
Improved Job Sequencing Bounds
from Decision Diagrams

J. N. Hooker

Carnegie Mellon University
jh38@andrew.cmu.edu

Abstract. We introduce a general method for relaxing decision dia-
grams that allows one to bound job sequencing problems by solving a
Lagrangian dual problem on a relaxed diagram. We also provide guide-
lines for identifying problems for which this approach can result in useful
bounds. These same guidelines can be applied to bounding deterministic
dynamic programming problems in general, since decision diagrams rely
on DP formulations. Computational tests show that Lagrangian relax-
ation on a decision diagram can yield very tight bounds for certain classes
of hard job sequencing problems. For example, it proves for the first time
that the best known solutions for Biskup-Feldman instances are within
a small fraction of 1% of the optimal value, and sometimes optimal.

1 Introduction

In recent years, binary and multivalued decision diagrams (DDs) have emerged
as a useful tool for solving discrete optimization problems [5,6,24]. A key factor
in their success has been the development of relaxed DDs, which represent a
superset of the feasible solutions of a problem and provide a bound on its
optimal value. While an exact DD representation of a problem tends to grow
exponentially with the size of the problem instance, a relaxed DD can be much
more compact when properly constructed. The tightness of the relaxation can
be controlled by adjusting the maximum allowed width of the DD.

Relaxed DDs are normally used in conjunction with a branching procedure
[5,12], much as is the linear programming (LP) relaxation in an integer program-
ming solver. As branching proceeds, the relaxed diagram provides a progressively
tighter bound. However, combinatorial problems are often solved with heuristic
methods that do not involve branching. This is true, in particular, of job sequenc-
ing problems. In such cases it is very useful to have an independently derived
lower bound that can provide an indication of the quality of the solution.

Recent research [20] has found that a relaxed DD can yield good bounds for
hard job sequencing problems without branching. In fact, a surprisingly small
relaxed DD, generally less than 10% the width of an exact DD, can yield a bound
equal to the optimal value. On the other hand, since exact DDs grow rapidly with
the instance size, relaxed DDs that are 10% of their width likewise grow rapidly.
As a result, relaxed DDs of reasonable width tend to provide progressively weaker
bounds as the instances scale up.

ar
X

iv
:1

90
8.

07
07

6v
1

 [
cs

.D
S]

 1
9

A
ug

 2
01

9

It is suggested in [20] that Lagrangian relaxation could help strengthen the
bounds obtained from smaller relaxed DDs. In this paper, we propose a general
technique for relaxing a DD while preserving the ability to obtain Lagrangian
bounds from the DD. The relaxed DD is constructed by merging nodes only when
they agree on certain state variables that are crucial to forming the Lagrangian
relaxation.

We find that for certain types of job sequencing problems, Lagrangian re-
laxation in relaxed DDs of reasonable width can provide very tight bounds
on the optimal value. For example, we prove for the first time that the best
known solution values of Biskup-Feldman single-machine scheduling instances
are within a small fraction of one percent of the optimum, and sometimes
optimal.

Furthermore, we identify general conditions under which Lagrangian relax-
ation can be implemented in a relaxed DD for purposes of obtaining bounds. The
conditions are expressed in terms of structural characteristics of the dynamic pro-
gramming model that defines the DD. They lead to a new tool for bounding not
only job sequencing problems with suitable structure, but general deterministic
dynamic programming models that satisfy the conditions.

2 Previous Work

Decision diagrams were introduced as an optimization method by [15,18]. The
idea of a relaxed diagram first appears in [1] as a means of enhancing propagation
in constraint programming. Relaxed DDs were first used to obtain optimization
bounds in [4,7]. Connections between DDs and deterministic dynamic program-
ming are discussed in [19].

Bergman, Ciré and van Hoeve first applied Lagrangian relaxation to decision
diagrams in [3], where they use it successfully to strengthen bounds for the trav-
eling salesman problem with time windows. They also use Lagrangian relaxation
and DDs in [2] to improve constraint propagation.

We advance beyond Bergman et al. [3] in two ways. First, we show how
to obtain bounds on tardiness and a variety of other objective functions from a
stand-alone relaxed DD. The DD in [3] represents only an all-different constraint
and can provide bounds only on total travel time (without taking time windows
into account). The DD is embedded in a constraint programming (CP) model
that contains the time window constraints. While constraints could be added to
the CP model to obtain tardiness and other kinds of bounds from the CP solver,
the DD itself cannot provide them. One or more additional state variables are
necessary, which results in a more complicated DD than the one used in [3]. Our
contribution is to define a new node merger scheme that relaxes such a DD while
allowing Lagrangian relaxation to be applied.

Our second contribution is to analyze, in general, when and how Lagrangian
relaxation can be combined with DDs. We introduce the concepts of an exact
state and an immediate penalty function and use these concepts to formulate
sufficient conditions for implementing Lagrangian relaxation in a relaxed DD.

This leads to a general method for bounding dynamic programming models that
satisfy the conditions. We find that while the method generates impracticably
large relaxed DDs for the job sequencing problems in [3] and [20], it is quite
practical for several important types of job sequencing problems.

3 Decision Diagrams

For our purposes, a decision diagram can be defined as a directed, acyclic
multigraph in which the nodes are partitioned into layers. Each arc of the graph
is directed from a node in layer i to a node in layer i+ 1 for some i ∈ {1, . . . , n}.
Layers 1 and n+ 1 contain a single node, namely the root r and the terminus t,
respectively. Each layer i is associated with a finite-domain variable xi ∈ Di. The
arcs leaving any node in layer i have distinct labels in Di, representing possible
values of xi at that node. A path from r to t defines an assignment to the tuple
x = (x1, . . . , xn) as indicated by the arc labels on the path. The decision diagram
is weighted if there is a length (cost) associated with each arc.

Any discrete optimization problem with finite-domain variables can be repre-
sented by a weighted decision diagram. The diagram is constructed so that its r–t
paths correspond to the feasible solutions of the problem, and the length (cost)
of any r–t path is the objective function value of the corresponding solution. If
the objective is to minimize, the optimal value is the length of a shortest r–t
path. Many different diagrams can represent the same problem, but for a given
variable ordering, there is a unique reduced diagram that represents it [10,19].

As an example, consider a job sequencing problem with time windows. Each
job j begins processing no earlier than the release time rj and requires processing
time pj . The objective is to minimize total tardiness, where the tardiness of
job j is max{0, sj + pj − dj}, and dj is the job’s due date. Figure 1 shows
a reduced decision diagram for a problem instance with (r1, r2, r3) = (0, 1, 1),
(p1, p2, p3) = (3, 2, 2), and (d1, d2, d3) = (5, 3, 5). Variable xi represents the ith
job in the sequence, and arc costs appear in parentheses.

4 Dynamic Programming Models

Decicision diagrams most naturally represent problems with a dynamic program-
ming formulation, because in this case a simple top-down compilation procedure
yields a DD that represents the problem. A general dynamic programming
formulation can be written

hi(Si) = min
xi∈Xi(Si)

{
ci(Si, xi) + hi+1

(
φi(Si, xi)

)}
(1)

Here, Si is the state in stage i of the recursion. Typically the state is a tuple
Si = (Si1, . . . , Sik) of state variables. Also Xi(Si) is the set of possible controls
(values of xi) in state Si, φi is the transition function in stage i, and ci(Si, xi) is
the immediate cost of control xi in state Si. We assume there is single initial state
S1 and a single final state Sn+1, so that hn+1(Sn+1) = 0 and φn(Sn, xn) = Sn+1

x1

x2

x3

r

{}0(4)

{1}3(4) {2}3(4) {3}3(6)

1(0)
2(0)

3(0)

{12}5(2) {13}5(4) {12}6(3) {23}5(4) {13}6(5)

2(2) 3(0) 1(2)
3(0)

2(2) 1(2)

t

3(2)

2(4)

3(3)
1(4)

2(5)

Fig. 1. Decision diagram for a small job sequencing instance, with arc labels and costs
shown. States and minimum costs-to-go are indicated at nodes.

for all states Sn and controls xn ∈ Xn(Sn). The quantity hi(Si) is the cost-to-go
for state Si in stage i, and an optimal solution has value h1(S1).

In the job sequencing problem, the state Si is the tuple (Vi, ti), where state
variable Vi is the set of jobs scheduled so far, and state variable ti is the finish
time of the last job scheduled. Thus the initial state is S1 = (∅, 0), and Xi(Si)
is {1, . . . , n} \ Vi. The transition function φi(Si, xi) is given by

φi
(
(Vi, ti), xi

)
=
(
Vi ∪ {xi}, max{rxi

, ti}+ pxi

)
The immediate cost is the tardiness that results from scheduling job xi in state
(Vi, ti). Thus if α+ = max{0, α}, we have

ci
(
(Vi, ti), xi

)
=
(

max{rxi
, ti}+ pxi

− dxi

)+

(2)

We recursively construct a decision diagram D for the problem by associating
a state with each node of D. The initial state S1 is associated with the root node
t and the final state Sn+1 with the terminal node t. If state Si is associated with
node u in layer i, then for each vi ∈ Xj(Si) we generate an arc with label vi
leaving u. The arc terminates at a node associated with state φi(Si, vi). Nodes
on a given layer are identified when they are associated with the same state.

The process is illustrated for the job sequencing example in Fig. 1. Each
node is labeled by its state (Vi, ti), followed (in parentheses) by the minimum
cost-to-go at the node. The cost-to-go at the terminus t is zero.

5 Relaxed Decision Diagrams

A weighted decision diagram D′ is a relaxation of diagram D when D′ represents
every solution in D with equal or smaller cost, and perhaps other solutions

as well. To make this more precise, suppose layers 1, . . . , n of both D and
D′ correspond to variables x1, . . . , xn with domains X1, . . . , Xn. Then D′ is
a relaxation of D if every assignment to x represented by an r–t path P in D
is represented by an r–t path in D′ with length no greater than that of P . The
shortest path length in D′ is a lower bound on the optimal value of the problem
represented by D. We will refer to a diagram that has not been relaxed as exact.

We can construct a relaxed decision diagram in top-down compilation by
merging some nodes that are associated with different states. The object is to
limit the width of the diagram (the maximum number of nodes in a layer).
When we merge nodes with states S and T , we associate a state S⊕T with the
resulting node. The operator ⊕ is chosen so as to yield a valid relaxation of the
given recursion.

