
Reward Potentials for Planning with Learned
Neural Network Transition Models

Buser Say1,2?, Scott Sanner1,2, and Sylvie Thiébaux3

1 University of Toronto, Canada {bsay,ssanner}@mie.utoronto.ca
2 Vector Institute, Canada

3 Australian National University, Australia sylvie.thiebaux@anu.edu.au

Abstract. Optimal planning with respect to learned neural network
(NN) models in continuous action and state spaces using mixed-integer
linear programming (MILP) is a challenging task for branch-and-bound
solvers due to the poor linear relaxation of the underlying MILP model.
For a given set of features, potential heuristics provide an efficient frame-
work for computing bounds on cost (reward) functions. In this paper, we
model the problem of finding optimal potential bounds for learned NN
models as a bilevel program, and solve it using a novel finite-time con-
straint generation algorithm. We then strengthen the linear relaxation of
the underlying MILP model by introducing constraints to bound the re-
ward function based on the precomputed reward potentials. Experimen-
tally, we show that our algorithm efficiently computes reward potentials
for learned NN models, and that the overhead of computing reward po-
tentials is justified by the overall strengthening of the underlying MILP
model for the task of planning over long horizons.

Keywords: Neural Networks · Potential Heuristics · Planning · Con-
straint Generation.

1 Introduction

Neural networks (NNs) have significantly improved the ability of autonomous
systems to learn and make decisions for complex tasks such as image recogni-
tion [11], speech recognition [5], and natural language processing [4]. As a result
of this success, formal methods based on representing the decision making prob-
lem with NNs as a mathematical programming model, such as verification of
NNs [9,14] and optimal planning with respect to the learned NNs [18] have been
studied.

In the area of learning and planning, Hybrid Deep MILP Planning [18] (HD-
MILP-Plan) has introduced a two-stage data-driven framework that (i) learns
transitions models with continuous action and state spaces using NNs, and (ii)
plans optimally with respect to the learned NNs using a mixed-integer linear
programming (MILP) model. It has been experimentally shown that optimal

? This work is done during author’s visit to Australian National University.

ar
X

iv
:1

90
4.

09
36

6v
4

 [
cs

.A
I]

 2
6

Ju
l 2

01
9

2 Say et al.

planning with respect to the learned NNs [18] presents a challenging task for
branch-and-bound (B&B) solvers [8] due to the poor linear relaxation of the
underlying MILP model that has a large number of big-M constraints.

In this paper, we focus on the important problem of improving the efficiency
of MILP models for decision making with learned NNs. In order to tackle this
challenging problem, we build on potential heuristics [15,19], which provide an
efficient framework for computing a lower bound on the cost of a given state as a
function of its features. In this work, we describe the problem of finding optimal
potential bounds for learned NN models with continuous inputs and outputs
(i.e., continuous action and state spaces) as a bilevel program, and solve it using
a novel finite-time constraint generation algorithm. Features of our linear poten-
tial heuristic are defined over the hidden units of the learned NN model, thus
providing a rich and expressive candidate feature space. We use our constraint
generation algorithm to compute the potential contribution (i.e., reward poten-
tial) of each hidden unit to the reward function of the HD-MILP-Plan problem.
The precomputed reward potentials are then used to construct linear constraints
that bound the reward function of HD-MILP-Plan, and provide a tighter linear
relaxation for B&B optimization by exploring smaller number of nodes in the
search tree. Experimentally, we show that our constraint generation algorithm
efficiently computes reward potentials for learned NNs, and that the overhead
computation is justified by the overall strengthening of the underlying MILP
model for the task of planning over long horizons.

Overall this work bridges the gap between two seemingly distant literatures
– research on planning heuristics for discrete spaces and decision making with
learned NN models in continuous action and state spaces. Specifically, we show
that data-driven NN models for planning can benefit from advances in heuristics
and from their impact on the efficiency of search in B&B optimization.

2 Preliminaries

We review the HD-MILP-Plan framework for optimal planning [18] with learned
NN models, potential heuristics [15] as well as bilevel programming [1].

2.1 Deterministic Factored Planning Problem Definition

A deterministic factored planning problem is a tuple Π = 〈S,A,C, T, I,G,R〉
where S = {s1, . . . , sn} and A = {a1, . . . , am} are sets of state and action
variables with continuous domains, C : R|S| × R|A| → {true, false} is a func-
tion that returns true if action and state variables satisfy global constraints,
T : R|S| × R|A| → R|S| denotes the stationary transition function, and R :
R|S| × R|A| → R is the reward function. Finally, I : R|S| → {true, false} rep-
resents the initial state constraints, and G : R|S| → {true, false} represents the
goal constraints. For horizon H, a solution π = 〈Ā1, . . . , ĀH〉 to problem Π (i.e.
a plan for Π) is a value assignment to the action variables with values Āt =
〈āt1, . . . , āt|A|〉 ∈ R|A| for all time steps t ