
An Efficiently Searchable Encrypted Data Structure
for Range Queries

Florian Kerschbaum
University of Waterloo

Waterloo, Ontario, Canada
Email: florian.kerschbaum@uwaterloo.ca

Anselme Tueno
SAP

Karlsruhe, Germany
Email: anselme.kemgne.tueno@sap.com

Abstract—At CCS 2015 Naveed et al. presented first attacks
on efficiently searchable encryption, such as deterministic and
order-preserving encryption. These plaintext guessing attacks
have been further improved in subsequent work, e.g. by Grubbs
et al. in 2016. Such cryptanalysis is crucially important to sharpen
our understanding of the implications of security models. In
this paper we present an efficiently searchable, encrypted data
structure that is provably secure against these and even more
powerful chosen plaintext attacks. Our data structure supports
logarithmic-time search with linear space complexity. The indices
of our data structure can be used to search by standard
comparisons and hence allow easy retrofitting to existing database
management systems. We implemented our scheme and show
that its search time overhead is only 10 milliseconds compared
to non-secure search.

I. INTRODUCTION

At CCS 2015 Naveed et al. [51] presented attacks on
order-preserving encryption. Later Grubbs et al. [23] improved
the precision of these attacks. Further attacks on searchable
encryption have been presented [9], [16], [21], [30], [36], [40],
[55], [65]. Such cryptanalysis is crucially important to sharpen
our understanding of the implications of security models, since
many of the attacked encryption schemes are proven secure
in their specific security models. In this paper we formalize
security against these attacks and show a connection to chosen
plaintext attacks. We also demonstrate that there exists an
encrypted data structure that supports efficient range queries by
regular comparisons and that provably prevents these attacks.

Comparison using regular comparison operators
(e.g. greater-than) as enabled by our scheme and order-
preserving encryption has many practical benefits. These
encryption schemes can be retrofitted to any existing database
management system making them extra-ordinarily fast,
flexible and easy-to-deploy. We preserve this property as our
implementation demonstrates, but some minor modifications
to the search procedure are necessary.

Efficiency – logarithmic time and linear space complexity
– is also an important property of search over encrypted data.
In Table I we provide a comparison of our scheme to the
most secure and efficient order-preserving schemes [56], order-
revealing encryption [43] and range-searchable encryption
[3], [14], [26] schemes. No searchable encryption scheme
– including ours – offers perfect security and efficiency for
all functions (equality and range search, insertions, deletions,

etc.). It is a research challenge to balance the trade-off between
the two objectives, even for a restricted set of functions.
We aim at provable security against the recently publicized
plaintext guessing attacks while still enabling efficient range
search. In this respect, we achieve a novel and preferable trade-
off between security and efficiency.

In the construction of our scheme we borrow the ideas of
previous order-preserving encryption schemes: modular order-
preserving encryption by Boldyreva et al. [5], ideal secure
order-preserving encoding by Popa et al. [54] and frequency-
hiding order-preserving encryption by Kerschbaum [37]. We
assign a distinct ciphertext for each – even repeated – plaintext
as Kerschbaum does, but his scheme statically leaks the partial
insertion order. So, we compress the randomized ciphertexts
to the minimal ciphertext space using Popa et al.’s interactive
protocol. Then we rotate around a modulus as Boldyreva et
al., but on the ciphertexts and not on the plaintexts.

As a result we achieve structural independence between
the ciphertexts and plaintexts which is a prerequisite for
security against chosen plaintext attacks and plaintext guessing
attacks – particularly, if the adversary has perfect background
knowledge on the distribution of plaintexts. We formalize this
insight as a novel security model (IND-CPA-DS-security)
for efficiently searchable, encrypted data structures and we
prove our scheme secure in this model. Our security model
encompasses a number of recently publicized attacks where
attackers broke into cloud system and stole the stored data.
Such an attack will reveal no additional information when data
is encrypted with our scheme. This will also thwart the attacks
by Naveed et al. [51] and Grubbs et al. [23] mentioned at the
beginning of the introduction.

The implementation of our scheme shows only 10 millisec-
onds overhead compared to non-secure search on a database
with a million entries. In summary our contribution are as
follows:
• We formulate a security notion that provably prevents

chosen plaintext attacks and plaintext-guessing attacks
as those by Naveed et al. and Grubbs et al. Our model
provides provable security against attackers with (one-
time) snapshot access to the encrypted data as in the most
common attacks on cloud computing.

• We present an efficiently searchable, encrypted data
structure that supports range queries and fulfills this

ar
X

iv
:1

70
9.

09
31

4v
1

 [
cs

.C
R

]
 2

7
Se

p
20

17

TABLE I
COMPARISON OF EFFICIENCY AND SECURITY OF SCHEMES FOR RANGE QUERIES OVER ENCRYPTED DATA

Scheme Search Time O(logn) Space O(n) IND-CPA-DS-secure1

Partial order preserving encoding [56] Yes Yes Only before queries
Searchable encryption with replicated index [14] Yes No Yes
Searchable encryption with dynamic index [26] Only amortized Yes Only before queries
Searchable encryption with index replacement [3] Yes Yes No
Order-revealing encryption [43] No Yes Yes
This paper Yes Yes Yes

security notion. Our search scheme is retrofittable into
existing database management systems and we provide a
prototypical implementation.

• We evaluate the performance of our scheme in a proto-
typical implementation. Our scheme shows only roughly
10 milliseconds overhead compared to non-secure search.

The remainder of the paper is structured as follows. In
the next section we define what we mean by an efficiently
searchable, encrypted data structure. In Section III we present
and motivate our new security model preventing plaintext
guessing attacks. Then, we present our efficiently searchable,
encrypted data structure secure in this model in Section IV.
We evaluate the performance of the implementation of our
scheme in V. Finally, we review related work in Section VI
and summarize our conclusions in Section VII.

II. EFFICIENTLY SEARCHABLE ENCRYPTED DATA
STRUCTURES

First, we define what we mean by a efficiently searchable
encrypted data structure (ESEDS). We start by defining what
we mean by a data structure. We use the fundamental repre-
sentation of a data structure in random-access memory, i.e. an
array. Each cell of the array consists of a structured element.
We do not impose any restriction on the structure of the
element, but usually this element contains two parts: the data
to be searched over and further structural information, such as
indices of further entries. Note that structural information may
be implicit, i.e. the index where an element is stored itself is
structural information albeit not explicitly stored. This implicit
structural information may also not be encrypted, but only
randomized. An example of explicit structural information are
the indices of the cells of the two children in a binary search
tree which would be stored in a cell’s structure in addition
to the data of a tree node. Explicit structural information
can be encrypted. We write C[j] for the j-th element and
if it is clear from the context, we assume it consists only of
a ciphertext of the data element (with j being the implicit
structural information).

Definition 1 (DS). A data structure DS consists of an array
of elements C[j] (0 ≤ j < n).

For an encrypted data structure there are a number of op-
tions on the type of encryption. First, we can choose symmetric
or public-key encryption. We can instantiate our encrypted
data structure with either one. Let PSE be a probabilistic
symmetric encryption scheme consisting of three – possibly

probabilistic – polynomial-time algorithms PSE = KGen(1λ),
Enc(k,m), Dec(k, c). Let PPKE be a probabilistic public-
key encryption scheme consisting of three – possibly prob-
abilistic – polynomial-time algorithms PPKE = KGen(1λ),
Enc(pk,m), Dec(sk, c). Let pk← KDer(sk) be a deterministic
algorithm that derives the public key from the private key in a
public-key encryption scheme. For symmetric key encryption
let KDer be the identity function. Let PE ∈ {PSE,PPKE} and
we use PE when we leave the choice of encryption scheme
open.

Second, we can either encrypt the data structure as a
whole or parts of the data structure – ideally each cell. Our
requirement of efficient search rules out the first option. Since
in this case each search operation would require decrypting
the data structure which is at least linear in the ciphertext
size, sublinear search is impossible. Hence, we require each
cell to be encrypted as a separate ciphertext.2

Third, for data security it may only be necessary to encrypt
the data elements of a cell and not the structural information.
In fact, our own proposed ESEDS is an instance of such a
case where the structural information is implicit from the array
structure and unencrypted. Hence, we only require the data
element of each cell to be encrypted.

Definition 2 (EDS). An encrypted data structure EDSPE
consists of an array of elements C[j] where at least the data
part has been encrypted with PE.

We can now define the operations on a searchable encrypted
data structure SEDSPE. We write SEDS when the choice
encryption scheme is clear from the context. Furthermore we
denote sometimes denote the version h (after h insertions) of a
data structure as SEDSh. Our definition is for range-searchable
encrypted data structures, but this implies a definition for
keyword searchable data structure as well (where the range
parameters are equal: a = b). Furthermore, we do not define
how operations on our SEDS are to be implemented. These
operations can be implemented as algorithms running on a
single machine or protocols distributed over a client and server
(hiding the secret key from the server). Both choices are
covered by our definition.

Definition 3 (SEDS). A searchable encrypted data structure
SEDSPE offers the following operations.

1IND-CPA-DS is defined in Section III-D.
2In case several cells of a simple data structure are encrypted as a whole,

we call this combination a cell of another data structure.

• k ← KGen(1λ): Generates a – either secret or private
– key k from the encryption scheme PE according to the
security parameter λ.

• Ch+1 ← Enc(k,Ch,m): Encrypts the plaintext m using
PE.Enc(KDer(k),m) and inserts it into the data structure
Ch resulting in data structure Ch+1.3

• m := Dec(k,C[j]): Computes the plaintext m for the
data part of encrypted cell C[j] using key k.

• {j0, . . . , j`−1} := Search(k,C, a, b): Computes the set
of indices {j0, . . . , j`−1} for the range [a, b] on the
encrypted data structure C using key k.

For the correctness of encryption we expect in a sequence of
operations Enc(k,C0,m0), . . . ,Enc(k,Cn−1,mn−1) resulting
in data structure Cn that ∀i ∃j mi = Dec(k,Cn[j]). For the
correctness of search we expect that for any {j0, . . . , j`−1} :=
Search(k,C, a, b), it holds that ∀j ∈ {j0, . . . , j`−1} =⇒
Dec(k,C[j]) ∈ [a, b] and ∀j ∈ {j|Dec(k,C[j]) ∈ [a, b]} =⇒
j ∈ {j0, . . . , j`−1}.

We can now finally define an efficiently searchable encryp-
ted data structure.

Definition 4 (ESEDS). An efficiently searchable encrypted
data structure ESEDS is a searchable encrypted data structure
where the running time τ of Search is poly-logarithmic in n
(plus the size of the returned set of matching ciphertext indices)
and the space σ of ESEDS is linear in n:

τ(Search) ≤ O(polylog(n) + `)

σ(ESEDS) = O(n)

It is now clear that efficient search prevents encrypting
the entire data structure and thereby achieving semantic
(IND-CPA) security. Next, we give our definition of security
that implies that each cell’s data is encrypted with a seman-
tically secure encryption scheme. Our security definition also
prevents all plaintext guessing attacks of the type of Naveed
et al. and Grubbs et al. Furthermore, we show that even when
the data structure consists of only one semantically secure
ciphertext in each cell, this does not guarantee security against
these plaintext guessing attacks.

III. SECURITY OF ESEDS

Before we define the security of an ESEDS we will re-
view recent attacks on cloud infrastructures and searchable
encryption scheme to motivate our security model. Particular
we review in depth plaintext guessing attacks that only need a
(multi-)set of ciphertexts as input (and do not perform active
attacks during encryption or search operations). We try to
generalize these attacks and show that even if all elements
in an ESEDS are semantically secure encrypted, this does not
imply that these attacks are infeasible.

3Note that in case of public key encryption our definition does not imply
that the entire operation can be completed using only the public key.

A. Motivation

Our model is motivated by recent attacks on cloud infras-
tructures and order-preserving or deterministic encryption. Not
only the theoretic demonstrations, but also real world incidents
show the risks of deterministic – not even order-preserving
– encryption. In at least one case passwords were encrypted
using a deterministic algorithm and many subsequently broken
[15]. The cryptanalysis was performed on stolen ciphertexts
only (using additional plaintext hints). Many other hacking
incidents have been recently publicized, e.g. [17], [49], that
resulted in leakage of sensitive information – not necessarily
ciphertexts.

All these attacks share a common “anatomy”. The hackers
are capable to break in, access and copy sensitive information.
They used the opportunity of access to gain as much data
as possible in a short time, i.e. the adversary obtains a static
snapshot. Note that this does not rule out the revelation of more
sophisticated, longitudinal attacks in the future, but underpins
the pressure to secure our current systems.

In this respect our model achieves the following: An
attacker gaining access to all ciphertexts stored in an en-
crypted database does not gain additional information to his
background knowledge. We assume even perfect background
knowledge, i.e. the adversary has chosen all plaintexts. This
may sound contradictory at first – why would someone break
into a database which data he knows. However, if we are
able to show security against such strong adversaries, security
holds even if the adversary has less, e.g. imperfect, background
knowledge.

B. Transformation to ESEDS

Most commonly plaintext guessing attacks are performed
on multi-sets of deterministic or order-preserving ciphertexts
which do not impose an order as our ESEDS do. However,
there exists a natural connection between these encryption
schemes and ESEDS. We present transformations that turn
deterministic or order-preserving encryption schemes into an
ESEDS as in Definition 4 with equivalent leakage. Any attack
successful on these encryption schemes will be successful on
the corresponding ESEDS.

Our transformation for deterministic encryption is loosely
based on the data structure in [13]. Let M be the multi-
set of plaintexts and M̃ be the set of distinct plaintexts. We
denote the size of a multi-set M as |M| and the number of
occurrences of element m in multi-set M as #Mm. Let m̃i

be i-th distinct plaintext and hence #Mm̃i be the number of
elements m̃i in M. We also denote these elements as mi,h for
h = 0, . . . ,#Mm̃i−1. Let pi,h be the index of mi,h in ESEDS
and pi,h = −1, if h ≥ #Mm̃i. Since deterministic encryption
can be stored in a relational table, we use the row identifiers
idi,h of each ciphertext as the document identifiers and the
data m̃i as the keywords. Let PRFk be a keyed, pseudo-random
function that maps the domain of keywords onto the size n of

the ESEDS.4 Then

C[PRFk(m̃i)]← 〈PE.Enc(k, m̃i),PE.Enc(k, idi,0), pi,1〉

For each data mi,h where 0 < h < #Mm̃i we store

C[pi,h]← 〈PE.Enc(k, m̃i),PE.Enc(k, idi,h), pi,h+1〉

One reveals PRFk(m̃i), accesses the corresponding bucket
(cell) in the data structure and then traverses the list for
efficient (keyword) search.

For deterministic order-preserving encryption we can use a
similar transformation as above, but use the order order(m̃i)
of the plaintext as the element index. Instead of hashing the
keyword into a bucket, one can use binary search for efficient
search on this ESEDS.

C[order(m̃i)]← 〈PE.Enc(k, m̃i),PE.Enc(k, idi,0), pi,1〉

In frequency-hiding order-preserving encryption, we no
longer have a list of identical ciphertexts, but each ci-
phertext is unique. Then we can use the randomized order
rand-order(mi,h) where elements are sorted, but ties are
broken based on the outcome of a coin flip as defined in [37]
as the element index. However, we no longer need to store
the row-identifier, since each ciphertext is unique and can be
found in the relational table.

C[rand-order(mi,h)]← PE.Enc(k, m̃i)

These ESEDS are susceptible to the same plaintext guessing
attacks as those by Naveed et al. [51] and Grubbs et al. [23]
on the respective encryption schemes. We next review these
attacks on these encryption schemes.

C. Plaintext Guessing Attacks

Naveed et al. [51] present a series of attacks on deterministic
and order-preserving encryption. They attack deterministic
order-preserving encryption by Boldyreva et al. [4]. Grubbs
et al. improved the precision of the attacks and also extended
them to other order-preserving and order-revealing encryption.
Their new attacks are not fundamentally different, but improve
the matching algorithm between the assumed and measured
frequency. However, Grubbs et al. present the first attack on
frequency-hiding order-preserving encryption (FH-OPE) – the
“bucketing” attack.

Let C be the multi-set (a multi-set may potentially include
duplicate values) of ciphertexts and M be the multi-set of
plaintexts in the background knowledge of the adversary. We
assume that the sizes of the multi-sets are equal: n = |C| =
|M|.

1) Frequency Analysis: The frequency analysis attack first
computes the histograms Hist(C) and Hist(M) of the two
multi-sets. Then it sorts the two histograms in descending
order: ~c := Sort(Hist(C)) and ~m := Sort(Hist(M)). The
cryptanalysis for ci is mi, i.e. the two vectors are aligned.

4For ease of exposition we assume no collisions.

Naveed et al. implement the frequency analysis as the lP -
optimization attack. Lacharite and Paterson show that fre-
quency analysis is expected to be the optimal cryptanalysis
[41], but also that lP -optimization is expected to be close to
this optimimum.

In the lP -optimization attack the two histograms are not
simply sorted and aligned, but a global minimization is run
to find an alignment. Let X be the set of n × n permutation
matrices. The attack then finds X ∈ X, such that the distance
||~c − X~m||P is minimized under the lP distance. For many
distances lP the computation of X can be efficiently (polyno-
mial in n) performed using an optimization algorithm, such as
linear programming. The cryptanalysis for ci is X[m]i, i.e. the
two vectors are aligned after permutation.