The job sequencing problem discussed above uses a relaxation operator

(Vi, ti)⊕ (V ′i , t
′
i) = (Vi ∩ V ′i ,min{ti, t′i})

Vi is now the set of jobs scheduled along all paths to the current node, and
ti is the earliest finish time of the last scheduled jobs along these paths. The
operator is illustrated in Fig. 2, which is the result of merging states ({1, 2}, 6)
and ({2, 3}, 5) in layer 3 of Fig. 1. The relaxed states (V, f) are shown at each
node, followed by the minimum cost-to-go in parentheses. The shortest path now
has cost 2, which is a lower bound on the optimal cost of 4 in Fig. 1.

Sufficient conditions under which node merger results in a relaxed decision
diagram are developed in [20]. A state S′i relaxes a state Si when (a) all feasible
controls in state Si are feasible in state S′i, and (b) the immediate cost of any
given feasible control in Si is no less than its immediate cost in S′i. That is,
Xi(Si) ⊆ Xi(S

′
i), and ci(Si, xi) ≥ ci(S′i, xi) for all xi ∈ Xi(Si).

x1

x2

x3

r

{}0(2)

{1}3(4) {2}3(2) {3}3(4)

1(0)
2(0)

3(0)

{12}5(2) {13}5(4) {2}5(2) {13}6(5)

2(2) 3(0) 1(2)

3(0)

2(2) 1(2)

t

3(2)

2(4)
3(2)

1(4)

2(5)

Fig. 2. A relaxation of the decision diagram in Fig. 1.

Theorem 1 ([20]). If the following conditions are satisfied, the merger of nodes
with states Si and Ti within a decision diagram results in a valid relaxation of
the diagram.

– Si ⊕ Ti relaxes both Si and Ti.
– If state S′i relaxes state Si, then given any control v that is feasible in Si,
φ(S′i, v) relaxes φ(Si, v).

All relaxed diagrams we consider are associated with a dynamic programming
model that satisfies the conditions of the theorem. The shortest path problem
in the relaxed DD requires a modification of the original dynamic programming
model that accounts for the merger of states. Also, it is sometimes necessary to
use additional state variables to obtain a valid relaxation [5], and so we replace
the state vector Si with a possibly enlarged vector S̄i. The recursive model
becomes

h̄i(S̄i) = min
xi∈Xi(S̄i)

{
ci(S̄i, xi) + h̄i+1

(
ρi+1

(
φi(S̄i, xi)

))}
(3)

where ρi+1(S̄i+1) is a relaxation of state S̄i+1 that reflects the merger of states
in stage i+1 of the recursion. In the example, S̄i = Si, since no additional states
are necessary to formulate the relaxation.

It will be convenient to distinguish exact from relaxed state variables in model
(3). A state variable Sij in (3) is exact if any sequence of controls x1, . . . , xi−1

that leads to a given value of Sij in the original recursion (1) leads to that same
value in the relaxed recursion (3). Otherwise Sij is relaxed. In the example,
neither Vi nor ti is exact if any pair of states can be merged. However, if we
permit the merger of (Vi, ti) and (V ′i , t

′
i) only when ti = t′i, then state variable

ti is exact. In general we have the following, which is easy to show.

Lemma 1. A state variable Sij is exact if states Si, S
′
i are merged only when

Sij = S′ij.

6 Lagrangian Duality and Decision Diagrams

Consider an optimization problem

z∗ = min
x∈X

{
f(x)

∣∣ g(x) = 0
}

(4)

where x = (x1, . . . , xn), g(x) = (g1(x), . . . , gm(x)) and 0 = (0, . . . , 0). The
condition that x ∈ X is typically represented by a constraint set. A Lagrangian
relaxation of (4) has the form

θ(λ) = min
x∈X

{
f(x) + λTg(x)

}
(5)

where λ = (λ1, . . . , λm). The relaxation dualizes the constraints g(x) = 0. It is
easy to show that θ(λ) is a lower bound on z∗ for any λ ∈ Rm. The Lagrangian
dual of (4) seeks the tightest bound θ(λ):

max
λ∈Rm

{
θ(λ)

}
(6)

The motivation for using a Lagrangian dual is to obtain tight bonds while
dualizing troublesome constraints. If g(x) depends on a very small number of
state variables, then dualizing the constraint g(x) = 0 may allow one to solve
the problem within time and space constraints.

Lagrangian duality can be illustrated in the minimum tardiness job sequenc-
ing problem discussed earlier. The variables x1, . . . , xn should have different val-
ues, or equivalently, that each job j should occur in a given solution exactly once.
Since a relaxed DD does not enforce this condition, we dualize the constraint
g(x) = 0, where g(x) = (g1(x), . . . , gn(x)) and

gj(x) = −1 +

n∑
i=1

(xi = j), with (xi = j) =

{
1 if xi = j
0 otherwise

As observed in [3], the Lagrangian penalty λjgj(x) can be represented in a
relaxed DD by adding λj to the cost of each arc corresponding to control j
and subtracting

∑
j λj from the cost of each arc leaving the root node. Then

the length of each r–t path includes the Lagrangian penalty λTg(x) for the
corresponding solution x, which is zero if x satisfies the all-different constraint.

In general, g(x) can be computed recursively in a relaxed DD when there is
a vector-valued immediate penalty function γi(S̄

L
i , xi) for which

g(x) =

n∑
i=1

γi(S̄
L
i , xi) (7)

where each S̄L
i is a tuple consisting of exact state variables Si` for ` ∈ L. In

the example, the constraint function g(x) requires no state information, and S̄L
i

is empty. The immediate penalty γi((Vi, ti), xi) can be written simply γi(xi),
where

γij(xi) =

{
(xi = j) if i ∈ {2, . . . , n}
(xi = j)− 1 if i = 1

(8)

for j = 1, . . . , n.
Implementing a Lagrangian relaxation (4) in a relaxed DD also requires that

the original objective function value f(x) be computed as part of the path length.
Normally, the path length is only a lower bound on f(x). To compute f(x)
exactly in the relaxed recursion (3), we must have an immediate cost function
that depends only on exact state variables. That is, we must have

f(x) =

n∑
i=1

c̄i(S̄
K
i , xi) (9)

where S̄K
i is a tuple consisting of exact state variables Sik for k ∈ K. In the

example, the immediate cost function (2) depends on the state variable ti, which
must therefore be exact. We therefore have S̄K

i = (ti). Due to Lemma 1, we can
ensure that ti is exact by merging nodes only when ti has the same value in the
corresponding states. Thus Lagrangian relaxation can be implemented in the
minimum tardiness example if we merge nodes in this fashion.

The above observations can be summed up as follows.

Theorem 2. Lagrangian relaxation (5) can be implemented in a relaxed DD if
there are immediate cost functions c̄i(S̄

K
i , xi) for which (9) holds and immediate

penalty functions γi(S̄
L
i , xi) for which (7) holds, where S̄K

i and S̄L
i consist

entirely of exact state variables in S̄i. In this case the recursion for computing
shortest paths in the relaxed DD becomes

h̄i(S̄i,λ) = min
xi∈Xi(S̄i)

{
c̄i(S̄

K
i , xi) + λTγi(S̄

L
i , xi) + h̄i+1

(
ρi+1

(
φi(S̄i, xi)

)
,λ
)}

Corollary 1. Lagrangian relaxation (5) can be implemented in a relaxed DD if
nodes are merged only when their states agree on the values of the state variables
on which the immediate cost functions and the immediate penalty functions
depend. That is, nodes with states S̄i and T̄i are merged only when S̄K

i = T̄K
i

and S̄L
i = T̄L

i , where K and L are in as Theorem 2.

7 Problem Classes

We now examine a few classes of job sequencing problems to determine whether
they are suitable for Lagrangian relaxation on a relaxed DD. All of these prob-
lems have an all-different constraint that is dualized as before using the immedi-
ate penalty function (8). Since this function depends on no state variables, the
state variables that must be exact are simply those on which the immediate cost
function depends. That is, S̄L

i is empty, and suitability for relaxation depends
on which variables are in S̄K

i . We note that even when DD-based Lagrangian
relaxation is not suitable for a given problem class, it may be useful when
combined with branching, or when the relaxed DD is embedded in a larger
model.

7.1 Sequencing with Time Windows

Problems in which jobs with state-independent processing times are sequenced,
possibly subject to time windows, are generally conducive to Lagrangian relax-
ation on DDs. The problem of minimizing total tardiness is discussed above, and
computational results are presented in Section 8. Minimizing makespan or the
number of late jobs is treated similarly.

A popular variation on the problem minimizes the sum of penalized earliness
and tardiness with respect to a common due date [8,9,11,16,17,22,25]. Earliness
of job j is weighted by αj and lateness by βj . The recursive model for an exact DD
uses the same state variables (Vi, ti) as the minimum tardiness problem. However,
a valid relaxed DD requires an additional state variable si that represents latest
start time, while ti again represents earliest finish time. The transition and
immediate cost functions are

φ̄i
(
(Vi, si, ti), xi

)
=
(
Vi ∪ {xi}, si + pxi , ti + pxi

)
c̄i
(
(Vi, si, ti), xi

)
= αxi

(
si + pxi

− dxi

)+
+ βxi

(
ti + pxi

− dxi

)+

The merger operation is

(Vi, si, ti)⊕ (V ′i , s
′
i, t
′
i) =

(
Vi ∩ V ′i ,max{si, s′i},min{ti, t′i}

)
The immediate cost depends on both si and ti, which means that both of these
state variables must be exact. This may appear to result in a large relaxed DD,
because nodes can be merged only when they agree on both state variables.
However, since si and ti are initially equal, and these state variables are exact,
they remain equal throughout the relaxed DD construction. The resulting DD
is therefore the same that would result if a single state variable were exact.
Computational results are presented Section 8.

7.2 Time-Dependent Costs and/or Processing Times

Costs and processing times can be time-dependent in two senses: they may
depend on the position of each job in the sequence, or on the clock time at
which the job is processed. Both senses occur in the literature, and both can be
treated with Lagrangian relaxation on DDs.

If the processing time pij of job j depends on the position i of the job in the
sequence, then the immediate cost in the relaxation is

c̄i((Vi, ti), xi) =
(

max{ti, rxi
}+ pixi

− dxi

)+
which depends only on the state variable ti. Since c̄i is already indexed by the
position i, any other element of cost that depends on i is easily incorporated into
the function. Thus we need only ensure that states are merged only when they
agree on ti, a condition that is already satisfied in the relaxed model described
above for minimum-tardiness sequencing problems.

If the processing time pj(s) of job j depends on the time s at which job j
starts, the immediate cost is

c̄i((Vi, ti), xi) =
(

max{ti, rxi
}+ pxi

(max{ti, rxi
})− dxi

)+
which again depends only on state variable ti. Any other time-dependent element
of cost likewise depends only on ti, and so states can be merged whenever they
agree on ti.

7.3 Sequence-Dependent Processing Times

We refer to a job j’s processing time as sequence dependent when its processing
time pj′j depends on the immediately preceding job j′ in the sequence. When
there are no time windows and the objective is to minimize travel time, the
problem is a traveling salesman problem. The state variables are Vi and the
immediately preceding job yi. The transition and immediate cost functions are

φ̄i
(
(Vi, yi), xi

)
=
(
Vi ∪ {xi}, xi

)
c̄i
(
(Vi, yi), xi

)
= pyixi

(10)

Since the immediate cost depends only on state yi, nodes can be merged when-
ever they are reached using the same control. This permits a great deal of reduc-
tion in the relaxed DD and suggests that a Lagrangian approach to bounding
can be effective. While pure traveling salesman problems are already well solved,
a DD-based Lagrangian bounding technique may be useful when there are side
constraints.

When there are time windows in the problem, an additional state variable
ti representing the finish time of the previous job is necessary for a stand-alone
relaxed DD. The transition function is

φ̄i
(
(Vi, yi, ti), xi

)
=
(
Vi ∪ {xi}, xi,max{rxi

, ti}+ pyixi

)
(11)

The immediate cost functions for minimizing travel time and total tardiness,
respectively, are

c̄i
(
(Vi, yi, ti), xi

)
= (rxi

− ti)+ + pyixi
(12)

c̄i
(
(Vi, yi, ti), xi

)
=
(

max{rxi
, ti}+ pyixi

− dxi

)+
(13)

In either case, the immediate cost depends on two state variables yi and ti, and
nodes can be merged only when they agree on these variables. This is likely to
result in an impracticably large relaxed DD. For example, if there are 50 jobs and
a few hundred possible values of ti, a layer of the relaxed DD could easily expand
to tens of thousands of nodes. We confirmed this with preliminary experiments
on the Dumas instances [14]. Lagrangian relaxation on a stand-alone relaxed DD
therefore does not appear to be a promising approach to bounding TSP problems
with time windows. One can, of course, use the simpler DD described by (10)
to bound travel time (although not total tardiness), as is done in [3]. However,
this relaxation ignores time windows altogether and would yield a weaker bound
than (11)–(12).

7.4 State-Dependent Processing Times

We refer to a job’s processing times as state dependent when they depend on one
or more of the state variables in the recursion, such as the set Vi of jobs already
processed. Such a problem is studied in [20], where the processing time is less
if a certain job has already been processed. State variables are again Vi and ti,
but to build a relaxed DD we need an additional state variable Ui representing
the sets of jobs that have been processed along some path to the current node.
The transition function and immediate cost function are

φ̄i
(
(Vi, Ui, ti), xi

)
=
(
Vi ∪ {xi}, Ui ∪ {xi},max{rxi

, ti}+ pxi
(Ui)

)
c̄i
(
(Vi, Ui, ti), xi

)
=
(

max{rxi
, ti}+ pxi

(Ui)− dxi

)+
where the processing time is pxi(Ui). The merger operation is

(Vi, Ui, ti)⊕ (V ′i , U
′
i , t
′
i) =

(
Vi ∩ V ′i , Ui ∪ U ′i ,min{ti, t′i}

)

Since the cost depends on both ti and Ui, these state variables must be exact,
and states can be merged only when they agree on the values of ti and Ui.
This predicts that the relaxed DD will grow rapidly with the number of jobs.
DD-based Lagrangian relaxation is therefore not a promising approach to this
type of problem.

8 Computational Experiments

8.1 Problem Instances

To assess the quality of bounds obtained from Lagrangian relaxation on relaxed
DDs, it is necessary to obtain problem instances with known optimal values,
or values that are likely to be close to the optimum. We carry out tests on
two well-known sets of instances, corresponding to two sequencing problems
identified earlier to be suitable for bounding. One is the set of minimum weighted
tardiness instances of Crauwels, Potts and Wassenhove [13], which we refer to
as the CPW instances. The other is the Biskup-Feldman collection of minimum
weighted earliness-plus-tardiness instances with a common due date [8].

The CPW set consists of 125 instances of each of three sizes: 40 jobs, 50
jobs, and 100 jobs. We compute bounds for first 25 instances in the 40- and 50-
job sets. These instances exhibit a wide range of gradually increasing tardiness
values, thus providing a diverse selection for testing. Optimal solutions are given
in [8] for all of these instances except instance 14 with 40 jobs, and instances
11, 12, 14 and 19 with 50 jobs. Solution values presented in [8] for the unsolved
instances are apparently the best known.

The Biskup-Feldman collection includes 10 instances of each size, where
the sizes are 10, 20, 50, 100 and 200 jobs. We study the instances with 20,
50 and 100 jobs. The instances specify only the processing times pj and the
earliness/tardiness weights αj , βj described earlier. The common due date for
all jobs in an instance is not specified. Typical practice is to set the due date
equal to d(h) = bh∑j pjc, where h is a parameter.

We compare our lower bounds against the best known solution values re-
ported in [25]. These authors compute the earliness penalty with respect to
d(h1) and the tardiness penalty with respect to d(h2) for h1 < h2, so that
the penalty for each job j is αj(d(h1) − tj)

+ + βj(tj − d(h2))+, where tj is
the finish time of job j. Heuristics are used in [25] to solve instances with
(h1, h2) = (0.1, 0.2), (0.1, 0.3), (0.2, 0.5), (0.3, 0.4), and (0.3, 0.5). We study
instances with (h1, h2) = (0.1, 0.2) and (0.2, 0.5) to provide a look at contrasting
cases. To our knowledge, none of these instances have been solved to proven
optimality.

8.2 Solving the Lagrangian Dual

We use subgradient optimization to solve the Lagrangian dual problem (6). Each
iterate λk is obtained from the previous by the update formula

λk+1 = λk + σkg(xk)

where xk is the value of x obtained when computing θ(λk) in (5). The art of
Lagrangian optimization is choosing the step size σk. This choice is avoided
in [3] by using the Kelly-Cheney-Goldstein bundle method [21] of deriving λk

from previous iterates. However, Polyak’s method [23] seems better suited to our
purposes, because it is much easier to implement, and it requires as a parameter
only an upper bound θ∗ on the optimal value of θ(λ). Such a bound is available
in practice, because one seeks to estimate how far a known solution value lies
from the optimal value, and that solution value is an upper bound θ∗. Polyak’s
method defines the step size to be

σk =
θ∗ − θ(λk)

‖g(xk)‖22

8.3 Building the Relaxed Diagram

In previous work [1,4,6], heuristically-selected nodes are merged in each layer
after all states obtainable from the previous layer are generated. Since we wish
to merge all nodes that agree on ti, and no others, we merge these nodes
as we generate the states, rather than first generating all possible states and
then merging nodes. This drastically reduces computation time and results in
reasonable widths that gradually increase as layers are created.

8.4 Computational Results

The computational tests were run on a Dell XPS-13 laptop computer with Intel
Core i7-6560U (4M cache, 3.2 GHz) and 16GB memory. Results for the CPW
instances appear in Table 1. The table displays optimal (or best known) values
and DD-based bounds, as well as the absolute and relative gap between the two.
It also shows the maximum width of the relaxed DD (always obtained in layer
n), the time required to build the DD, and the time consumed by the subgradient
algorithm. Since a subgradient iteration requires only the solution of a shortest
path problem in the relaxed DD, we allowed the algorithm to run for 50,000
iterations to obtain as much improvement in the bound as seemed reasonably
possible. Due to slow convergence, which is typical for subgradient algorithms,
a bound that is nearly as tight can be obtained by executing only, say, 20% as
many iterations.

The bounds in Table 1 are reasonably tight. The gap is well below one percent
in most cases, and below 0.1% in about a quarter of the cases, although a few of
the bounds are rather weak. The optimal value was obtained for one instance.
The gap for instance 14 in the 40-job table suggests that the best known value is
probably not optimal, while no such inference can be drawn for the 4 unsolved
50-job instances.

Results for the Biskup-Feldman instances appear in Table 2, where the bounds
are compared with the best known solutions. The relaxed DDs are the same for
the two sets of due dates (h1, h2) = (0.1, 0.2), (0.2, 0.5); only the costs differ.
The bounds are very tight, resulting in gaps that are mostly under 0.1%. This

indicates that the known solutions are, at worst, very close to optimality. In fact,
optimality is proved for 8 instances, which represents the first time that any of
these instances have been solved. The bounds may be equal to the optimal value
for other instances, since the known values displayed may not be optimal.

9 Conclusion

We have shown how Lagrangian relaxation in a stand-alone relaxed decision
diagram can yield tight optimization bounds for certain job sequencing problems.
We also characterized problems on which this approach is likely to be effective;
namely, problems in which a relaxed DD of reasonable width results from a
restricted form of state merger. The restriction is that states may be merged
only when they agree on the values of state variables on which the cost function
and dualized constraints depend in a recursive formulation of the problem.

Based on this analysis, we observed that job sequencing problems with state-
independent processing times and time windows are suitable for this type of
bounding, whether one minimizes tardiness, makespan or the number of late
jobs. The same is true when processing times are dependent on when the job
is processed or its position in the sequence. The traveling salesman problem
can also bounded in this fashion. However, the TSP with time windows, as
well as problems with state-dependent processing times in general, are normally
unsuitable for DD-based Lagrangian relaxation, unless the relaxed diagram is
combined with branching or embedded in a larger model.

We ran computational experiments on 110 instances from the well-known
Crauwels-Potts-Wassenhove and Biskup-Feldman problem sets, with sizes rang-
ing from 20 to 100 jobs. We found that DD-based Lagrangian relaxation can
provide tight bounds for nearly all of these instances. This is especially true
of the Biskup-Feldman instances tested, all of which were unsolved prior to this
work. We showed that the best known solutions are almost always within a small
fraction of one percent of the optimum, and we proved optimality for 8 of the
solutions. To our knowledge, these are the first useful bounds that have been
obtained for these instances.

