate privacy-preserving mechanism M; while an MR adversarial
process (represented by the red broken arrows) may be done off line: (1) adversar-
ial inference modeling or learning from, say, historical 3D data, and (2) adversarial
inference or matching over released 3D data (Color figure online)

is the first work that aims to expose these risks. Consequently, we make the
following specific contributions in this work:

1. We formalize the 3D spatial privacy problem and define the privacy and utility
metrics specific to 3D MR data.

2. We present a 3D adversarial inference model to reveal the spatial privacy
leakage and their effectiveness.

3. Using 3D point cloud data collected from Microsoft HoloLens, which is also
the same 3D data representation format for Google’s ARCore and Apple’s
ARKit, we demonstrate that 3D spatial inference attacks are possible on
these MR platforms.

4. Lastly, results show the insufficient protection provided by spatial generaliza-
tions even by only using simple descriptor-matching for adversarial inference.

The rest of the paper is organized follows. Section 2 elaborates on the 3D
MR data, i.e. point cloud data, and presents the theoretical framework of our
3D privacy problem. In Sect. 4, we describe the evaluation methodology used to
determine the privacy leakage in 3D data with and without spatial generaliza-
tions. The results are presented in Sect.5 and the related work in Sect.6. We
conclude the paper in Sect. 7.

2 3D Privacy Problem

2.1 Why 3D?

With images and video, what the machine sees is practically what the user sees
and a great deal of privacy work have been done on these data forms. Contrari-
wise, in MR, the experience is exported as visual data (e.g. objects augmented
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Fig. 2. A privacy preserving mechanism M transforms the raw point clouds X to a
potentially privacy-preserving version Z to hide location identity (i =7).

on the user’s view) while its 3D nature, especially of the underlying data, is
not exposed to the users: what the machine sees is different (arguably, even
more) than what the user sees. That is, the digital representation of the physical
world, the 3D point cloud data, is not exposed to the user. This inherent per-
ceptual difference creates a disconnect and, perhaps, affects (or the lack thereof)
how users perceive the sensitivity of 3D information. Furthermore, current MR,
platforms (i.e. Windows MR, ARCore and ARKit) directly operates on these
3D spatial maps or point clouds and, so far, no privacy preservation is applied
before providing these data to third party applications.

3D Point Cloud Data. The 3D points comprising the 3D point cloud can
be described by their {z,y, z}-position in space with an accompanying normal
vector {ng,ny,n,}. Figure2 shows the point clouds as a mesh of 3D points
with associated orientations represented by normal vectors. These are the min-
imum information necessary to capture the geometric properties of 3D spaces.
Where normal vectors are not readily available, it is estimated from the points
themselves. Sometimes, point clouds may also be accompanied by photometric
information such as RGB or light intensity extracted from associated images or
videos. For this work, we will only be focusing on the use of geometric informa-
tion and leverage them for 3D description for emulating adversarial inference.

2.2 Defining the 3D Privacy Problem

We define the elements shown in Fig. 1: the space represented by a point cloud
X identified by a label i; the privacy preserving mechanism M that transforms
X to a privacy-preserved point cloud Z, i.e. M : X — Z as shown in Fig.2; an
intended functionality G that produces an intended output Y, and from which
we derive the utility function U; and an adversarial inferrer J that produces a
hypothesis H to reveal the identity of a given unknown space. The adversarial
processes may be done off line and not necessarily during MR function runtime.
(See Appendix A for detailed definitions on X, M, Z, and G.)

Defining the Function Utility. For a given functionality G, an effective mech-
anism M aims to make the resulting outputs y; from the raw point cloud z; and
its privacy-preserving version z(;) similar, i.e. yz;, =~ y,, or their difference is
small, Dz.x = |yz, — Yzy| — 0. Or in terms of a utility function U which we
intend to maximize (i.e. as close to 1 as possible if we assume that Dz.x < 1),
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U(Z;X)=1—-Dg.x, where Z=M(X). (1)

The most common functionality in MR is the anchoring of virtual 3D objects
on to real-world surfaces (e.g. the floor, walls, or tables) which requires near-truth
3D point cloud representations to provide consistent anchored augmentations.

