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Abstract. We present a method to gradually compute a smaller and
smaller unsatisfiable core of a propositional formula by minimizing proofs
of unsatisfiability. The goal is to compute a minimal unsatisfiable core
that is relatively small compared to other minimal unsatisfiable cores of
the same formula. We try to achieve this goal by postponing deletion
of arbitrary clauses from the formula as long as possible—in contrast to
existing minimal unsatisfiable core algorithms. We applied this method
to reduce the smallest known unit-distance graph with chromatic number
5 from 553 vertices and 2 720 edges to 529 vertices and 2 670 edges.

1 Introduction

Today’s satisfiability (SAT) solvers can not only determine whether a proposi-
tional formula can be satisfied, but they can also produce a certificate in case
no satisfying assignments exists. These certificates, known as proofs of unsatisfi-
ability, can be used for multiple purposes ranging from checking the correctness
of the unsatisfiability claim [16,9,26,8,14] to computing interpolants [11]. In this
paper, we focus on another application of proofs of unsatisfiability: computing an
unsatisfiable core of the formula [15,27,1,3]. We observed that the size of proofs
tends to correlate to the size the corresponding unsatisfiable cores: the smaller
the proof, the smaller the unsatisfiable core. We present a method to exploit this
relation by computing a smaller and smaller proof of unsatisfiability to compute
a small unsatisfiable core. This method was developed to improve the upper
bound of the smallest unit-distance graph with chromatic number 5, which is
currently a Polymath project. Details about the problem and this project are
described below. The presented method was developed as existing techniques
performed poorly on this application. Yet it could help with other applications
that use unsatisfiable cores too—which we plan to study in the near future.

The chromatic number of the plane, a problem first proposed by Nelson in
1950 [25], asks how many colors are needed to color all points of the plane
such that no two points at distance 1 from each other have the same color. Early
results showed that at least four and at most seven colors are required. By the de
Bruijn–Erdős theorem, the chromatic number of the plane is the largest possible
chromatic number of a finite unit-distance graph [4]. The Moser Spindle, a unit-
distance graph with 7 vertices and 11 edges, shows the lower bound [24], while
the upper bound is shown by a 7-coloring of the entire plane by Isbell [25].
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In a breakthrough for this problem in April 2018, Aubrey de Grey improved
the lower bound by providing a unit-distance graph with 1 581 vertices with
chromatic number 5 [10]. This discovery by de Grey started a Polymath project
to find smaller graphs. The current record is a graph with 553 vertices and 2 720
edges [13]. We present a new technique to construct a large unit-distance graph
with chromatic number 5, which we reduce with the proposed method to a graph
with “only” 529 vertices and 2 670 edges. This graph is much more symmetric
compared to earlier small unit-distance graphs with chromatic number 5. The
total costs to compute this graph were roughly 100 000 CPU hours.

2 Preliminaries

Propositional Formulas. We will minimize graphs on the propositional level.
We consider formulas in conjunctive normal form (CNF), which are defined as
follows. A literal is either a variable x (a positive literal) or the negation x of a
variable x (a negative literal). The complement l of a literal l is defined as l = x
if l = x and l = x if l = x. For a literal l, var(l) denotes the variable of l. A
clause is a disjunction of literals and a formula is a conjunction of clauses.

An assignment is a function from a set of variables to the truth values 1 (true)
and 0 (false). A literal l is satisfied by an assignment α if l is positive and
α(var(l)) = 1 or if it is negative and α(var(l)) = 0. A literal is falsified by an as-
signment if its complement is satisfied by the assignment. A clause is satisfied by
an assignment α if it contains a literal that is satisfied by α. A formula is satisfied
by an assignment α if all its clauses are satisfied by α. A formula is satisfiable if
there exists an assignment that satisfies it and unsatisfiable otherwise.

For a formula F and assignment α, we denote by F |α a reduced copy of F
without clauses satisfied by α and literals falsified by α. A unit clause is a clause
with only one literal. The result of applying the unit clause rule to a formula F
is the formula F |l where (l) is a unit clause in F . The iterated application of
this rule to a formula, until no unit clauses are left, is called unit propagation. If
unit propagation yields the empty clause ⊥, we say that it derived a conflict.