More generally, our analysis can be used to identify dynamic programming
models that may have a useful relaxation based on relaxed decision diagrams
and Lagrangian duality.

Table 1. Comparison of bounds with optimal values (target) of CPW instances. Computation times are in seconds.

40 jobs

Instance Target Bound Gap Percent Max Build Subgr
gap width time time

1 913 883 30 3.29% 3163 16 1287

2 1225 1179 46 3.76% 3652 20 1420
3 537 483 54 10.06% 3556 20 1443

4 2094 2047 47 2.24% 3568 20 1427
5 990 980 10 1.01% 3305 18 1312

6 6955 6939 16 0.23% 3588 20 1406

7 6324 6299 25 0.40% 3509 20 1437
8 6865 6743 122 1.78% 3508 20 1393

9 16225 16049 176 1.08% 3699 22 1468

10 9737 9591 146 1.50% 3426 19 1346
11 17465 17417 48 0.27% 3770 23 1493

12 19312 19245 67 0.35% 3644 22 1435

13 29256 29003 253 0.86% 3736 22 1506
14 ∗14377 14100 277 1.93% 3609 21 1406

15 26914 26755 159 0.59% 3849 23 1554
16 72317 72120 197 0.27% 3418 19 1382
17 78623 78501 122 0.16% 3531 20 1384
18 74310 74131 179 0.24% 3524 20 1431
19 77122 77083 39 0.05% 3407 19 1320

20 63229 63217 12 0.02% 3506 20 1344
21 77774 77754 20 0.03% 3766 22 1433
22 100484 100456 28 0.03% 3489 20 1382

23 135618 135617 1 0.001% 3581 21 1375
24 119947 119914 33 0.03% 3477 19 1295
25 128747 128705 42 0.03% 3597 22 1339

∗Best known solution

50 jobs

Instance Target Bound Gap Percent Max Build Subgr
gap width time time

1 2134 2100 34 1.59% 4525 48 2633

2 1996 1864 132 6.61% 4453 53 2856
3 2583 2552 31 1.20% 4703 52 2697

4 2691 2673 18 0.67% 4585 55 2703
5 1518 1342 176 11.59% 4590 52 2658

6 26276 26054 222 0.84% 4490 48 2562

7 11403 11128 275 2.41% 4357 45 2499
8 8499 8490 9 0.11% 4396 46 2501

9 9884 9507 377 3.81% 4696 52 2660

10 10655 10594 61 0.57% 4740 53 2738
11 ∗43504 43472 32 0.07% 4597 50 2606

12 ∗36378 36303 75 0.21% 4500 48 2655

13 45383 45310 73 0.16% 4352 47 2521
14 ∗51785 51702 83 0.16% 4699 52 2656

15 38934 38910 47 0.12% 4650 52 2630
16 87902 87512 390 0.44% 4589 49 2623
17 84260 84066 194 0.23% 4359 45 2526
18 104795 104633 162 0.15% 4448 47 2505
19 ∗89299 89163 136 0.15% 4609 50 2660

20 72316 72222 94 0.13% 4678 51 2659
21 214546 214476 70 0.03% 4406 47 2580
22 150800 150800 0 0% 4098 39 418

23 224025 223922 103 0.05% 4288 44 2441
24 116015 115990 25 0.02% 4547 49 2620
25 240179 240172 7 0.003% 4639 51 2686

∗Best known solution

Table 2. Comparison of bounds with best known values (target) of Biskup-Feldman instances.

(h1, h2) = (0.1, 0.2) (h1, h2) = (0.2, 0.5)

Instance Target Bound Gap Percent Subgr Target Bound Gap Percent Subgr Max Build
gap time gap time width time

20 jobs
1 4089 4089 0 0% 1 1162 1162 0 0% 1 323 0.12
2 8251 8244 7 0.08% 28 2770 2766 4 0.14% 27 287 0.08
3 5881 5877 4 0.07% 27 1675 1669 6 0.36% 28 287 0.08
4 8977 8971 6 0.07% 27 3113 3108 5 0.16% 27 287 0.08
5 4028 4024 4 0.10% 32 1192 1187 5 0.42% 32 341 0.10
6 6306 6288 18 0.29% 26 1557 1557 0 0% 1 271 0.09
7 10204 10204 0 0% 1 3573 3569 4 0.11% 29 305 0.09
8 3742 3739 3 0.08% 25 990 979 11 1.11% 25 267 0.08
9 3317 3310 7 0.21% 21 1056 1055 1 0.09% 22 230 0.07

10 4673 4669 4 0.09% 29 1355 1349 6 0.44% 30 320 0.09
50 jobs

1 39250 39250 0 0% 16 12754 12752 2 0.02% 501 931 2.8
2 29043 29043 0 0% 191 8468 8463 5 0.06% 524 931 2.9
3 33180 33180 0 0% 300 9935 9935 0 0% 66 836 2.4
4 25856 25847 9 0.03% 549 7373 7335 38 0.52% 521 932 2.8
5 31456 31439 17 0.05% 540 8947 8938 9 0.10% 529 932 3.0
6 33452 33444 8 0.02% 544 10221 10213 8 0.08% 532 932 2.9
7 42234 42228 6 0.01% 491 12002 11981 21 0.17% 465 835 2.4
8 42218 42203 15 0.04% 491 11154 11141 13 0.12% 478 833 2.4
9 33222 33218 4 0.01% 503 10968 10965 3 0.03% 508 884 2.7