The attack works not only for order-preserving encryption,
but also for deterministic encryption. The attack is very
successful in experimentally recovering hospital data – even
for such deterministic encryption. Naveed et al. report an
accuracy of 100% for 100% and 95% of the hospitals for the
binary attributes of “mortality” (whether a patient has died)
and “sex”, respectively, under deterministic encryption.

2) Sorting Attack: Let D be the domain of all plaintexts in
multi-set M. Let N = |D| be the size of the domain D. The
sorting attack assumes that C is dense, i.e. contains a ciphertext
c for each m ∈ D. The adversary computes the unique
elements Unique(C) and sorts them ~c := Sort(Unique(C))
and the domain ~d := Sort(D). The cryptanalysis for ci is di,
i.e. the order of the ciphertext and the plaintext are matched.

The attack is 100% accurate, if the ciphertext multi-set
is dense. This is a strong assumption, but already Naveed
et al. present a refinement that works also for low-density
data. This cumulative attack combines the lP -optimization and
sorting attack. The adversary first computes the histograms
~c1 := Hist(C), ~m1 := Hist(M) and the cumulative density
functions ~c2 := CDF(C), ~m2 := CDF(M) of the cipher-
and plaintexts. The attack then finds the permutation X ∈ X,
such that the sum of the distances between the histograms and
cumulative density functions ||~c1−X~m1||P+||~c2−X~m2||P is
minimized. Again, this can be done using efficient optimiza-
tion algorithms. The cryptanalysis for ci is X[m]i.

The attack is very accurate against deterministic order-
preserving encryption as demonstrated by Naveed et al. They
report an accuracy of 99% for 83% of the large hospitals for
the attributes of “age”. The age column is certainly not low-
density, but also not dense (as the success rate shows).

Grubbs et al. further improve the algorithms in this attack
by using bipartite matching. They report an accuracy for their
improved attacks of up to 99% on first names and up to 97%
for last names which have much more entropy than age.

3) Bucketing Attack on FH-OPE: The extension of the
sorting attack – the bucketing attack – on FH-OPE proceeds
as follows. The adversary sorts the multi-sets ~c := Sort(C)
and ~m := Sort(M), i.e. it is not necessary to only use unique
values. The cryptanalysis for ci is mi. Note that in FH-OPE
every element ci ∈ C is unique, but after the attack aligned

to the cumulative density function of M as in the cumulative
attack.

Grubbs et al. recover 30% of first names and 6% of
last names in their data set. However, it can be even more
accurate depending on the precision of the background know-
ledge M. It can be very dangerous to make assumptions
about the adversary’s background knowledge, since they are
hard, if not impossible, to verify and uphold. Hence, in our
IND-CPA-DS-security model for ESEDS we assume perfect
background knowledge of the adversary, i.e. the multi-set M
is the exact same multi-set as the plaintexts of the ciphertexts.
In fact, the multi-set M is chosen by the adversary in a
chosen plaintext attack. The bucketing attack then succeeds
with 100% accuracy.

The focus of this paper is preventing these plaintext guess-
ing attacks on efficiently searchable encryption. However,
attacks using stronger adversaries, e.g. active modifications or
insertions, have been presented in the scientific literature [9],
[16], [21], [36], [40], [55], [65].

D. Security Definition

We give our security definition as an adaptation of semantic
security to data structures. We show that our adaptation
implies that each data value is semantically secure encrypted.
However, we also show that even if all cells consist of
only one semantically secure ciphertext, our adaptation is not
necessarily fulfilled.

First, recall the definition of semantic security.

Definition 5 (IND-CPA). A public-key encryption scheme
PPKE has indistinguishable encryptions under a chosen-
plaintext attack, or is IND-CPA-secure, if for all PPT ad-
versaries A there is a negligible function negl(λ) such that

AdvIND-CPA
A,PPKE (λ) :=

∣∣∣∣Pr[ExpIND-CPA
A,PPKE (λ) = 1

]
− 1

2

∣∣∣∣
≤ negl(λ)

ExpIND-CPA
A,PPKE (λ)

〈pk, sk〉 ← PPKE.KGen(1λ)

〈m0,m1, st〉 ← A(1λ, pk)
b←$ {0, 1}
c← PPKE.Enc(pk,mb)

b′ ← A(1λ, pk, c, st)
return b = b′

We note that IND-CPA-security only considers a single
ciphertext whereas a data structure consists of multiple ci-
phertexts and hence some structural information. Exactly this
structural information can be used in plaintext guessing attacks
and we need to adapt semantic security to all ciphertexts. We
call our adaptation indistinguishability under chosen-plaintext
attacks for data structures or IND-CPA-DS-security for short.
Loosely speaking, our security model ensures that an adversary
who has chosen all plaintexts encrypted in a data structure

cannot guess the plaintext of any ciphertext better than a
random guess. Recall that we denote the size of multi-set M as
|M| and the number of occurrences of element m in multi-set
M as #Mm.

Definition 6 (IND-CPA-DS). An efficiently searchable encryp-
ted data structure ESEDS is indistinguishable under a chosen-
plaintext attack, or is IND-CPA-DS-secure, if for all PPT
adversaries A there is a negligible function negl(λ) such that

AdvIND-CPA-DS
A,ESEDS (λ) :=

∣∣Pr[ExpIND-CPA-DS
A,ESEDS (λ) = 〈1, p〉

]
− p
∣∣

≤ negl(λ)

ExpIND-CPA-DS
A,ESEDS (λ)

〈pk, sk〉 ← ESEDS.KGen(1λ)

〈M0,M1, st〉 ← A(1λ, pk)
if |M0| 6= |M1| then return ⊥
b←$ {0, 1}
C := ε

foreach m ∈ Mb do

C← ESEDS.Enc(sk,m,C)
endforeach〈
j′,m′〉← A(1λ, pk,C, st)

return

〈
ESEDS.Dec(sk,C[j′]) = m′,

#M0∪M1m
′

|M0 ∪M1|

〉
There are two differences between IND-CPA-security

and IND-CPA-DS-security. First, the adversary chooses two
multi-sets of plaintexts as input to the challenge instead of two
single plaintexts. This enables the adversary to create different
situations to distinguish. Assume the adversary returns two
disjoint multi-sets as M0 and M1, e.g. M0 = {0, 0} and
M1 = {1, 1}. Then it can attempt to distinguish which of the
two plaintext multi-sets have been encrypted by guessing any
plaintext in the data structure. Assume the adversary returns
the same multi-set as M0 and M1, but with distinct plaintexts
in the (identical) multi-set, e.g. M0 = M1 = {0, 1}. This is
admissible in the definition of IND-CPA-DS-security, since
the only requirement is that the two multi-sets are of the same
size. The adversary can then attempt to distinguish at which
position in the data structure each plaintext has been encrypted.

In order to enable the adversary to win the game when the
position in the data structure is not indistinguishable, we made
a second change to IND-CPA-security: The adversary’s guess
is the plaintext of a single ciphertext at any position in the data
structure. Hence, the adversary does not necessarily have to
distinguish between the two plaintext multi-sets, it is sufficient,
if it guesses correctly within the choice of sets (which may
be equal). However, even if the position in the ciphertext is
indistinguishable, in order to win the adversary only has to
guess correctly with a probability non-negligibly better than
the frequency of the plaintext in the union of the multi-sets.
Hence, if the two multi-sets are not equal and the adversary
can guess the chosen multi-set, it can win the game.

We next explain the implications of IND-CPA-DS-security
and first prove that IND-CPA-DS-security implies IND-CPA-
security. Our proof assumes the use of public-key encryption,
but the proof for symmetric encryption is analogous using an
encryption oracle. We prove this by turning an adversary B that
has advantage ε in experiment ExpIND-CPA

B,PPKE into an adversary
A that has advantage ε in experiment ExpIND-CPA-DS

A,ESEDSPPKE
.

Theorem 7. If ESEDSPPKE is IND-CPA-DS-secure, then
each ciphertext of the data element in C[j] (0 ≤ j < n)
must be from a IND-CPA-secure encryption scheme.

Proof. Let B be an adversary that has advantage ε in ex-
periment ExpIND-CPA

B,PPKE . We construct an adversary A for
experiment ExpIND-CPA-DS

A,ESEDSPPKE
as follows.

A(1λ, pk)〈
m0,m1, st

′〉← B(1λ, pk)
M0 := {m0}
M1 := {m1}
st := st′‖{M0,M1}
return 〈M0,M1, st〉

A(1λ, pk,C, st)
st′‖{M0,M1} := st

b′ ← B(1λ, pk,C[0], st′)
return 〈0,Mb′ [0]〉

The adversary B’s view is indistinguishable from experi-
ment ExpIND-CPA

B,PPKE If adversary B guesses correctly, then A’s
output is also correct. Hence, if B’s advantage is ε, then A’s
advantage is ε.

However, we also prove that even if each cell in C con-
sists of a single ciphertext from a IND-CPA-secure, public-
key encryption scheme PPKE, then this does not imply
IND-CPA-DS-security. We prove by giving a data structure
that consists of a single ciphertext from PPKE, but that is
not IND-CPA-DS-secure. Again, the proof for symmetric
encryption is analogous.

Theorem 8. If each ciphertext in an efficiently searchable,
encrypted data structure ESEDSPPKE C[j] (0 ≤ j < n)
is from a IND-CPA-secure encryption scheme PPKE, then
ESEDSPPKE is not necessarily IND-CPA-DS-secure.

Proof. Given a multi-set of plaintexts M and a IND-CPA-
secure, public-key encryption scheme PPKE, we construct
a data structure as follows. Let rand-order(mi) be the ran-
domized order of each plaintext mi ∈ M. Recall that in a
randomized order of a multi-set, elements are sorted, but ties
are broken based on the outcome of a coin flip.

C[rand-order(mi)]← PPKE.Enc(pk,mi)

This data structure has equivalent leakage to frequency-
hiding order-preserving encryption (FH-OPE) by Kerschbaum
[37]. It is easy to see that each cell of the data structure
consists of only one semantically secure ciphertext. However,
we construct an adversary that succeeds with probability 1 for

p =
1

2
in our experiment ExpIND-CPA-DS

A,ESEDSPPKE
.

A(1λ, pk)
M := {0, 1}
return 〈M, ε〉

A(1λ, pk,C, st)
return 〈0, 0〉

The adversary always wins the game, since in the given
encryption scheme plaintext 0 will always be encrypted at
position 0. Grubbs et al. showed in [23] the practicality of
the attack by constructing a plaintext guessing attack – the
bucketing attack described in Section III-C3 – on FH-OPE. In
their experiments it succeeds with probability 30% where the
base line guessing probability is only 4%.

1) Relation to Other Security Definitions: In searchable
encryption a security definition of indistinguishability under
chosen-keyword attack (IND-CKA-security) has been defined
in [13] and used in many subsequent works. Loosely speak-
ing, this security definition states that the data structure is
IND-CKA-secure, if it is indistinguishable from a simulator
given (a set of) leakage function(s) L. However, this can be
misleading, since the leakage function does not necessarily
clearly state the impact on plaintext guessing attacks. We first
state the following corollary:

Corollary 9. If a public-key encryption scheme PPKE
is IND-CPA-secure, then there exists a simulator
SimPPKE(1

λ, pk), such that for all PPT adversaries A
and all PPT distinguishers Dist

AdvIND-CPA
A,Dist,PPKE(λ) :=∣∣∣Pr[Dist(c, pk) = 1 : 〈c, pk〉 ← RealExpIND-CPA

A,PPKE (λ)
]
−

Pr
[
Dist(c, pk) = 1 : 〈c, pk〉 ← SimExpIND-CPA

SimPPKE,PPKE(λ)
]∣∣

≤ negl(λ)

RealExpIND-CPA
A,PPKE (λ)

〈pk, sk〉 ← PPKE.KGen(1λ)

〈m0,m1, st〉 ← A(1λ, pk)
b←$ {0, 1}
c← PPKE.Enc(pk,mb)

return c, pk

SimExpIND-CPA
SimPPKE,PPKE(λ)

〈pk, sk〉 ← PPKE.KGen(1λ)

c← SimPPKE(1
λ, pk)

return c, pk

It follows that there exists a simulator for an encrypted
data structure whose cells consists only of semantically secure
ciphertexts which requires a leakage function of only the
length n of the data structure and the public key pk. However,
as we have shown in Theorem 8 such a data structure may not
be IND-CPA-DS-secure and susceptible to plaintext guessing
attacks.

Theorem 10. An efficiently searchable, encrypted data struc-
ture ESEDSPPKE may be indistinguishably simulated with a
leakage function L = {pk, n} and be susceptible to plaintext
guessing attacks.

Proof. Consider the data structure from the proof of Theo-
rem 8. It is indistinguishable from n ciphertexts produced

using public key pk and successful plaintext guessing attacks
have been shown by Grubbs et al. in [23].

Hence, leaking the number of plaintexts may be sufficient
for a successful plaintext guessing attack in a simulation-based
security proof. Our IND-CPA-DS-security model prevents
this by introducing a structural independence constraint. While
Curtmola et al. have been careful not to make this mistake
in [13] and their ESEDS is IND-CPA-DS-secure, subsequent
work was not as careful. Boelter et al.’s data structure [3] has
a (correct) simulation-based proof and is not IND-CPA-DS-
secure and susceptible to plaintext guessing attacks.5

2) Impact on Plaintext Guessing Attacks: We can now
revisit the plaintext guessing attacks on deterministic and
order-preserving encryption. First, our security model fully
captures the attack setup. The adversary is given full ciphertext
information and can chose the plaintexts such that it has per-
fect background knowledge6, i.e. the adversary in our model
has at least the same information as was used in those attacks.
Second, our security definition implies that if the adversary
is then able to infer even one plaintext better than with
negligible probability over guessing our scheme is broken.
Hence security in the IND-CPA-DS model implies security
against all (passive, ciphertext-only) plaintext guessing attacks.

IV. AN IND-CPA-DS-SECURE ESEDS FOR RANGE
QUERIES

We next present our efficiently searchable, encrypted data
structure for range queries that is IND-CPA-DS-secure. We
emphasis that using the result from the data structure we can
perform range queries in any commodity database manage-
ment system without modifications. Hence, our data structure
is as easy to integrate as order-preserving encryption, yet
it is secure against chosen-plaintext attacks. We begin by
describing the system architecture and give the intuition of
our construction. We then present our encryption algorithm
and interactive search protocol.

A. System Architecture

We depict an overview of our architecture in Figure 1. In our
setup we assume a client holding the secret key k← ESEDS.
KGen(1λ) and a server that holds the data structure C. The
server may hold several data structures managed independently
for each database column, but needs to take care of correla-
tion attacks as in [16]. A database table then contains the
rows linking the entries by their index in the data structure.
After encrypting the plaintexts, the client and the server can
interactively perform a search query, e.g. a range query, on
the server’s data structure which results in two indices j, j′.
Then these two indices j, j′ can be used in subsequent range
queries on the database management system. We assume that
the server is semi-honest, i.e. only performs passive attacks.

5This is easy to see, since they do not encrypt the structural information in
their data structure, i.e. the pointers to leaf nodes in the tree, and hence the
ciphertexts can be ordered.

6Recall that the adversary is allowed to submit the same plaintext multi-sets
in the IND-CPA-DS-security experiment

Client Server

1. KGen(1)

4. SQL Query

5. Decrypt

PE.Enc(pk, m)

j, j’, PE.Enc(pk, m)

j, j’, SQL result set

2. Enc(pk, m, C)

3. Search(sk, C, a, b)

ESEDS

Database

Fig. 1. Overview of system architecture

This model is commonly assumed in the scientific literature
on database security.

B. Intuition

Our data structure combines the ideas of three previous
order-preserving encryption schemes: First, the scheme by
Popa et al. [54] provides the basis for managing the order
of ciphertexts in a stateful, interactive manner. Of course, this
scheme is not secure against the attacks by Naveed et al., since
it is deterministic and ordered. Second, we add the frequency-
hiding aspect of the scheme by Kerschbaum [37]. The scheme
itself cannot be used as the basis of an IND-CPA-DS-
secure data structure, since it partially leaks the insertion
order. Therefore the frequency-hiding idea needs to be fit into
Popa et al.’s scheme. We do this by encrypting the plaintext
using a probabilistic algorithm (similar to the stOPE scheme
in [54]) and also inserting a ciphertext for each plaintext
using Kerschbaum’s random tree traversal. This combined
construction would still not be IND-CPA-DS secure. Third,
we apply Boldyreva et al.’s modular order-preserving en-
cryption idea [5]. This idea rotates the plaintexts around a
modulus statically hiding the order. However, modular order-
preserving encryption has been developed for deterministic
order-preserving encryption. In our probabilistic encryption –
as introduced by Kerschbaum – we need to apply the modulus
on the ciphertexts. This can be done by updating the modulus
after encryption.

In summary, intuitively our encryption scheme works as
follows: We maintain a list of ciphertexts for each plaintext
(including duplicates) sorted by the plaintexts on the server.
However, the list is rotated around a random offset (chosen
uniformly from the range between 1 and the number of
ciphertexts). We then encrypt and search using binary search.
However, due to the rotation which can divide a set of identical
plaintexts adjacent in the list into a lower and upper part, the
search and encryption algorithms become significantly more
complex which is apparent in their detailed description below.

C. Encryption Algorithm

Let PE be a standard, probabilistic encryption scheme
supporting the following three – possibly probabilistic –

polynomial-time algorithms: KGen, Enc and Dec. We use sym-
metric encryption, e.g. AES in CBC or GCM mode, for speed,
but assume an encryption oracle in the definition of semantic
security. Let D be the domain of plaintexts and N = |D| its
size. We now describe the algorithms and protocols of our
efficiently searchable, encrypted data structure:
• k← KGen(1λ): Execute k← PSE.KGen(1λ).
• Ch+1 ← Enc(k,m,Ch): We denote Ch as C for brevity,

if it is clear from the context. First the client and server
identify the index jm where m is to be inserted (before).
Then the client sends the ciphertext of m to the server
which inserts it at position jm. Finally the server rotates
the data structure by a random offset.

1) The client sets l := 0 and u := n− 1.
2) If n = 0 then go to step 5.
3) The client requests C[0] and sets r := Dec(k,C[0]).
4) Set j := bl + u−l

2 c. The client requests C[j] and
executes m′ := Dec(k,C[j]). If m′ − r mod N >
m − r mod N , then the client sets l := j + 1. If
m′ − r mod N < m − r mod N , then the client
sets u := j. If m′ = m mod N , then the client
flips a random coin and sets either l := j + 1 or
u := j depending on the outcome of the coin flip.
The client repeats this step until l = u.

5) The client sends c← PSE.Enc(k,m) to the server.
6) The server sets

C[n] := C[n− 1]

C[n− 1] := C[n− 2]

· · ·
C[l + 1] := C[l]

C[l] := c

The server sets n := n+ 1.
7) The server chooses a random number s←$Zn−1.

The server sets the new encrypted data structure
to Ch+1[j] := C[j + s mod n] for 0 ≤ j < n
as a result of the encryption operation. This data
structure Ch+1 will be used as input to the next
encryption operation.

• 〈j, j′〉 := Search(k,C, a, b): Wlog. we assume that a ≤ b
in the further exposition. In case a > b the query is
rewritten as to match all x, such that 0 ≤ x < b ∨ a ≤
x < N .
Let jmin(v) be the minimal index of plaintext v and
jmax(v) be the maximal index of plaintext v.

jmin(v) := min(j|Dec(k,C[j]) = v)

jmax(v) := max(j|Dec(k,C[j]) = v)

If jmin(v) = 0 and jmax(v) = n − 1 and there are two
distinct plaintexts in the data structure, then we redefine
as

jmin(v) := j+1|Dec(k,C[j]) < v∧Dec(k,C[j+1]) = v)

jmax(v) := j−1|Dec(k,C[j]) > v∧Dec(k,C[j−1]) = v)

If a and b do not span the modulus, i.e. jmin(a) <
jmax(b), then a query for x ∈ [a, b] is rewritten to
jmin(a) ≤ x ≤ jmax(b). Else, it is rewritten to 0 ≤ x <
jmax(b) ∨ jmin(a) ≤ x < n′.
Both jmin(a) and jmax(b) are found using a separately
run, interactive binary search. We next present this pro-
tocol.

1) The client sets l := 0 and u := n− 1.
2) The client requests C[0], C[n − 1] and sets r :=

Dec(k,C[0]). If Dec(k,C[0]) = Dec(k,C[n − 1])
and searching for jmin(a), it sets r := r + 1.

3) Set j := bl + u−l
2 c. The client requests C[j] and

executes m := Dec(k,C[j]). If m − r mod N <
a − r mod N (or m − r mod N ≤ b − r mod N ,
respectively) then the client sets l := j+1. Else the
client sets u := j. The client repeats this step until
l = u.

4) The client returns jmin(a) := l (or jmax(b) := u,
respectively).

• m := Dec(k,C[j]): Set m := PSE.Dec(k,C[j]).

D. Security

Theorem 11. Our efficiently searchable, encrypted data struc-
ture ESEDSPSE is IND-CPA-DS-secure.

Proof. Since all cells of the data structure consists only of
ciphertexts from a IND-CPA-secure encryption scheme, we
can replace the encrypted data structure by a simulator. Let the
simulator SimEk

ESEDS(1
λ, n) output n ciphertexts c ← Ek(0).

The adversary A cannot distinguish the following experiment
ExpIND-CPA-DS

A,SimESEDS,ESEDSPSE
from experiment ExpIND-CPA-DS

A,ESEDSPSE
ex-

cept with negligible probability.

Ek(m)

c← PSE.Enc(k,m)

return c

ExpIND-CPA-DS
A,SimESEDS,ESEDSPSE

(λ)

〈k,C〉 ← ESEDS.KGen(1λ)

〈M0,M1, st〉 ← AEk(1λ)

if |M0| 6= |M1| then return ⊥
C← SimEk

ESEDS(1
λ, |M0|)〈

j′,m′〉← AEk(1λ,C, st)

return

〈
ESEDS.Dec(C[j′]) = m′,

#M0∪M1m
′

|M0 ∪M1|

〉
The adversary A in ExpIND-CPA-DS

A,SimESEDS,ESEDSPSE
clearly has no

information which plaintext multi-set has been encrypted or
about the plaintexts’ positions in the data structure. Since in
our ESEDSPSE each plaintext has equal probability of being at
any index within the data structure, the adversary can at best
guess the index j′ for any m′ ∈ M. However, the probability

of a successful guess is bounded by
#M0∪M1m

′

|M0 ∪M1|
.

E. Implementation

In order to allow efficient online encryptions, we employ a
technique we call decoupled encryptions in our implementa-
tion that however temporarily violates IND-CPA-DS-security.
A decoupled encryption has the positive effect that an encryp-
tion operation returns control almost instantly to the client.
First, we store the index j explicitly in a database table along
with the ciphertexts. Second, we choose a large domain D for
the index, e.g. 256 bit. When we insert a new plaintext m into
the data structure, we search for the element C[j′] before and
the element C[j′′] after the new element as described before.

Then we insert m as C[bj
′′ − j′

2
c+j′] = PSE.Enc(k,m). This

operation is constant time, however after multiple encryptions
the adversary may distinguish the data structures for two
distinct sets of plaintexts.

To restore security, we operate a background process in
the database management system. This background process
scans the entire data structure and makes the indices of all
neighbouring data cells equidistant. For example, let there be
n ciphertexts in the data structure and let |D| be the size of
the domain of the index. Then the background process assigns

the indices b |D|
n+ 1

c, 2 · b |D|
n+ 1

c, 3 · b |D|
n+ 1

c, . . . to the data
cells. The background process also rotates the data structure
around a new random number r. After the background process
completes the data structure is IND-CPA-DS-secure.

The background process can run incrementally and indepen-
dently of queries. This allows it to be scheduled adaptively to
the load of the database system. Hence, decoupled encryptions
allow efficient search and online encryption operations while
reaching IND-CPA-DS-security eventually.

V. PERFORMANCE EVALUATION

We prototypically implemented and in a number of exper-
iments evaluated the performance our IND-CPA-DS-secure
ESEDS. In this section we report the results of our experiments
measuring the run-time of range searching over encrypted data.

A. Implementation

We used Java for our implementation and evaluation, since
many multi-tier applications are implemented in Java. Al-
though a native cryptographic library, such as Intel’s AES-NI,
promises further performance improvements, programming
languages such as C or C++ are more commonly used for sys-
tems software (such as database management systems) rather
than for database applications (which only issue database
queries). However, in our setup encryption and decryption
is performed in the database application. We used Oracle’s
Java 1.8 and all experiments were run on the Java SE 64-
Bit Server virtual machine. The database backend was the
MySQL replacement MariaDB in version 10.1. When using a
database, such as MariaDB, that was not specifically developed
for operation on encrypted data, one needs to configure it to
prevent the attacks on configuration described by Grubbs et
al. [22]. All experiments were run on a single machine with

a 4-core Intel i7 CPU at 2.9 GHz and 16 GB of RAM on
Windows 10 Enterprise.

B. Experimental Setup

We measure the run-time of a typical, simply structured
(i.e. a single search term and no conjunctions or disjunctions)
database query on a single ordered database column, e.g. a
range query or a top-k query. We use synthetic data and
queries. However, we adapt our choice of parameters to the
data from the DBLP data set. In the spirit of Grubbs et al. [23]
we considered author names. At the time of our experiments
there were about 1.500.000 million distinct author names in
DBLP, the most frequent of which appears roughly 80 times.

We implement the client interface as it would be used
in an application using a database. The application supplies
the parameters, e.g. the start a and end b of a range or the
k in top-k, and receives the results in plaintext. Thus, our
measured run-time includes the Search algorithm, the standard
query by the database management system and the decryption
of the result. We emphasize that in more complex queries,
e.g. including multiple search terms combined by conjunction
and disjunctions, the relative time for executing the query
on the database management system would be proportionally
higher. Hence, our experiments put an upper bound on the
worst case of the proportional overhead.

Our target quantity in our measurements is the absolute
run-time in milliseconds. For range queries we measure the
dependence of the run-time on different parameters.
• Size of the database: We vary the database size from

100.000 to 1.000.000 plaintexts in steps of 100.000,
i.e. data items before encryption.

• Size of the queried range: We vary the range size and
consequently the result set size in the query from 10 to
100 in steps of 10.