Defining the Adversarial Inferrer. An inferrer J produces a hypothesis
h :i* =i about the true location i of a given set of point clouds, z;« or z(;«),
for any query space i* (i.e. J : x4 or z«) for any i* — h :* = i) where the
following inequality holds

P(h:i* =i|zi or z(+)) > P(h:i" =1i°, for any i® # ilxy- or z(+)).  (2)

The Privacy-Utility Problem. Consequently, we can now pose the following
privacy function I in terms of the error rate of the inferrer,
|h:i, # gl
(z; X) = —_— 3

(Z:X) = mean 3)
which is simply the mean misclassification rate of an inferrer J about the query
space i, whose true identity is i,. A few works in the literature uses the same
error-based metric for privacy [22,26]. A desired M produces Z that maximizes
both the privacy II and the utility function U.

Privacy and Utility Metrics. Now, we define the specific privacy and utility met-
rics for this work. For privacy, we use the same notion of a high error rate as
high privacy; thus, the same metric defined by Eq. 3 holds. For utility, we use the
same similarity definition defined by Eq. 1 but define the specific components of
the similarity function as,

U(Z; X) = mean(a - (1 — [[z — 2[[) + 5 - (o - 1)) (4)

where the first component is the 3D point similarity of the true/raw point z from
the transformed point z, the second component are their normal vector similarity,
and « and [ are contribution weights where «, 8 € [0,1] and ao + 8 = 1. We set
a, 8 = 0.5. We also insert a subjective acceptability metric v € [0, 1] like so,

U(Z; X) = mean [a- (I—M) +4- (an ~an17—1;7>} . (5)

~ allows us to specify the level of error or deviation of the released (i.e. gener-
alized) spaces from the true space — any deviation beyond the set 7y results to a
zero utility. The range of U(X, Z) € [0, 1].

2.3 Adversary Model

Adversaries may desire to, at the very least, infer the location of the users using
released 3D data. They may further infer user poses, movement in space, or,
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even, detect changes in user environment. Furthermore, in contrast to video and
image capture, 3D data, when generalized, can provide a much more lightweight
and near-truth representation of user spaces which we will see later (Sect.5.5).
For our evaluation, we will focus on the minimum attack where the adversary
infers the spatial location of the user given historical 3D raw data of user spaces.
We also assume that the adversary is not aware of the generalizations that an
MR platform can perform over 3D data before it is released.

(b) Sample Region

7‘7—5'—-\_ =
‘

(a) Complete captured raw point cloud: different (¢) Photo of
regions are differently colored sample region

Fig. 3. Render of the gathered point cloud (1 unit is roughly 1m in the real-world)

Using the definitions in Sect. 2.2, we can formalize the adversary models as
previously shown in Fig. 1. We assume that the adversary has prior knowledge
about the spaces which they can use as reference for building their inference
model J. Prior knowledge can be made available through (1) historical or pub-
licly available 3D spatial data of the user spaces, (2) previously provided data by
the user themselves or other users, or (3) from a colluding application or service
that has access to raw or higher resolution 3D data.

Adversarial Inference. Our adversarial inference is a two-step process as
labelled in Fig.1: (1) the creation of a reference description model or dictio-
nary using the 3D descriptor algorithms (Sect.3.2) over the previously known
spaces as reference, (2) and the inference of unknown spaces by matching their
3D descriptors to that of the reference descriptors from step 1. The construction
of the inference model is detailed in the next section.

3 3D Description and Inference

3.1 3D MR Data

We gathered real 3D point cloud data using the Microsoft HoloLens in an office
environment to demonstrate the leakage from actual human-scale spaces in which
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an MR device is usually used.* The render of the gathered 3D space is shown in
Fig. 3a. We sliced our gathered point cloud into roughly 2.5 x 2.5 squares about
the xz-plane (i.e. the floor plane) to create a synthetic set of multiple spaces.’
The resulting number of spaces after slicing is 38. Also, we treat the spaces to
be non-contiguous — specifically, spaces that are truly adjacent do not inform
adversarial inference.

3.2 Describing the 3D Space

The 3D point clouds can then be used by the adversary to train an inference
model. Features that describe and discriminate among 3D spaces are usually
used for inference modelling. There are considerable features in 3D point clouds
for it to be directly used as a 3D descriptor, albeit a crude one, and it won’t
be translation- and rotation-invariant by itself. Hence, invariant descriptors are
necessary for adversarial inference models to be resilient.