10 31492 31481 11 0.03% 529 9652 9650 3 0.03% 522 932 2.9
100 jobs

1 139573 139556 17 0.01% 4075 39495 39467 28 0.07% 3968 1882 42
2 120484 120465 19 0.02% 4065 35293 35266 27 0.08% 4068 1882 44
3 124325 124289 36 0.03% 3957 38174 38150 24 0.06% 4059 1882 42
4 122901 122876 25 0.02% 3903 35498 35467 31 0.09% 3964 1882 42
5 119115 119101 14 0.01% 3925 34860 34826 34 0.10% 4016 1882 42
6 133545 133536 9 0.007% 3987 35146 35123 23 0.07% 3961 1882 43
7 129849 129830 19 0.01% 4027 39336 39303 33 0.08% 3974 1882 43
8 153965 153958 7 0.005% 3722 44963 44927 36 0.08% 3865 1784 39
9 111474 111466 8 0.007% 3930 31270 31231 39 0.12% 4008 1882 42

10 112799 112792 7 0.006% 3936 34068 34048 20 0.06% 4003 1882 42

References

1. Andersen, H.R., Hadžić, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) Principles and Practice of
Constraint Programming (CP 2007). LNCS, vol. 4741, pp. 118–132. Springer (2007)

2. Bergman, D., Ciré, A.A., van Hoeve, W.J.: Improved constraint propagation
via Lagrangian decomposition. In: Pesant, G. (ed.) Principles and Practice of
Constraint Programming (CP 2015). LNCS, vol. 9255, pp. 30–38. Springer (2015)

3. Bergman, D., Ciré, A.A., van Hoeve, W.J.: Lagrangian bounds from decision
diagrams. Constraints 20, 346–361 (2015)

4. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Optimization bounds
from binary decision diagrams. INFORMS Journal on Computing 26, 253–268
(2013)

5. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization
with binary decision diagrams. INFORMS Journal on Computing 28, 47–66 (2014)

6. Bergman, D., Ciré, A.A., van Hoeve, W.J., Hooker, J.N.: Decision Diagrams for
Optimization. Springer (2016)

7. Bergman, D., van Hoeve, W.J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Proceedings of CPAIOR. LNCS, vol. 6697, pp.
20–35 (2011)

8. Biskup, D., Feldman, M.: Benchmarks for scheduling on a single machine against
restrictive and unrestrictive common due dates. Computers and Operations
Research 28, 787–801 (2001)

9. Biskup, D., Feldman, M.: On scheduling around large restrictive common due
windows. European Journal of Operational Research 162, 740–761 (2005)

10. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

11. Chen, Z.L.: Scheduling and common due date assignment with earliness-tardiness
penalties and batch delivery costs. European Journal of Operational Research 93,
49–60 (1996)

12. Ciré, A.A., van Hoeve, W.J.: Multivalued decision diagrams for sequencing
problems. Operations Research 61, 1411–1428 (2013)

13. Crauwels, H., Potts, C., Wassenhove, L.V.: Local search heuristics for the single
machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing 10, 341–350 (1998)

14. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for
the traveling salesman problem with time windows. Operations Research 43, 367–
371 (1995)

15. Hadžić, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1
programming. In: Loute, E., Wolsey, L. (eds.) CPAIOR 2007 Proceedings. LNCS,
vol. 4510, pp. 84–98. Springer (2007)

16. Hall, N.G., Posner, M.E.: Earliness-tardiness scheduling problems, I: Weighted
deviation of completion times about a common due date. Operations Research 39,
836–846 (1991)

17. Hall, N.G., Posner, M.E., Sethi, S.P.: Earliness-tardiness scheduling problems, II:
Weighted deviation of completion times about a restrictive common due date.
Operations Research 39, 847–856 (1991)

18. Hooker, J.N.: Discrete global optimization with binary decision diagrams. In:
GICOLAG 2006. Vienna, Austria (December 2006)

19. Hooker, J.N.: Decision diagrams and dynamic programming. In: Gomes, C.,
Sellmann, M. (eds.) CPAIOR 2013 Proceedings. LNCS, vol. 7874, pp. 94–110.
Springer (2013)

20. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.)
Principles and Practice of Constraint Programming (CP 2017). LNCS, vol. 10416,
pp. 565–578. Springer (2017)

21. Lemaréchal, C.: Lagrangian relaxation. In: Jünger, M., Naddef, D. (eds.)
Computational Combinatorial Optimization. Lecture Notes in Computer Science,
vol. 2241, pp. 112–156. Springer (2001)

22. Ow, P.S., Morton, T.E.: The single machine early/tardy problem. Management
Science 35, 177–191 (1989)

23. Polyak, B.T.: Introduction to Optimization (translated from Russian). Optimiza-
tion Software, New York (1987)

24. Serra, T., Hooker, J.N.: Compact representation of near-optimal integer
programming solutions. Mathematical Programming (to appear)

25. Ying, K.C., Lin, S.W., Lu, C.C.: Effective dynamic dispatching rule and
constructive heuristic for solving single-machine scheduling problems with a
common due window. International Journal of Production Research 55, 1707–1719
(2017)

	Improved Job Sequencing Bounds from Decision Diagrams