For top-k queries we measure the dependence of the run-
time of the following parameter.
• k: We vary the limit k from 10 to 100 in steps of 10.
We compare the run-time on encrypted data to the run-time

on plaintext data. Note that queries on plaintext only need to
execute the query on the database management system, i.e. the
time for the Search algorithm and decryption of results is 0.

We use synthetically generated data and queries. We uni-
formly choose distinct plaintexts and we uniformly choose a
begin of the range query and then compute the end using the
fixed size parameter of the experiment.

We repeat each experiment 30 times discarding the first 10
experiments in order to allow to adjust the Java JIT compiler.
We report the mean and 95% confidence interval for each
parameter setting.

C. Results

Database size: Figure 2 shows the running time over the
database size. We use a query range size of 10. The database
size increases from 100.000 to 1.000.000 plaintexts in steps of
100.000. The running time is measured in milliseconds. The
error bars show the 95% confidence interval. Since our search

0

2

4

6

8

10

12
M

e
a
n
 r

u
n
n
in

g
 t

im
e
 (

m
s
)

Database size

Encrypted Unencrypted

Fig. 2. Performance over different database sizes

algorithms run in sub-linear time only a very slight increase
(20%) in running time is measurable compared to the increase
in database size (900%). The overhead of our encryption is
roughly 9 milliseconds.

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

M
e
a
n
 r

u
n
n
in

g
 t

im
e
 (

m
s
)

Query range size

Encrypted Unencrypted

Fig. 3. Performance over query range size

Query Range Size: Figure 3 shows the running time over
the query range size. We use a database size of 1.000.000
plaintexts. The query range size and hence the expected result
set size increases from 10 to 100 in steps of 10. The running
time is measured in milliseconds. The error bars show the
95% confidence interval. The running time increase is slight
and approximately linear in the query range size and there is a
constant baseline. We attribute the constant cost to our binary
search algorithm which as shown in Figure 2 behaves almost
constant for these database sizes. We attribute this increase to
the cost of decryption which is dominated by the cryptographic
operations.

0

0.5

1

1.5

2

2.5

10 20 30 40 50 60 70 80 90 100

M
e
a
n
 r

u
n
n
in

g
 t

im
e
 (

m
s
)

k

Encrypted Unencrypted

Fig. 4. Performance over k for top-k queries

Top-k queries: Figure 4 shows the running time for top-k
queries over k. We use a database size of 1.000.000 plaintexts.
The value of k increases from 10 to 100 in steps of 10.
The running time is measured in milliseconds. The error bars
show the 95% confidence interval. The constant baseline is
lower, since top-k queries can be executed without a search
algorithm, when the minimum ciphertext (the rotation value) is
stored as part of the key. The linear increase due to decryption
of results is now clearly visible.

D. Discussion

We observe an almost constant overhead for the search al-
gorithm of about 9 milliseconds. Then, decryption and filtering
is linear in the result size. However, for reasonable result set
sizes – up to 100 ciphertexts in our experiments – it stays
below 2 milliseconds. Note that decryption is unavoidable in
searching over encrypted data and often excluded in other
scientific work. The database query time is not measurably
affected by our scheme.

Hence, we conclude that our IND-CPA-DS-secure data
structure adds an overhead of roughly 10 milliseconds (per
encrypted column in the query) for reasonable result sizes.
This is a very good performance compared to other schemes
for range queries over encrypted data [3], [14], [26], [43], [56].

VI. RELATED WORK

Our work is related to other order-preserving encryption
schemes, searchable encryption schemes – particularly for
range queries –, order-revealing encryption, leakage-abuse
attacks and other encryption schemes that in principle can be
used to perform range queries.

A. Order-Preserving Encryption

Order-preserving encryption was introduced by Agrawal
et al. in [2]. The idea is based on running queries using
unmodified database management systems using determinis-
tic encryption by Hacigümüs et al. [24]. However, Agrawal

et al. extended it to range queries. Their original proposal
uses an informal security model. Later, Boldyreva et al. [4]
formalized the security and presented a new construction.
They define indistinguishability under ordered chosen plaintext
attack (IND-OCPA). Note that IND-OCPA-security leaks the
order of plaintexts by the ciphertexts and is hence strictly
less secure than IND-CPA-DS-security. They also show that
with constant local storage (the key only) IND-OCPA-security
requires exponentially sized ciphertexts and therefore settle for
a weaker notion. Again, Boldyreva et al. further improve this
definition in [5]. In this paper, they also introduce modular
order-preserving encryption. Mavroforakis et al. show how to
improve the security of modular order-preserving encryption
against query observation attacks in [48]. They introduce
fake queries to hide the modulus, but this only works for
uniformly distributed plaintexts as shown by Durak et al. [16].
An improved security model and construction requiring only
constant local storage was introduced by Teranishi et al. in
[60]. Their idea is to occasionally introduce larger gaps
into the ciphertexts. However, this also does not yet achieve
IND-OCPA security and has not been tested against the
attacks by Naveed et al. Hwang et al. present a performance
improvement for this encryption scheme in [29]. They show
how to use a more efficient random sampling.

The first IND-OCPA secure order-preserving encryption
was presented by Popa et al. in [54]. It also forms the
first ESEDS for order-preserving encryption, since it imposes
a data structure beyond a single ciphertext. They introduce
the concept of storing the state (symmetrically encrypted)
on the server and make ciphertexts (necessarily) mutable,
i.e. adapting to insertions. Schröpfer and Kerschbaum improve
the performance of this model in [38]. Kerschbaum intro-
duces an even stronger security model – indistinguishability
under frequency-analyzing ordered chosen plaintext attack –
in [37]. We build upon his idea and incorporate the concept of
frequency-hiding into our data structure. Roche et al. combine
FH-OPE by Kerschbaum with on-demand sorting, i.e. when
searches are performed [56]. While their encryption is strongly
secure before any queries, it deteriorates after queries even
on the stored data structure and hence is less secure than
IND-CPA-DS.

There are many more order-preserving encryption schemes
that have been proposed in the literature [1], [27], [31], [32],
[39], [42], [44], [45], [46], [53], [62], [63], [64] which we do
not discuss here, since they lack a formal security analysis.

B. Searchable Encryption

Searchable encryption allows the comparison of a token
(corresponding to a plaintext) to a ciphertext. The ciphertext
(without any token) is IND-CPA-secure. The token can match
plaintexts for equality or the plaintext to a range. Only the
secret key holder can create tokens.

The concept of searchable encryption has been introduced
by Song et al. in [58]. It supports equality searches and
additions, but requires linear time for searching, since each
ciphertext needs to be compared. In order to speed up search

an encrypted inverted index can be built. This inverted index
is an ESEDS, since it imposes a data structure. The first
encrypted inverted index for equality search was presented by
Curtmola et al. in [13]. It is an efficiently searchable, encrypted
data structure. It supports (expected) constant time search,
but all plaintexts (the inverted index) need to be encrypted
at once and additions are not supported. Dynamic searchable
encryption [34] made the data structure mutable in order to
support additions. Since then a number of dynamic searchable
encryption schemes with indexes have been proposed [10],
[11], [25], [33], [52], [59]. A recent survey provides a good
overview [8].

Tackling range queries with searchable encryption is more
complex. The first proposal by Boneh and Waters in [7]
had ciphertext size linear in the size of the domain of the
plaintext. The first poly-logarithmic sized ciphertexts scheme
was proposed by Shi et al. in [57]. However, their security
model is somewhat weaker than standard searchable encryp-
tion. The construction is based on inner-product predicate
encryption which has been made fully secure by Katz et
al. in [35]. All schemes follow the construction by Song et
al. (without inverted indices) and require linear search time.
The first attempt to build range-searchable encryption into an
index (an ESEDS) has been made by Lu in [47]. However,
the inverted index tree reveals the pointers and is hence no
more secure than order-preserving encryption. Demertzis et
al. [14] map a range query to keyword queries by providing
tradeoffs between storing replicated values in each of its
ranges and enumerating all values within range query. The
search can then be easily performed using the data structure
of Curtmola et al. [13]. While the scheme is range searchable,
its queries are very revealing and it has high storage cost (at
least O(n log n)). Boelter et al. [3] use garbled circuits to
implement the search within a node of the index. They do not
encrypt the pointers in the index and are hence susceptible
to the attacks by Naveed et al. and are not IND-CPA-DS
secure. The scheme by Hahn and Kerschbaum [26] creates an
index using the access pattern of the range queries. No other
information is leaked, however, this provides amortized poly-
logarithmic search time. The scheme is only IND-CPA-DS-
secure as long as no queries have been performed (and the
index has been partially built). Their scheme is based on inner-
product predicate encryption which is too slow for practical
use.

C. Order-Revealing Encryption

Order-revealing encryption [6], [12], [43] is an alternative
to order-preserving encryption. Instead of preserving the order
there is a public function that reveals the order of two
plaintexts using the ciphertexts only. At first, it may seem
paradoxical to combine the disadvantages of order-preserving
and searchable encryption: order revelation and modified
comparison function. However, order-revealing encryption has
also advantages. It allows an IND-OCPA secure encryption
with constant-size ciphertexts, constant size client storage
and without mutation circumventing impossibility results in

[4] and [54]. However, the first construction was not only
impractical due to its disadvantages, but also due to its per-
formance. A different construction with slightly more leakage,
but significantly better performance was presented by Chenette
et al. in [12]. This construction was further improved by
Lewi and Wu in [43]. They allow comparison only between
a token and an IND-CPA-secure ciphertext as in searchable
encryption, i.e. the scheme has no leakage when no token is
revealed. Their search procedure requires a linear search over
all ciphertext and no indexing is possible. Hence, compared to
our scheme which has logarithmic search time, order-revealing
encryption currently remains impractical.

D. Leakage-Abuse Attacks

We discussed many leakage-abuse attacks on search over
encrypted data. There are static attacks on order-preserving
encryption [16], [23], [51], [55] and attacks using dynamic
information that also work on searchable encryption [9], [21],
[30], [36], [40], [65].

Kellaris et al. [36] have presented generic inference attacks
on encrypted data using range queries. Their attacks work in
a setup where the adversary has compromised the database
server and can observe all queries, i.e. they work for dynamic
leakage during the execution of queries and are not ciphertext-
only attacks. They do not assume a specific cryptographic
protection mechanism, but work only on its dynamic leakage
profile, such as the access pattern or the result size, i.e. they
also apply to ORAM-protected databases. The prerequisite
assumption for Kellaris et al.’s attack to work is that the
distribution of queries and the distribution of plaintexts differ.
Specifically, they assume that each possible query will be
executed, but not each possible plaintext is in the database. We
note that Kellaris et al. performed all their attacks on synthetic
data and queries whereas static ciphertext-only attacks on real
data have been publicized [15].

There are also some more specific inference attacks. Islam
et al. [30] and Cash et al. [9] have performed inference
attacks by observing the queries on encrypted data. Islam
et al. assume that the distribution of query keywords is
approximately known and then can recover the query keywords
using frequency analysis. Cash et al. improve the accuracy
of this attack even under slightly weaker assumptions about
the knowledge of query distribution, but then also use the
information to recover plaintexts from the access pattern.
Lacharite et al. [40] improve the accuracy of plaintext guessing
by incorporating information from observed queries.

Next to the ones already discussed plaintext guessing attacks
Pouliot and Wright show that adding deterministic encryp-
tion to Bloom filters – not surprisingly – does not prevent
cryptanalysis [55]. Zhang et al. assume that the adversary can
actively insert plaintexts and can then recover query plaintexts
from the access pattern [65]. Grubbs et al. [21] also attacked
an implementation of multi-user searchable encryption which
allows inferences between users leading to a complete break-
down of the security guarantee of encrypted web applications.

E. Other Encryption Schemes

Several attempts were made to build indexes for range
queries using deterministic encryption or distance-revealing
encryption [28], [61]. However, since they do not follow a
formal security model and are based on primitives that are
easily attackable we do not consider them here.

Oblivious RAM [20] allows to hide the accesses to disk or
memory and hence the access pattern of searchable or order-
preserving encryption. However, as Naveed showed in [50] the
combination is not straightforward. Recently, a new ORAM
technique – TWORAM – has been presented by Garg et al. in
[18] that overcomes these limitations. Kellaris et al. showed
in [36] that inference attacks even against ORAM-protected
range queries exist.

In theory search can be implemented without leakage using
homomorphic encryption [19]. However, since in our model
the server returns an arbitrarily sized subset of the data and in
homomorphic encryption the worst case determines the cost,
the server would always return the entire encrypted data. In
terms of performance this can, of course, always be beaten by
symmetric encryption and search on the client.

VII. CONCLUSIONS

We present the IND-CPA-DS-security model – an exten-
sion of semantic security – that provably prevents plaintext
guessing attacks as those by Naveed et al. [51] and Grubbs et
al. [23] We show how this model implies that each ciphertext
of an efficiently searchable, encrypted data structure must be
semantically secure. However, we also show that even if all
ciphertexts in a data structure are semantically secure, this
does not imply IND-CPA-DS-security.

Then we present an efficiently searchable (logarithmic time,
linear space), encrypted data structure secure in this model.
We show that this scheme is practical in our evaluation, since
it only has a 10 milliseconds overhead on a range query
over a million database entries. This shows that one can built
efficient, encrypted databases that withstand break-ins and
data theft as we have seen in many recent attacks on cloud
infrastructures.

A. Future Work: Full dynamicity

For ease of exposition we excluded deletion from the oper-
ations of our efficiently searchable, encrypted data structures
ESEDS. However, given our instantiation for range queries
over encrypted data, it should be easy to see that deletion
does not pose any major obstacle compared to insertion. Of
course, for a fully functional database implementation we also
implement deletion.

REFERENCES

[1] D. Agrawal, A. El Abbadi, F. Emekçi, and A. Metwally, “Database
management as a service: challenges and opportunities,” in Proceedings
of the 25th International Conference on Data Engineering, ser. ICDE,
2009.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the ACM International
Conference on Management of Data, ser. SIGMOD, 2004.

[3] T. Boelter, R. Poddar, and R. A. Popa, “A secure one-roundtrip index
for range queries,” IACR Cryptology ePrint Archive, Tech. Rep. 568,
2016.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proceedings of the 28th International Con-
ference on Advances in Cryptology, ser. EUROCRYPT, 2009.

[5] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp-
tion revisited: improved security analysis and alternative solutions,”
in Proceedings of the 31st International Conference on Advances in
Cryptology, ser. CRYPTO, 2011.

[6] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zim-
merman, “Semantically secure order-revealing encryption: multi-input
functional encryption without obfuscation,” in Proceedings of the 34th
International Conference on Advances in Cryptology, ser. EUROCRYPT,
2015.

[7] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proceedings of the 4th Theory of Cryptography
Conference, ser. TCC, 2007.

[8] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Computing Surveys, vol. 47, no. 2,
2014.

[9] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM Con-
ference on Computer and Communications Security, ser. CCS, 2015.

[10] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner, “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” in Proceedings of the 21st Network
and Distributed System Security Symposium, ser. NDSS, 2014.

[11] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner,
“Highly-scalable searchable symmetric encryption with support for
boolean queries,” in Proceedings of the 33rd Cryptology Conference,
ser. CRYPTO, 2013.

[12] N. Chenette, K. Lewi, S. Weis, and D. Wu, “Practical order-revealing en-
cryption with limited leakage,” in Proceedings of the 23rd International
Workshop on Fast Software Encryption, ser. FSE, 2016.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
Journal of Computer Security, vol. 19, no. 5, 2011.

[14] I. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and
M. Garofalakis, “Practical private range search revisited,” in Proceedings
of the ACM International Conference on Management of Data, ser.
SIGMOD, 2016.

[15] P. Ducklin, “Anatomy of a password disaster – adobe’s giant-sized
cryptographic blunder,” https://nakedsecurity.sophos.com/2013/11/04/
anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/,
2013.

[16] B. Durak, T. DuBuisson, and D. Cash, “What else is revealed by order-
revealing encryption?” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security, ser. CCS, 2016.

[17] A. Fitzpatrick, “Apple says systems weren’t hacked in nude pics grab,”
http://time.com/3257945/apple-icloud-brute-force-jennifer-lawrence/,
2014.

[18] S. Garg, P. Mohassel, and C. Papamanthou, “Tworam: efficient oblivious
RAM in two rounds with applications to searchable encryption,” in
Proceedings of the 36rd Cryptology Conference, ser. CRYPTO, 2016.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Symposium on Theory of Computing, ser. STOC,
2009.

[20] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious RAMs,” Journal of the ACM, vol. 43, no. 3, 1996.

[21] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov,
“Breaking web applications built on top of encrypted data,” in Proceed-
ings of the 23rd ACM Conference on Computer and Communications
Security, ser. CCS, 2016.

[22] P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why your encrypted
database is not secure,” IACR Cryptology ePrint Archive, Tech. Rep.
468, 2017.

[23] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Risten-
part, “Leakage-abuse attacks against order-revealing encryption,” IACR
Cryptology ePrint Archive, Tech. Rep. 895, 2016.

[24] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra, “Executing sql over
encrypted data in the database-service-provider model,” in Proceedings
of the ACM International Conference on Management of Data, ser.
SIGMOD, 2002.

[25] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and
efficient updates,” in Proceedings of the 21st ACM Conference on
Computer and Communications Security, ser. CCS, 2014.

[26] ——, “Poly-logarithmic range queries on encrypted data with small
leakage,” in Proceedings of the ACM Workshop on Cloud Computing
Security Workshop, ser. CCSW, 2016.