Clausal Proofs. A clause C is redundant with respect to a formula F if F and
F ∧C are satisfiability equivalent. For instance, the clause C = (x∨ y) is redun-
dant with respect to the formula F = (x∨y) since F and F ∧C are satisfiability
equivalent (although they are not logically equivalent). This redundancy notion
allows us to add redundant clauses to a formula while preserving satisfiability.

Given a formula F = {C1, . . . , Cm}, a clausal derivation of a clause Cn from
F is a sequence Cm+1, . . . , Cn of clauses. Such a sequence gives rise to formulas
Fm, Fm+1, . . . , Fn, where Fi = {C1, . . . , Ci}. We call Fi the accumulated formula
corresponding to the i-th proof step. A clausal derivation is correct if every clause
Ci (i > m) is redundant with respect to the formula Fi−1 and if this redundancy
can be checked in polynomial time with respect to the size of the proof. A clausal
derivation is a proof of a formula F if it derives the unsatisfiable empty clause.
Clearly, since every clause-addition step preserves satisfiability, and since the
empty clause is always false, a proof of F certifies the unsatisfiability of F .



Checking the correctness of a clause Ci in a derivation consists of computing
a justification why Ci is redundant with respect by formula Fi−1. The most
commonly used method for this purpose is reverse unit propagation (RUP): Let
α be the assignment that falsifies all literals in Ci. Clause Ci has the RUP
property if and only if unit propagation on Fi−1 |α results in a conflict. In this
case the justification of Ci consists of all clauses that were required to derive the
conflict. Clausal proofs that can be validated using this method are called RUP
proofs. Most SAT-solving techniques can be compactly expressed as RUP.

Example 1. Consider the formula below consisting of 3 variables and 7 clauses:

F := (y ∨ z) ∧ (x ∨ z) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z)

A clausal proof of F is y, z,⊥. A justification of this proof is shown in Fig. 1.
This justification shows that y and z do not depend on each other. As a con-
sequence, swapping them results in another correct proof. Notice that clause
(x ∨ z) is not used in this justification and it is thus not part of the core of F .

y∨z x∨z x∨y x∨y x∨y y∨z x∨z

z

y

⊥

Fig. 1. A justification of the proof of the example formula. Each clause in the proof
depends on its incoming arcs. The clauses without incoming arcs represent the formula.

In practice, clausal proofs also contain deletion information. The presence
of deletion information significantly reduces the cost to compute a justification.
Clausal proofs, which can be validated using the RUP method and include dele-
tion information, are known as DRUP proofs. We mostly ignore the deletion
information aspect of clausal proofs to simplify the presentation. All techniques
discussed in this paper work with deletion information as well.

Chromatic Number of the Plane. The Chromatic Number of the Plane
(CNP) [25] asks how many colors are required in a coloring of the plane to
ensure that there exists no monochromatic pair of points with distance 1. A unit-
distance graph is a graph formed from a set of points in the plane by connecting
two points by an edge whenever the distance between the two points is exactly
one. A lower bound for CNP of k colors can be obtained by showing that a
unit-distance graph has chromatic number k.



Fig. 2. From left to right: illustrations of unit-distance graphs A, B, A ⊕ B, and the
Moser Spindle. The graphs shown have chromatic number 2, 2, 3, and 4, respectively.
The illustrations show valid colorings with the fewest number of colors.

We will use three operations to construct larger and larger graphs: the
Minkowski sum [12], rotation, and merging. Given two sets of points A and B, the
Minkowski sum of A and B, denoted by A ⊕ B, equals {a+ b | a ∈ A, b ∈ B}.
Consider the sets of points A = {(0, 0), (1, 0)} and B = {(0, 0), (1/2,

√
3/2)},

then A⊕B = {(0, 0), (1, 0), (1/2,
√

3/2), (3/2,
√

3/2)}.
Given a positive integer i, we denote by θi the rotation around point (0, 0)

with angle arccos( 2i−1
2i ) and by θki the application of θi k times. Let p be a point

with distance
√
i from (0, 0), then the points p and θi(p) are exactly distance

1 apart and thus would be connected with an edge in a unit-distance graph.
Consider again the set of points A⊕B above. The points A⊕B∪θ3(A⊕B) form
the Moser Spindle [24] with chromatic number 4. Figure 2 shows visualizations
of these sets with connected vertices colored differently.

3 Overview of the Approach

The smallest known unit-distance graph with chromatic number 5 has 553 ver-
tices and 2 720 edges [13]. This graph was found using the following method.
Start with a large unit-distance graph G with chromatic number 5. Now reduce
the size of that graph by solving the formula that encodes whether the graph
can be colored with 4 colors. That formula is unsatisfiable. From the proof of
unsatisfiability, an unsatisfiable core can be extracted that represents a subgraph
with chromatic number 5. This step is repeated again and again as long as the
graph is reduced. In the last step, vertices are randomly eliminated to make the
graph vertex-critical: removing any additional vertex introduces a 4-coloring.

In this paper we present two improvements. The most important one is a new
method, presented in Section 4, to produce short proofs of unsatisfiability. We
observed that for the formulas studied in this paper that the shorter the proof,
the smaller the unsatisfiable core and thus the smaller the subgraph. The second
improvement is the construction of a new large unit-distance graph G that we use
as a starting point to find a smaller unit-distance graph with chromatic number
5. The construction of this graph is explained in Section 5. These two methods
allowed us to find a unit-distance graph with 529 vertices and 2 670 edges. This
graph is much more symmetric compared to the graph with 553 vertices.



4 Clausal Proof Optimization

Most SAT solvers can emit a clausal proof of unsatisfiability. There exist several
checkers for such proofs, including formally-verified ones [7,19]. We extended
the checker DRAT-trim [15] that allows optimizing the clausal proof as well as
extracting an unsatisfiable core. One can obtain multiple unsatisfiable cores from
a single clausal proof—in contrast to a resolution proof [28]. The existing method
works via backward checking [9]: Given a proof of unsatisfiability, the last clause
(the empty clause) of the proof is marked. Now the proof is validated in reverse
order. For each marked clause it is determined which clauses (occurring earlier in
the proof or in the formula) are required for the validation. Those clauses will be
marked (if they were not marked already). The order in which unit propagation
is applied influences which clauses become marked. Unmarked clauses are not
validated. After the proof is verified, the marked clauses in the formula form an
unsatisfiable core and the marked clauses in the proof form an optimized proof.
We present two new extensions that further reduce the size of the formula.

4.1 Justification Order Shuffling

A clausal proof typically has many different justifications and a justification can
typically be converted into many different clausal proofs, i.e., clauses appear in a
different order in the sequence. Here we exploit this property by 1) computing a
justification for a given clausal proof, 2) removing the clauses that are redundant
based on that justification, and 3) shuffle the remaining clauses in the proof based
on that justification. These steps are repeated multiple times.

Figure 3 shows the pseudo code of that algorithm. The procedure RemoveRe-
dundancy removes from a given clausal proof P and justification J all the clauses
in P that do not occur in any of the justifications of J . Given a justification J ,
the procedure ShuffleProof produces a random permutation of the clauses in J
such that each clause C appears 1) later in the proof than all the clauses in
the justification of C and 2) before all clauses that list C in their justification.
Additionally, ShuffleProof randomly shuffles the literals of each clause in J .

Clause deletion is not mentioned in the algorithm, but can also be helpful
to optimize proofs. A clause C can be deleted in a proof as soon as none of
the clauses occurring later in the proof uses C in their justification. On the
other hand, one could delete C at a later point in the proof (or not at all) to

OptimizeProof (clausal proof P , formula F )
1 do
2 J := ComputeJustification (P , F )
3 J := RemoveRedundancy (J)
4 P := ShuffleProof (J)
5 while (progress)
6 return P

Fig. 3. Optimizing a proof by iterative computing a new justification.



allow clauses later in the proof to incorporate C in their justification in the next
iteration. We randomly postpone deleting clauses in proofs in a certain window.
The window is slightly increased in each next iteration.

4.2 Iterative Trimming the Formula

Given a unsatisfiable formula that encodes the existence of a k-coloring of a
graph, an unsatisfiable core of that formula represents a subgraph that cannot
be colored with k colors. To find a small subgraph we would like a minimal
unsatisfiable core and ideally the smallest minimal unsatisfiable core. Although
there has been some research in to the latter [17,20,23], it is already hard to
compute a minimal unsatisfiable core. Existing algorithms for computing a min-
imal unsatisfiable core [21,22] focus more on easy problems. For harder problems
it is required to trim the formulas using a preprocessing step [3].

In preliminary experiments we observed that existing algorithms got stuck.
It turned out that if a “wrong” vertex is removed from the graph, then proving
that the remaining graph still has chromatic number 5 is very expensive. A proof
that the initial graph has chromatic number 5 consists of roughly 10,000 clauses.
After removing a clause that represents a “wrong” vertex, the proof consists of
millions of clauses. We concluded that existing tools are not effective for this
application, because they remove clauses arbitrary. This will eventually result in
removing a clause representating a “wrong” vertex. Although the checking costs
are a serious problem, there is a more problematic issue: as soon as it requires
millions of clauses to prove that the graph has chromatic number five, then
many vertices are involved in the proof and the minimal unsatisfiable core will
be relatively large. As a consequence, this also holds for the graph represented
by this core. We address this issue by taking away the elimination of arbitrary
clauses. Instead, we only remove clauses via trimming and proof optimization.

Figure 4 shows the pseudo codes of two algorithms to trim a formula: one
algorithm, called TrimFormulaPlain, that simply adds proof optimization to the
trimming loop and another one, called TrimFormulaInteract, that additionally
interacts with the original formula to further optimize the proof. We focus on
the latter algorithm, which is one of the main contributions of this paper.

TrimFormulaPlain (formula F )
1 Fcore := F
2 do
3 P := ComputeProof (Fcore)
4 P := OptimizeProof (P , Fcore)
5 Fcore := ComputeCore (P , Fcore)
6 while (progress)
7 return Fcore

TrimFormulaInteract (formula F )
1 Fcore := F
2 do
3 P := ComputeProof (Fcore)
4 P := OptimizeProof (P , Fcore)
5 P := OptimizeProof (P , F )
6 Fcore := ComputeCore (P , F )
7 while (progress)
8 return Fcore

Fig. 4. Pseudo code of two algorithms to trim the size of a formula using proof op-
timization: TrimFormulaPlain and TrimFormulaInteract. The latter algorithm interacts
with the original formula to further optimize the proof.



Algorithm TrimFormulaInteract takes advantage of the following property of
(D)RUP proofs: If (D)RUP proof P is a correct proof of formula F , then P is a
correct proof of any formula F ′ such that F ′ ⊇ F . Observe that additional clauses
cannot break the RUP check: if unit propagation on F results in a conflict, then
unit propagation on F ′ results in a conflict.

In each step of the main loop of TrimFormulaInteract, we first compute a proof
of unsatisfiability of the trimmed formula Fcore. The size of this proof is crucial
for the quality of the trimming. One could therefore solve Fcore multiple times by
shuffling the clauses and select the smallest proof of these runs. Afterwards, this
proof is optimized using Fcore via the algorithm shown in Fig. 3. Next, we use the
property discussed above and further optimize the proof using F and the same
optimization algorithm. The algorithm has now more options to minimize the
proof as F ⊇ Fcore. Moreover, the algorithm allows for a novel way to compute
a smaller core: In an earlier step a clause may have been removed that allows
for a small proof of unsatisfiability and/or small unsatisfiable core. Since each
step considers again all clauses of F , that clause may be pulled back into Fcore.

The size of Fcore does not necessarily decrease with each iteration and may
actually increase if a low quality proof is computed in line 3. We repeat the
algorithm as long as there is progress. In this case, we measured progress by the
reduction of the size of Fcore.

The result of these trimming algorithms is rarely a minimal unsatisfiable
core of the formula. We applied the classical destructive method [5] to reduce
Fcore to a minimal unsatisfiable core. We observed (some details are presented in
Section 6.2) that the size of the minimal unsatisfiable core can vary significantly
based on the selection of the clauses to remove. As a consequence we ran this
method multiple (thousands of) times on the cluster to obtain a relatively small
minimal unsatisfiable core of Fcore.

5 Observed patterns of points in Q[
√
3,
√
11]×Q[

√
3,
√
11]

The smallest known unit-distance graph with chromatic number 5, called G553,
has 553 vertices [13]. Its key component is a set of 420 points embedded in
Q[
√

3,
√

11]×Q[
√

3,
√

11] that have a limited number (19) of the colorings of the
points at distance 2 from the origin (central vertex) when coloring the set with
4 colors. Our strategy to compute a small unit-distance graph with chromatic
number 5 is finding a small set of vertices with the same property. We explored
many large graphs with points in Q[

√
3,
√

11] × Q[
√

3,
√

11] and computed the
size of proofs of unsatisfiability of the formula that determines the existence of
a 4-coloring while blocking the limited number of the colorings of the points
at distance 2. This section describes how we obtained the large graph with the
smallest proof of unsatisfiability that we encountered.

We denote by HR the graph consisting of i) a regular hexagon with maximal
radius R and ii) its center. The points of HR in the plane are (0, 0), (R, 0),
(R/2, R

√
3/2), (−R/2, R

√
3/2), (−R, 0), (−R/2,−R

√
3/2) and (R/2,−R

√
3/2).

Furthermore, we denote by H ′R a copy of HR rotated by 90 degrees.



Fig. 5. A 3-coloring of the graph H 1
3
⊕H 1

3
⊕H 1

3
(left) and a 4-coloring of the graph

H 1
3
⊕H 1

3
⊕H 1

3
⊕H ′√

3+
√

11
6

(right).

We observed some interesting patterns when combining the graphs H 1
3

and

H ′√3+
√

11
6

. Figure 5 (left) shows the graph H 1
3
⊕H 1

3
⊕H 1

3
, which is a triangular

grid with diameter 1. This graph has 37 vertices and 48 edges and can be colored
with 3 colors. However, the Minkowski sum of this triangular grid and H ′√3+

√
11

6
,

shown in Fig. 5 (right), is not 3-colorable. Notice that there are many edges
between the seven triangular grids. Actually, the graph has 259 vertices and 1 056
edges and most of these edges (720) are between triangular grids. There exist
many 4-colorings of this graph and most of them have no observable pattern.

Patterns start to emerge when applying the Minkowski sum again. Figure 6
shows a 4-coloring of the resulting graph H 1

3
⊕H 1

3
⊕H 1

3
⊕H ′√3+

√
11

6
⊕H ′√3+

√
11

6
.

Observe the clustering of vertices with the same color in circles of roughly a
diameter of 1 in size. This pattern can be observed in many of the found 4-
colorings of this graph, although there also exist some 4-colorings without this
pattern. It appears that assigning the same color to nearby vertices is the easiest
way to color this graph (using a SAT solver).

Applying the Minkowski sum another time breaks the prior pattern com-
pletely, as no more 4-colorings exist with clusters of vertices having the same
color. However, new patterns emerge, as can be seen in Fig 7. For example,
notice the reflection in the central vertical axis of the blue and green vertices.

Based on these observations, we experimented with ways to combine H 1
3

and H ′√3+
√

11
6

. An effective combination turned out to be unit-distance graph
G2167. This graph is constructed as follows. Let C13 denote the union of H 1

3
and



Fig. 6. A 4-coloring of the graph H 1
3
⊕H 1

3
⊕H 1

3
⊕H ′√

3+
√

11
6
⊕H ′√

3+
√

11
6

.

H ′√3+
√

11
6

. Now G2167 equals C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13 ⊕ C13

without the points that have a distance larger than 2 from the central vertex.
This graph has 2 167 vertices and 16 512 edges and is shown in Fig. 8. Notice
that the average vertex degree is larger than 15. This is quite high for a graph
with chromatic number 4.

Observe the vertical monochromatic lines in Fig. 8: Points with the same
horizontal coordinate have the same color. This pattern appears in many 4-
colorings (modulo a rotation of 60 degrees). There are solutions with vertical
lines with two colors, but none of the 4-colorings have more colors on a single
vertical line (again, modulo a rotation of 60 degrees). The only reason why such
solutions can exist is that the construction of G2167 does not generate points
with distance 1 that have the same horizontal coordinate. There appears no



Fig. 7. A 4-coloring of the graph H 1
3
⊕H 1

3
⊕H 1

3
⊕H ′√

3+
√

11
6
⊕H ′√

3+
√

11
6
⊕H ′√

3+
√

11
6

.

obvious way to add such points in a way that the resulting graph has chromatic
number 5. Another pattern that can be observed in Fig. 8 is that points with the
same vertical coordinate that are 2/3 apart from each other also have the same
color. Also any two points that are 1/3 apart have a different color. For example,
forcing that any vertex at distance 1/3 from the origin has the same color as the
central vertex eliminates all 4-colorings. Hence 1/3 is a so-called virtual-edge in
4-colorings of unit-distance graphs.

6 Small Unit-Distance Graph with Chromatic Number 5

In this section we present our SAT-based approach to improve the smallest
known unit-distance graph with chromatic number 5. We first explain how we
encode the problem and afterwards apply the new trimming algorithm presented
in Section 4.2.



Fig. 8. A 4-coloring of graph G2167.

6.1 Encoding

We can compute the chromatic number of a graph G as follows. Construct two
formulas, one asking whether G can be colored with k−1 colors, and one whether
G can be colored with k colors. Now, G has chromatic number k if and only if
the former is unsatisfiable while the latter is satisfiable.

The construction of these two formulas can be achieved using the following
encoding [13]: Given a graph G = (V,E) and a parameter k, the encoding uses
k|V | boolean variables xv,c with v ∈ V and c ∈ {1, . . . , k}. These variables have
the following meaning: xv,c is true if and only if vertex v has color c. Now we
can construct a propositional formula Fk that is satisfiable if and only if G can
be colored with k colors:

Fk :=
∧
v∈V

(xv,1 ∨ · · · ∨ xv,k) ∧
∧

{v,w}∈E

∧
c∈{1,...,k}

(xv,c ∨ xw,c)
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Fig. 9. The size (number of clauses) of the unsatisfiable core and the optimized proof of
unsatisfiability (y-axis) of the first twenty steps (x-axis) of the OptimizeProof algorithm,
when starting with F+

4 and the smallest proof (left) or the largest proof (right).

The first type of clauses, called vertex clauses, ensures that each vertex has
at least one color, while the second type of clauses, called edge clauses, forces
that two connected vertices are colored differently. Additionally, we could include
clauses to require that each vertex has at most one color. However, these clauses
are redundant and would be eliminated by blocked clause elimination [18], a
SAT preprocessing technique. We experimented using formulas with and without
blocked clauses. Although the results were quite similar, we had the impression
that without blocked clauses is slightly better.

We added symmetry-breaking predicates [6] during all experiments to speed
up solving and proof minimization. The color symmetries were broken by fixing
the vertex at (0, 0) to the first color, the vertex at (1, 0) to the second color, and
the vertex at (1/2,

√
3/2) to the third color. These three points are at distance 1

from each other and occurred in all our graphs. The speedup is roughly a factor
of 24 (= 4 · 3 · 2), when proving the absence of a 4-coloring.

6.2 Reducing the Large Part

The smallest known unit-distance graph with chromatic number 5 has 553 ver-
tices and consists of two parts: a large part with 420 vertices and a small part
with 134 vertices. The large part and small part have one vertex in common: the
origin. Analysis of these parts [13] showed that they have different purposes: the
large part limits the number of valid 4-coloring of 12 vertices at distance 2 from
the origin to 19. The small part prevents these 12 vertices to having any of these
19 4-colorings. Some important details are missing from this analysis and they
will be discussed later. We focused our effort to search for a small unit-distance
graph with chromatic number 5 by looking for a more compact large part.

In the first step, we constructed the formula whether graph G2167 has a 4-
coloring. Apart from the symmetry-breaking predicates, we added 19 clauses
that block the above mentioned 4-colorings that remain in the large part. This



formula, called F+
4 , is unsatisfiable and has 8 668 variables and 68 237 clauses. In

the next step we produce a proof of unsatisfiability of this formula. We used the
SAT solver glucose 3.0 [2] (without preprocessing techniques) for this purpose.
This solver allows to randomly initialize the decision heuristics (VSIDS), which
is a feature that can easily be added to most SAT solvers. This initialization can
have a significant impact on the size of the proof and on the size of the core. For
example, we solved the formula with 100 different seeds for the initialization. The
smallest proof had 1 809 clause addition steps, while the largest proof had 49 838
clause addition steps. The default glucose 3.0, i.e., without decision heuristics
initialization, produced a proof with 2 475 clause addition steps.

Figure 9 shows the effect of using the smallest and largest proof as input
for the OptimizeProof algorithm, which has been implemented in the DRAT-trim
proof checker (available at https://github.com/marijnheule/drat-trim) [15].
In both cases the size of the proof reduction is modest. However, a much smaller
unsatisfiable core can be extracted from the optimized smallest proof compared
to the optimized largest proof. The smaller core also corresponds to a smaller
subgraph (963 versus 1 609 vertices).