To provide invariance, we utilize existing 3D description algorithms.® The
curvature-reliant self-similarity (SS) descriptors [10] are very sensitive to point
cloud variations, due to the curvature estimation. To counter this, we explored
the use of non-curvature reliant spin image (SI) descriptors [13,14]. SI descrip-
tors only use the normal vector unlike the SS approach which uses local curvature
mazxima for key point selection. Thus, a vanilla SI computes the descriptor for
every point in the point cloud which produces a dense descriptor space. For our
SI implementation, we extract key points and descriptors from the subsampled
space by factor of 3 (Fig. 5 shows that significant errors only appear at resolutions
< 3) to create a lighter weight descriptor set. Also, the spinning effect reduces
the impact of variations within that spin which makes SI descriptors more robust
compared to SS descriptors. Furthermore, as we will describe in Sect. 4.1, plane
generalization removes curvatures which makes its use as a geometric descrip-
tion information impractical. Validation of the inference performance of these
descriptors are detailed in Sect. 3.3.

3.3 Inferring the 3D Space

For the adversarial inference model, we built two types of inferrers: (1) a baseline
3D Bayesian inference model using directly the 3D point cloud data, and (2) a
matching-based inference model using the rotation-invariant descriptors.

4 There are numerous 3D point cloud datasets such as those listed in http://cvgl.
stanford.edu/resources.html but most of these available 3D data sets are models of
objects or of city-scale models.

5 Note: the resulting surface are of the slice varies due to the walls, and objects within
a slice. It can also be less than 2.5 x 2.5 due to gaps on the space.

5 For a concise discussion and bench marking of different 3D description algorithms,
we direct the reader to [3].
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Inference Using the Rotation-Invariant Descriptors. It is challenging to
create a straightforward 3D inference model as we would have in a 3D Bayesian
model.” As a work around, we utilize the standard matching-based approach that
is used over high-dimensional descriptors. This approach is rather deterministic
as opposed to the probabilistic Bayesian inference model.

This deterministic approach used for the rotation-invariant descriptors uti-
lizes a matching-based voting mechanism with a reference set of descriptors to
determine a match; then, nearest neighbor distance ratio (or NNDR) is used
to qualify a match. Thus, instead of the probabilistic maximization described
in Eq. 2, we utilize this NNDR-based approach for deterministic inference. See
Appendix B for more details on this descriptor matching process.

Spin Image descriptors

Self-similarity descriptors
(res = 10), Error rate = 0.000

(res = 10), Error rate = 0.132

Bayesian Inference Model Bayesian Inference Model
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Validating the Inference Models. We conducted a preliminary validation
to check the effectiveness of the chosen description and inference approaches. To
validate our inference models, we feed them the same data as queries.

" For example, our spin image description implementation have 200 (i.e. 10 x 20)
dimensions; it’ll require 10%°° bins for every key point to be described if we are to
approximate that each dimension will have 10 bins.
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Using the Bayesian Inference Model. When complete versions of the set of
points x; for each space i is given as a query data, the baseline Bayesian infer-
ence model performs very well as shown by the solid yellow diagonal in the
heatmap/confusion matrix in Fig. 4a. Figure5 shows the results of varying the
resolution from 1 < res < 20. For un-rotated query spaces, the Bayesian infer-
ence model only starts to have errors at resolutions < 10, while its error rate for
rotated query spaces is > 0.8 for all resolutions. As we have indicated earlier in
Sect. 3.2, the baseline inference model is not rotation-invariant and it is clearly
observed here. For example, Fig. 4b shows a heat-map for a lower resolution of
res = 10 with rotated query spaces; we can not see a distinguishable diagonal to
signify good inference performance.

Using the Rotation-Invariant Descriptors. With un-rotated query spaces, the
SS descriptors’ maximum error rate is only 0.4 as shown in Fig. 5, while the
SI descriptors stays 0 even at the smallest resolution of 1. With rotated query
spaces, errors increased for both but significant errors (i.e. > 0.1) only appear at
res < 3 for the SI descriptors, while errors for the SS descriptors already appear
even at higher resolutions of res < 14.

The excellent performance of the spin image descriptors can be better visu-
alized with the heatmaps shown in Fig.4 with res = 10. As can be observed,
the spin images discriminates well as demonstrated by the clearer diagonal in
Fig.4d as compared to Fig.4c. Thus, in the succeeding experiments described
in the next section (with results in Sect.5), we will only be using spin image
descriptors.

True

RANSAC

Fig. 6. Surface generalization, i.e. plane fitting, example: (left) sample raw space, (cen-
ter) RANSAC generalization, and (right) locally-originated generalization.

4 Evaluation Setup

For evaluating the performance of an adversary as described in Sect.2.3, we
check its inference performance over released modified point clouds. We use the
descriptor set extracted from the 3D raw point cloud data as the reference set
available to the adversary (labelled 1 in Fig.1). We, then, implement various
information reduction techniques to investigate how well can the adversary infer
the identity, i.e. spatial location, of the released and modified point cloud.
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4.1 3D Information Reduction Strategies

To limit the amount of information released with the point clouds, (1) plane gen-
eralizations and (2) partial releasing can be utilised to provide MR applications
the least information necessary to deliver the desired functionality.

Plane Fitting Generalization. For the generalizations, as we do not intend
to determine an efficient 3D generalization algorithm for our data, we have
employed two simple techniques: the popular Random Sample Consensus (or
RANSAC) plane fitting method [6], and a simple locally-originated plane gener-
alization (we use label LOCAL henceforth). Figure 2 earlier shows what struc-
turally occurs during plane-fitting generalization which can potentially pre-
serve spatial privacy. Please see Appendix C for the generalization pseudo-code
(Algorithms 1 and 2).

RANSAC. For our implementation, we directly utilize the accompanying nor-
mal vector of each point to estimate the planes in the plane fitting process instead
of computing or estimating them from the neighbouring points. Algorithm 1 (in
Appendix C) shows the pseudo-code of our RANSAC implementation, while an
example RANSAC spatial generalization is shown in Fig. 6-center.

LOCAL. On the other hand, LOCAL generalization is an oversimplification of
RANSAC as can be seen in Algorithm 2. We removed the point and plane test
(i.e. Lines 12 and 14 in Algorithm 1) which ensures that a point is a valid member
of the candidate plane and that the candidate plane is the best, i.e. largest,
among all candidate planes. This results in more inaccurate generalizations as
we go further away from the initial test point from which the candidate plane
originated. Figure 6-right shows a sample LOCAL generalization.
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Fig. 7. Average privacy (i.e. mean error rate £ margin of error with 95% confidence)
over one-time released partial spaces with varying radii and generalizations

Partial Spaces. In partial spaces, we only release segments of the space with
varying radius. This demonstrates the case when an MR application is provided
with limited 3D spatial information only once, such as a specific surface, a plane
or an anchor point. We apply this technique to both raw and generalized point
clouds. For every partial space level (i.e. radius), we get 10 sample random
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iterations per space as a user can initiate an MR application from any point
within a space; to demonstrate rotation-invariance, we further vary the spaces by
doing 5 random rotations which results to a total of 50 iterations per space. We,
then, get the mean error rate (with confidence intervals) over these iterations.

4.2 Successive Release of Partial Spaces

We use the information reduction techniques described in Sect. 4.1 as strategies
for privacy protection. First, we evaluated adversarial performance over one-
time released partial spaces as described in Sect.4.1. Then, we introduced more
information by successively releasing partial spaces.

To demonstrate the case when users are moving around and their physical
space is gradually revealed, we included an experimental setup that successively
releases partial spaces. Following the described abstraction strategies in Sect. 4.1,
we have the following different 3D data setups for successively releasing of partial
spaces: (1) from collected raw points, (2) from RANSAC generalized planes,
and (3) from LOCAL generalized planes. Similar to the one-time partial release
case, we do 10 sample iterations, and 5 random rotations for each case in the
successive release setup. (For the extended LOCAL shown in Fig.8d, we do 10
sample iterations but only did one random rotation for demonstration purposes.)

5 Results and Discussion

In the succeeding discussions, we would like to emphasize the trends and rela-
tive values rather than absolute empirical values themselves. We also presented
takeaways whose discussions on trends and relationships can be generalized.

5.1 Inference of Partial Spaces

Figure 7 shows the performance of our adversarial inference over partial spaces
with raw points and of the two generalized cases. For the raw-points case, at
radius r = 0.25, the average privacy IRy is very high, but immediately drops
below IIgq, < 0.8 at r > 0.5. With RANSAC generalization applied, it can be
seen that the inference success is reduced, or essentially prevented, with radii
r < 1.0, but average privacy IIransac starts to decrease for r > 1.0; thus,
RANSAC generalizations are not effective protection strategies. This should not
come as a surprise, since the RANSAC algorithm will try to fit planes as close
to the true/raw space.

On the other hand, locally-originated plane generalizations can prevent infer-
ence for this one-time partial release case. Regardless of the size of the revealed
space, the average privacy stays at II;ocar > 0.9 as shown in Fig. 7. In fact,
contrary to RANSAC generalizations, locally-originated plane generalizations
will maintain a high ITpocar with larger revealed spaces because the LOCAL
algorithm will only produce a generalized plane from a singular local reference
point which may not even be from a true plane or have a normal vector con-
sistent with its neighbours. This results in plane generalizations that are more
likely to be very different from the surfaces of the true spaces.
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5.2 Successive Release of Partial Spaces

Following the partial spaces performance, it is tempting to say that we can
maintain privacy by only releasing partial spaces of r < 0.25 even with raw
captured data, but that is only for the single one-time release case. In this section,
as described in Sect. 4.2, we will now show the privacy or inference performance
when we successively release partial spaces.

Raw-Points Spaces. Figure 8a shows the inference performance of successively
released partial raw-points spaces. This is consistent with the results presented
in Fig.7. After a good number of releases, the space is slowly revealed; thus,
the dropping average privacy. For r = 0.25, the IIp4, drops below 0.8 after 4
or more releases, while for the larger radii, > 0.5, the average privacy quickly
drops and even starts at ITrq,, < 0.8 at the first release.

RANSAC Generalized Planes. For the successively released, RANSAC gen-
eralized partial spaces, as shown in Fig.8b, after 4 releases, [Igansac < 0.8
for radius r = 0.75. Similar to the performance shown in Fig. 7, at higher radii,
ITransac for successive release eventually falls below < 0.6 after a good number
of releases. Specifically, for » > 0.5, IIgansac < 0.6 after about 14 releases.

Compared to the successively released partial spaces from raw points, the
RANSAC generalization already contributes some errors to the released spaces.
This reflects on the rather slow drop of ITgransac. Nonetheless, if RANSAC
spaces are continuously released, regardless of its size, the space will be revealed.
However, keeping RANSAC spaces to a small size, i.e. r < 0.5, and limiting
release, e.g. no more than 10 releases, RANSAC can be a potential inference
protection aside from being a generalization technique.

Local Generalized Planes. Similar to the results in Fig. 7, the inference per-
formance from successively released and locally generalized partial spaces, as
shown in Fig.8c, presents error rates above 0.8 within 20 releases. To check
inference performance for more releases using LOCAL, we extend the number of
releases to 96 and checked the inference performance every multiple of 5 succes-
sive releases as shown in Fig. 8d. Now, the average Il oc 4z do drop to < 0.8 for
r = 0.25 (r = 0.75 approaches 0.8 at release 10) but eventually increases with
more releases. Due to the high inaccuracy provided by localized generalizations,
especially at larger partial spaces, more releases do not contribute to improved
inference and only misleads adversarial inference. Partially released planes with
nearby originating points with different normals will produce planes within the
same vicinity but of different orientations. This confuses the inferrer. Thus, if
spatial privacy is a priority, localized generalizations can be used.

Takeaway. Privacy can be arranged as I pqw < Hransac < Hpocar, based
on the form of released data; for continuously released large spaces (r > 0.5),
RANSAC cannot provide adequate privacy, but for small enough spaces (r <
0.5), it can be a potential form of inference protection coupled with limited or
controlled releasing.
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Fig. 8. Average privacy (mean error rate + margin of error with 95% confidence) over
successively released partial spaces. For Fig.8a—c, we perform up to 20 releases per
iteration. For Fig. 8c, we extend the LOCAL case to see long-term inference.

5.3 Inference Trends with Spatial Properties

Precision and Recall. We also checked the precision and recall as an inference
performance metric. These values were checked for every space as well as the
impacts of spatial properties on inference and/or privacy. Figure 9a shows the
average precision and recall of our adversarial inferrer as we vary the radius
of partial spaces. As expected, for raw-points and RANSAC-generalized spaces,
precision and recall increases as the radius increases. On the other hand, precision
and recall of LOCAL stays low, < 0.1, and only ever so slightly increases —
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Fig. 9. Precision and recall over partial spaces
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from 0.032 to 0.048 for recall, and from 0.024 to 0.043 for precision — but not
consistently (as we can see with the dips in precision at r = 1.25 & 1.75).

Figure9b shows the scatter plot of the precision and recall values for all
spaces and iterations (averaged in Fig.9a) with the radius (relatively) depicted
by the size of the circle. We can see that the values for the raw-points spaces
crowd on the upper right quadrant, i.e. high precision and recall area, while that
of RANSAC generalized spaces is slightly more scattered but also crowds on
the upper right quadrant. For the locally-generalized spaces, most of the green
circles reside on the lower half which means that recall is spread from low to
mid-high but precision values are mostly very low.

Despite the bad performance of our adversarial inferrer, looking more closely
in to the spaces reveals some consistency. We looked into the top 10 spaces for
raw points, RANSAC generalized, and LOCAL generalized in terms of number
of false positives, precision, recall, and least errors/privacy. (In the interest of
space, we no longer show the list of top 10 spaces.) The list reveals that the
spaces with high recall and least errors are almost the same; thus, high recall
and least errors have a high correlation (i.e. precail least—errors = 0.964).

Furthermore, for the raw and RANSAC cases, the average number of planes
of the top 10 spaces with high false positives are small, i.e. 4.21 and 4.38, respec-
tively, while those of the top 10 spaces in terms of precision have higher averages
at 14.44 and 13.77, respectively. Thus, raw or RANSAC spaces with more planes
have lower uncertainty in being inferred or identified, and, perhaps, if privacy
is desired, we may only release a lower number of planes, i.e. < 5. However, for
the LOCAL generalized case, there is no observable trend among the inference
performance and that of the number of planes.

Takeaway. Raw and RANSAC spaces with higher number of observable or gen-
eralized planes are more likely to be inferred with higher precision; thus, releasing
spatial generalizations with lower number of planes (i.e. < 5) can confuse adver-
sarial inference.

5.4 Computing Utility of Generalizations

Plane-fitting generalizations contribute variations to the released point clouds
from true spaces. Figure 10a shows the computed average utility based on Eq.5
for the different generalizations with varying partial radius and acceptability
metric 7. A v value of 1 means that we accept variations for up to 1 unit-
combined-difference (see Eq.5) of the true point from the released point and the
true normal from the released normal.

For reference, we include the point-level (synonymous to r = 0) utility com-
putation from RANSAC points which produces the highest utility trend, while
other RANSAC generalizations of partial spaces with > 0 comes close second.
The average utility provided by RANSAC generalizations are consistent regard-
less of the size of the released generalized spaces. It does decrease as we decrease
the acceptability value v, but it does not go too low, i.e Ugransac > 0.5 for
~v > 0.1, such that the generalizations are rendered unacceptable. This is due to
how RANSAC generalizations tries to approach the true spaces.
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always 1.); (b) Scatter plot of utility and error rate of different partial spaces (radius
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On the other hand, LOCAL generalizations have lower utility trends and go
much lower as the radius increases. This is due to the increased inaccuracies in
the localized generalizations as it disregards point locations and normals other
than the randomly chosen origin point. As a result, the utility trend further
decreases as we increase the radius, and this is true for any «. In fact, at v = 0.1,
Urocar < 0.5 at 7 = 0.25. As expected, if we are to set the acceptable utility
at > 0.8, only localized generalizations of radius 7 < 0.5 can provide such utility
and 7 = 0.5 barely makes the cutoff at v = 1.0. Any  lower than that, only
generalizations with r < 0.25 can provide an average utility > 0.8.

In reality, these Urpoc ar values are unacceptable. If we are to set an accept-
ability level of v < 0.2, there is only at most 0.6 chance of getting a locally
generalized point that is close to the true point including its orientation. Thus,
for the rest of the points from a locally generalized point cloud, augmentations
are translated by at most 0.2m (in any direction) and/or rotated by at most
cos~1(0.2) or 78.5°.

The difference in utility and error rate as we vary the radius of partial spaces
is better visualized by the scatter plot in Fig. 10b. Ugpansac stays > 0.8 and
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privacy drops as we increase the size, while Upocar is only > 0.8 for smaller
partial size and the privacy is consistently > 0.8. The relatively higher utility of
smaller LOCAL releases is further corroborated by the average privacy values
of the successive release case shown in Fig. 8¢ and d which shows smaller spaces
having lower privacy compared to larger spaces with more releases.

For LOCAL, points nearby the reference point will most likely have similar
normal vector directions, but as we go further away from the reference point on
the same locally generalized plane the variation increases, and thus the utility
drops. Conversely, RANSAC contributed variations are fairly consistent and low
regardless of a point’s distance from a reference point with which the generalized
plane was produced, since it tries to do a good representation of the true space.

Takeaway. Overall, LOCAL generalizations provides high average privacy but
can only provide adequate utility for smaller spaces; for example, utility of U >
0.5 for v < 0.2 can only be achieved with spaces of small radius r < 0.25.

5.5 Memory Compactness of Descriptors and Inference Models

Another interesting aspect is how a very good inferrer can be constructed at
a low resolution res < 10 with discriminative performance similar to that of
higher resolutions (see Fig.5). As shown in Fig. 11, the memory size exponen-
tially increases as we increase the resolution. A baseline Bayesian inference model
with a low resolution of 15 requires a memory size of about 128 MB. This mem-
ory usage is undesirably huge due to the almost complete representation of the
point probabilities in 3D space. However, we can take advantage of the sparsity
of the data points to make it compact. The memory usage by the compact rep-
resentation is also shown in Fig.11. At res = 15, the compact memory usage
is now just 1.30 MB from the original 128 MB — almost 2 orders of magnitude
smaller.

For the rotation-invariant descriptors, at res = 15, a corresponding set of
SS descriptors takes about 10.19 MB, but a corresponding set of SI descriptors —
which, anyway, performs better than SS descriptors — with a fixed descriptor size
is as compact as the baseline inference model (that is not rotation-invariant) at
only 1.58 MB. In fact, we used res = 3 (as previously stated in Sect. 3.2) for the
descriptors used in the inference evaluation discussed in the previous subsections.

Thus, any MR application (trusted or not) with access to 3D data produced
by the user’s MR device can efficiently create a lightweight inference model of
the user’s space. (For reference, the original point-cloud data is about 13 MB;
thus, our inferrer is a much more compact representation of the point-cloud data
at res = 15.)

Takeaway. A compact and efficient inferrer of 3D spaces can be created from
raw point cloud data released by any MR-capable device (which, now, can be any
device with a vision sensor and adequate processing power).
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6 Related Work

Most privacy work for MR were primarily focused on visual information or media
(i.e. image and video) sanitization [12,20,21]. Aside from that are abstraction
approaches to privacy protection. In the specific 3D use case, significant work
have been done on protecting physiological information using abstractions [5,11]
using the idea of least privilege [25]. The same approach has also been used for
providing visual privacy when using 3D MR browsers [24]. However, these works
did not specifically work on protecting 3D MR data against spatial inference.

Other recent works have focused on protecting MR, outputs specifically in
ensuring user safety [15,16]. Furthermore, as MR devices allow for new modes
of collaboration, issues on power imbalance brought by the directionality of MR
interfaces [2] are now being studied as well [17]. Again, these works do not focus
on spatial inference using 3D MR data.

7 Conclusion

In this work, we demonstrated how we can infer and reveal spaces employing
descriptor-based inference over 3D point cloud data collected using the Microsoft
HoloLens. The same point cloud data representation is also used by Google’s
ARCore and Apple’s ARKit. Therefore, it is possible to easily extend this work
to these mobile MR platforms as well. Currently, these MR platforms do not
apply privacy preservation on released 3D MR data to third party applications
which can allow adversaries to easily perform spatial inference attacks similar to
what we have demonstrated. In addition, we have demonstrated how leakage can
persist even after implementing spatial generalizations: RANSAC generalizations
can’t provide adequate protection when continuous successive generalizations
are released, while LOCAL generalizations provide promise in protecting spa-
tial privacy but utility is currently undesirably low. If directly applied, LOCAL
generalizations cause augmentations to be shifted, translated, and/or rotated by
a great degree, i.e. a maximum combined error of 0.2 with maximum average
utility of only 0.6.8 Moreover, we show how compact in terms of memory usage
these 3D inference models can be, which allows adversaries to keep models for
every users’ set of 3D spaces.

In our future work, we aim to develop a hybrid generalization technique
as a potential privacy solution combining desirable properties from RANSAC
and LOCAL to; perhaps, in conjunction with controlled releasing, where we do
not release a new portion of the space if the requested 3D space overlaps with
those released earlier. Moreover, limiting released generalizations to no more
than 4 planes, and/or limiting the number of partial successive releases may also
provide inference protection. Furthermore, we intend to extend the proposed
geometric information based inference strategy to use additional photometric
information such as (RGB) color profile as well as employing advanced techniques
for adversarial inference.

8 Combined error in terms of rotation (cos A#) and translation (Az); see Eq. 5.
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A 3D Spatial Definitions

Defining the Input Space. Let X; be the raw representation of space ¢ in the
physical world. A point-cloud extractor F takes pose information vector v € R?
and releases a point cloud z; , relative to that pose,
F:X;,v — z;,, for any 3D space with location ¢ and a reference pose v.
Combining z; , produces a complete point-cloud representation of space Xj,
which we label as X; = U, zi,v Yv. An extension of this is that for any pose
v € R3, we get a partial point-cloud representation X, of the true space. And
that there exists a set of poses vs C V such that X“, = UUEUS 2, spans X; or

Xiw, = X;.