[27] S. Hildenbrand, D. Kossmann, T. Sanamrad, C. Binnig, F. Färber,
and J. Wöhler, “Query processing on encrypted data in the cloud,”
Department of Computer Science, ETH Zurich, Tech. Rep. 735, 2011.

[28] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in Proceedings of the 30th International Conference on
Very Large Data Bases, ser. VLDB, 2004.

[29] Y. H. Hwang, S. Kim, and J. W. Seo, “Fast order-preserving encryp-
tion from uniform distribution sampling,” in Proceedings of the ACM
Workshop on Cloud Computing Security Workshop, ser. CCSW, 2015.

[30] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: ramification, attack and mitigation,” in Proceed-
ings of the 19th Network and Distributed System Security Symposium,
ser. NDSS, 2012.

[31] H. Kadhem, T. Amagasa, and H. Kitagawa, “Mv-opes: multivalued-order
preserving encryption scheme: a novel scheme for encrypting integer
value to many different values,” IEICE Transactions on Information and
Systems, vol. E93.D, pp. 2520–2533, 2010.

[32] ——, “A secure and efficient order preserving encryption scheme for
relational databases,” in Proceedings of the International Conference on
Knowledge Management and Information Sharing, ser. KMIS, 2010.

[33] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable sym-
metric encryption,” in Proceedings of the 17th International Conference
on Financial Cryptography and Data Security, ser. FC, 2013.

[34] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proceedings of the 19th ACM Conference
on Computer and Communications Security, ser. CCS, 2012.

[35] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Advances
in Cryptology, ser. EUROCRYPT, 2008.

[36] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic attacks
on secure outsourced databases,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security, ser. CCS, 2016.

[37] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in Pro-
ceedings of the 22nd ACM Conference on Computer and Communica-
tions Security, ser. CCS, 2015.

[38] F. Kerschbaum and A. Schröpfer, “Optimal average-complexity ideal-
security order-preserving encryption,” in Proceedings of the 21st ACM
Conference on Computer and Communications Security, ser. CCS, 2014.

[39] S. Krendelev, M. Yakovlev, and M. Usoltseva, “Secure database using
order-preserving encryption scheme based on arithmetic coding and
noise function,” in Proceedings of the 3rd IFIP International Conference
on Information and Communication Technology, ser. ICT-EurAsia, 2015.

[40] M.-S. Lacharit, B. Minaud, and K. Paterson, “Improved reconstruction
attacks on encrypted data using range query leakage,” IACR Cryptology
ePrint Archive, Tech. Rep. 701, 2017.

[41] M.-S. Lacharit and K. Paterson, “A note on the optimality of frequency
analysis vs. `p-optimization,” IACR Cryptology ePrint Archive, Tech.
Rep. 1158, 2015.

[42] S. Lee, T.-J. Park, D. Lee, T. Nam, and S. Kim, “Chaotic order
preserving encryption for efficient and secure queries on databases,”
IEICE Transactions on Information and Systems, vol. E92.D, pp. 2207–
2217, 2009.

[43] K. Lewi and D. Wu, “Order-revealing encryption: New constructions,
applications, and lower bounds,” in Proceedings of the 23rd ACM
Conference on Computer and Communications Security, ser. CCS, 2016.

[44] K. Li, W. Zhang, C. Yang, and N. Yu, “Security analysis on one-
to-many order preserving encryption-based cloud data search,” IEEE
Transactions on Information Forensics and Security, vol. 10, no. 9, 2015.

[45] D. Liu and S. Wang, “Programmable order-preserving secure index
for encrypted database query,” in Proceedings of the 5th International
Conference on Cloud Computing, ser. CLOUD, 2012.

[46] ——, “Nonlinear order preserving index for encrypted database query in
service cloud environments,” Concurrency and Computation: Practice
and Experience, vol. 25, no. 13, pp. 1967–1984, 2013.

[47] Y. Lu, “Privacy-preserving logarithmic-time search on encrypted data
in cloud,” in Proceedings of the 19th Network and Distributed System
Security Symposium, ser. NDSS, 2012.

https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
https://nakedsecurity.sophos.com/2013/11/04/anatomy-of-a-password-disaster-adobes-giant-sized-cryptographic-blunder/
http://time.com/3257945/apple-icloud-brute-force-jennifer-lawrence/

[48] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and R. Canetti,
“Modular order-preserving encryption, revisited,” in Proceedings of the
ACM International Conference on Management of Data, ser. SIGMOD,
2015.

[49] K. McCarthy, “Panama papers hack: unpatched wordpress, dru-
pal bugs to blame?” http://www.theregister.co.uk/2016/04/07/panama
papers unpatched wordpress drupal/, 2016.

[50] M. Naveed, “The fallacy of composition of oblivious RAM and search-
able encryption,” IACR Cryptology ePrint Archive, Tech. Rep. 668,
2015.

[51] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on property-
preserving encrypted databases,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security, ser. CCS, 2015.

[52] M. Naveed, M. Prabhakaran, and C. Gunter, “Dynamic searchable en-
cryption via blind storage,” in Proceedings of the 35th IEEE Symposium
on Security and Privacy, ser. S&P, 2014.

[53] G. Özsoyoglu, D. A. Singer, and S. S. Chung, “Anti-tamper databases:
querying encrypted databases,” in Proceedings of the 17th Conference
on Data and Application Security, ser. DBSEC, 2003.

[54] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in 34th IEEE Symposium on Security and
Privacy, ser. S&P, 2013.

[55] D. Pouliot and C. Wright, “The shadow nemesis: Inference attacks on
efficiently deployable, efficiently searchable encryption,” in Proceedings
of the 23rd ACM Conference on Computer and Communications Secu-
rity, ser. CCS, 2016.

[56] D. Roche, D. Apon, S. Choi, and A. Yerukhimovich, “Pope: Partial order
preserving encoding,” in Proceedings of the 23rd ACM Conference on
Computer and Communications Security, ser. CCS, 2016.

[57] E. Shi, J. Bethencourt, H. T.-H. Chan, D. X. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proceedings of the
2007 Symposium on Security and Privacy, ser. S&P, 2007.

[58] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of the 21st IEEE Symposium on
Security and Privacy, ser. S&P, 2000.

[59] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable
symmetric encryption with small leakage,” in Proceedings of the 21st
Network and Distributed System Security Symposium, ser. NDSS, 2014.

[60] I. Teranishi, M. Yung, and T. Malkin, “Order-preserving encryption
secure beyond one-wayness,” in Proceedings of the 20th International
Conference on Advances in Cryptology, ser. ASIACRYPT, 2014.

[61] P. Wang and C. Ravishankar, “Secure and efficient range queries on
outsourced databases using rp-trees,” in Proceedings of the 30th IEEE
International Conference on Data Engineering, ser. ICDE, 2013.

[62] S. Wozniak, M. Rossberg, S. Grau, A. Alshawish, and G. Schaefer,
“Beyond the ideal object: towards disclosure-resilient order-preserving
encryption schemes,” in Proceedings of the ACM Workshop on Cloud
Computing Security Workshop, ser. CCSW, 2013.

[63] L. Xiao and I.-L. Yen, “A note for the ideal order-preserving encryption
object and generalized order-preserving encryption,” IACR Cryptology
ePrint Archive, Tech. Rep. 350, 2012.

[64] L. Xiao, I.-L. Yen, and D. T. Huynh, “Extending order preserving
encryption for multi-user systems,” IACR Cryptology ePrint Archive,
Tech. Rep. 192, 2012.

[65] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: the power of file-injection attacks on searchable encryption,” in
Proceedings of the 25th USENIX Security Symposium, ser. USENIX
SECURITY, 2016.

http://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal/
http://www.theregister.co.uk/2016/04/07/panama_papers_unpatched_wordpress_drupal/

	I Introduction
	II Efficiently Searchable Encrypted Data Structures
	III Security of ESEDS
	III-A Motivation
	III-B Transformation to ESEDS
	III-C Plaintext Guessing Attacks
	III-C1 Frequency Analysis
	III-C2 Sorting Attack
	III-C3 Bucketing Attack on FH-OPE

	III-D Security Definition
	III-D1 Relation to Other Security Definitions
	III-D2 Impact on Plaintext Guessing Attacks

	IV An INDCPADS-Secure ESEDS for Range Queries
	IV-A System Architecture
	IV-B Intuition
	IV-C Encryption Algorithm
	IV-D Security
	IV-E Implementation

	V Performance Evaluation
	V-A Implementation
	V-B Experimental Setup
	V-C Results
	V-D Discussion

	VI Related Work
	VI-A Order-Preserving Encryption
	VI-B Searchable Encryption
	VI-C Order-Revealing Encryption
	VI-D Leakage-Abuse Attacks
	VI-E Other Encryption Schemes

	VII Conclusions
	VII-A Future Work: Full dynamicity

	References