We also experimented with the two algorithms presented in Section 4.2. Fig-
ure 10 shows the size of the subgraph (extracted from the core) for the first
20 iterations with formula F+

4 as input using TrimFormulaPlain (left) or Trim-
FormulaInteract (right). Each experiment was run five times. The figure shows
that TrimFormulaInteract produces significantly smaller subgraphs. The TrimFor-
mulaPlain algorithm, as shown in Fig. 4, actually performs significantly worse
than the performance presented in Fig. 10. This poor performance is caused by
the removal of edge clauses and symmetry-breaking predicates from the core.
We improved the TrimFormulaPlain algorithm by adding back the removed edge
clauses and symmetry-breaking predicates in each iteration.

We studied the resulting graphs and observed that they were close to sym-
metric: Taking the union of the graph with rotated copies (120 degrees rotation
in the origin) added only a few dozen vertices. We decided to check whether
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Fig. 10. The size of subgraphs corresponding to the unsatisfiable cores when using the
algorithms TrimFormulaPlain (left) and TrimFormulaInteract (right).

https://github.com/marijnheule/drat-trim


this observation could be used to further shrink the large part by taking this
union as initial graph (instead of G2167) and rerun the procedure. This turned
out to be effective and allowed removing some additional vertices. We ran the
entire experiment many times on a cluster Several runs resulted in a graphs with
“only” 393 vertices. These graphs turned out to be the same (modulo rotation
and reflection). We call this graph L393. One can make L393 symmetric, i.e., it
maps onto itself when rotating it by 120 degrees along the central vertex, by
adding a single vertex.

6.3 Finalizing the Graph

The graph L393, produced in the previous subsection, needs to be extended
with a “small part” to establish a unit-distance graph with chromatic number 5.
Initially we tried to use the small part of G553. However, the resulting graph is
4-colorable, because L393 has fewer connections with that small part compared
to the large part of G553. We fixed this as follows: The small part of G553 got
expanded by merging it with copies that are 60 degrees rotated in the origin.
This resulted in a graph with 181 vertices (while the small part of G553 has 134
vertices), which we call S181. The union of L393 and S181 has chromatic number
5. We applied the same techniques as described in the previous subsection to
further reduce the size of this graph. This resulted in a graph being the union
of L393 and a new small part with 137 vertices.

Figure 11 shows the final graph G529 consisting of 529 vertices and 2 670
edges. This graph almost maps onto itself when rotating it with 120 degrees in
the origin. The figure shows a coloring in which only the origin has the fifth color
(white). Such a coloring exists for each vertex as the graph is vertex critical. The
shown coloring is a randomly selected one. Observe the clustering of vertices with
the same color. This pattern looks similar to the one shown in Fig. 6.

Graph G529 is available at https://github.com/marijnheule/CNP-SAT as
a list of points in the plane and a list of unit-distance edges. The repository also
contains a CNF formula encoding whether G529 is 4-colorable and a proof of
unsatisfiability that can be validated in a few seconds.

7 Conclusions

We presented a new algorithm to trim a formula by first optimizing a proof of
unsatisfiability. The algorithm optimizes the proof using both the shrinking for-
mula and the original formula. This allows reintroducing clauses in the shrinking
formula, which could further improve the trimming.

We constructed a unit-distance graph with points in Q[
√

3,
√

11]×Q[
√

3,
√

11].
The 4-colorings of this graph, G2167, have some interesting properties such as 1)
many (and in some 4-colorings all) vertices with the same horizontal coordinate
have the same color; 2) vertices that are 1/3 apart having a different color; and
3) vertices with the same vertical coordinate that are 2/3 apart have the same
color. All these properties are for a rotation of G2167 by 0, 120, or 240 degrees.

https://github.com/marijnheule/CNP-SAT


Fig. 11. A 529-vertex unit-distance graph with chromatic number 5. In the shown
coloring, only the origin has the fifth color (white).

By combining the new algorithm and the new graph, we were able to reduce
the smallest known unit-distance graph with chromatic number 5 to a graph
with 529 vertices and 2670 edges (down from 553 vertices and 2720 edges).
This graph is also much more symmetric. It is generally easier to understand
why a symmetric object has a certain property compared to an asymmetric
object. It may thus provide some insight how to obtain a unit-distance graph
with chromatic number 6 (if they exist). Using the techniques in the paper we
constructed several graphs with up to 100 000 vertices, but all were 5-colorable.

As future work, we plan to study the effectiveness of the new algorithm on
other applications that require minimal unsatisfiable cores.
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