Defining the Abstraction. A privacy-preserving mechanism M transforms

any released point cloud z; , to a privacy-preserving version 2y ,,

M : 2., — z(i),0, Where we denote the privacy-preservation of 7 by (i) — that

is, the true ¢ of a released z is not divulged or kept secret. Figure2 shows a

simple visualization of the transformation that can occur. In this specific case,

the normal vectors of the adjacent points are aligned to create a flat surface.
Similar to the raw point-clouds z; ,, combining the privacy-preserving point-

cloud representations z(;,,, produces ZA(i) =U, 2(iy,p for allv e V,

or Z(z) = Uv Z(i),v-

Defining the Intended Functionality. An intended deterministic output y
produced by an intended application or functionality G upon taking point clouds
as the input, expressed as G : x;, 0r 2(;) — Y(i)-

B Defining the Feature Matching Process Using
Rotation-Invariant Descriptors

A matching function 7" maps two sets of features f, and f3, of spaces a and b,
like so: T : fo — fo.

To determine good matches, we use the descriptor Euclidean distance as a
measure of their similarity. To accept a match for a key point z,; with feature
fa,1 of an unknown query space a = i*, we get the nearest neighbor distance

ratio (NNDR) of the features like so: M < threshold, where descriptor

fo,1 of xp1 (i-e. key point z1 of known space b = i) is the nearest neighbor of
descriptor f,1 of z41 (i.e. key point z1 of unknown query space a = i*) and fp 2
is the second nearest neighbor, and see if the NNDR falls below a set threshold
(e.g. 0.75 for the self-similarity, or 0.9 for the spin-image descriptors). Then, we
maximum-normalize the distance of the accepted matches to make the maximum
distance be 1. The mean of the distances is multiplied with a Bayesian-inspired

weight, %, where [{fz,. — fz,}| is the number of matched descriptors

of an unknown query space z,—;~ from one of the known reference spaces xy—;, 7 €
Vi, and [{f,. }| is the number of key points or descriptors extracted from the
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query space z;+. This allows us to create a hypothesis, i.e. h : ¢* = i, also via
argument-maximization as follows,

[{faie = foidl
{fe 3l

where the first product term is the mean similarity (i.e. 1 - mean difference)
while the second term is the Bayesian-inspired weight.

arg max (1 — mean }{||fxi* - fam”}) : (6)

oo g

C Plane Generalization

Our RANSAC plane generalization, shown in Algorithm 1, mainly follows the
described algorithm in [6] except for the normal estimation which we skip and
instead use the estimated normal vectors directly provided by the spatial mesh
produced by the HoloLens. On the other hand, the algorithm for the locally-
originated plane generalization, shown in Algorithm 2, is a crude and simplified
generalization which removes the point (Line 12) and plane (Line 14) discrimi-
nation process from RANSAC.

Algorithm 1. RANSAC algorithm [6]

1 F the number of planes to find = 30
T the point-plane distance threshold = 0.05
3 R the number of RANSAC trials = 100
Data: X = {z1,z2,...,Zn}, a set of 3D points
Result: P = {pz,, : {Zp;,Tpy,..-}}, a set of planes (a 3D point, and a normal) and their
associated co-planar points

N

4 for f— 1to F do

5 bestPlane = {0,0}

6 bestPoints = {}

7 for r — 1 to R do

8 S = s1 = a point at random from X

9 thisPlane = {s1,normals, }

10 thisPoints = {}

11 for z; € X do

12 if (distance(thisPlane,z;) < T) then
13 L thisPoints < thisPoints + x;

14 if |thisPoints| > |bestPoints| then

15 bestPlane « thisPlane

16 bestPoints «— thisPoints

17 P — P + {bestPlane, coPlanarTrans formed(bestPoints)}
18 X «— X — bestPoints




168

J. A. de Guzman et al.

Algorithm 2. Locally-originated plane generalization

1
2

N0 ;s w

F the number of planes to find = 30
r the radius of the local region (e.g. 0.5)
Data: X = {z1,z2,...,xn}, a set of 3D points
Result: P = {p.,, : {Zp;,Tpy,-.-}}, a set of planes (a 3D point, and a normal) and their
associated co-planar points
for f — 1 to F do
S = s1 = a point at random from X
thisPlane = {s1,normals, }
thisPoints = {x; € X : |x; — s1| < r}
P — P + {thisPlane, coPlanarTrans formed(thisPoints)}
X «— X — thisPoints
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