Skip to main content

Strongly Secure Identity-Based Key Exchange with Single Pairing Operation

  • Conference paper
  • First Online:
Book cover Computer Security – ESORICS 2019 (ESORICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11736))

Included in the following conference series:

Abstract

This paper proposes an id-eCK secure identity-based authenticated key exchange (ID-AKE) scheme, where the id-eCK security implies that a scheme resists against leakage of all combinations of master, static, and ephemeral secret keys except ones trivially break the security. Most existing id-eCK secure ID-AKE schemes require two symmetric pairing operations or a greater number of asymmetric pairing, which is faster than symmetric one, operations to establish a session key. However, our scheme is realized with a single asymmetric pairing operation for each party, and this is an advantage in efficiency.

The proposed scheme is based on the ID-AKE scheme by McCullagh and Barreto, which is vulnerable to an active attack. To achieve id-eCK security, we apply the HMQV construction and the NAXOS technique to the McCullagh–Barreto scheme. The id-eCK security is proved under the external Diffie–Hellman for target group assumption and the q-gap-bilinear collision attack assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Cryptology ePrint Archive, Report 2017/334 (2017)

    Google Scholar 

  2. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22

    Chapter  Google Scholar 

  3. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: ACM CCS 2006, pp. 390–399. ACM Press (2006)

    Google Scholar 

  4. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    Chapter  Google Scholar 

  5. Boyd, C., Choo, K.-K.R.: Security of two-party identity-based key agreement. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 229–243. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_17

    Chapter  Google Scholar 

  6. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0_6

    Chapter  Google Scholar 

  7. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    Chapter  Google Scholar 

  8. Chen, L., Cheng, Z.: Security proof of Sakai-Kasahara’s identity-based encryption scheme. Cryptology ePrint Archive, Report 2005/226 (2005)

    Google Scholar 

  9. Chen, L., Cheng, Z., Smart, N.P.: Identity-based key agreement protocols from pairings. Int. J. Inf. Secur. 6(4), 213–241 (2007)

    Article  Google Scholar 

  10. Cheng, Z., Chen, L.: On security proof of McCullagh-Barreto’s key agreement protocol and its variants. Cryptology ePrint Archive, Report 2005/201 (2005)

    Google Scholar 

  11. Choo, K.-K.R., Boyd, C., Hitchcock, Y.: Examining indistinguishability-based proof models for key establishment protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 585–604. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_32

    Chapter  Google Scholar 

  12. Cremers, C.J.F.: Session-state Reveal is stronger than Ephemeral Key Reveal: attacking the NAXOS authenticated key exchange protocol. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 20–33. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_2

    Chapter  Google Scholar 

  13. Cremers, C.J.F.: Examining indistinguishability-based security models for key exchange protocols: the case of CK, CK-HMQV, and eCK. In: ACM CCS 2011, pp. 80–91. ACM (2011)

    Google Scholar 

  14. Fiore, D., Gennaro, R.: Making the Diffie-Hellman protocol identity-based. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 165–178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_12

    Chapter  Google Scholar 

  15. Fujioka, A., Hoshino, F., Kobayashi, T., Suzuki, K., Ustaŏglu, B., Yoneyama, K.: id-eCK secure ID-based authenticated key exchange on symmetric and asymmetric pairing. IEICE Trans. Fundam. E96–A(6), 1139–1155 (2013)

    Article  Google Scholar 

  16. Fujioka, A., Suzuki, K., Ustaoğlu, B.: Ephemeral key leakage resilient and efficient ID-AKEs that can share identities, private and master keys. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 187–205. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17455-1_12

    Chapter  Google Scholar 

  17. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. J. Cryptol. 24(3), 446–469 (2011)

    Article  MathSciNet  Google Scholar 

  18. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_11

    Chapter  Google Scholar 

  19. Gartner Inc., Newsroom: Gartner Identifies Top 10 Strategic IoT Technologies and Trends. https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends

  20. Huang, H., Cao, Z.: An ID-based authenticated key exchange protocol based on bilinear Diffie-Hellman problem. In: ASIACCS 2009, pp. 333–342. ACM Press (2009)

    Google Scholar 

  21. Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20

    Chapter  Google Scholar 

  22. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    Chapter  Google Scholar 

  23. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    Chapter  MATH  Google Scholar 

  24. McCullagh, N., Barreto, P.S.L.M.: A new two-party identity-based authenticated key agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_18

    Chapter  Google Scholar 

  25. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_8

    Chapter  Google Scholar 

  26. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_5

    Chapter  Google Scholar 

  27. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56, 455–461 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Tomida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tomida, J., Fujioka, A., Nagai, A., Suzuki, K. (2019). Strongly Secure Identity-Based Key Exchange with Single Pairing Operation. In: Sako, K., Schneider, S., Ryan, P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer Science(), vol 11736. Springer, Cham. https://doi.org/10.1007/978-3-030-29962-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29962-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29961-3

  • Online ISBN: 978-3-030-29962-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics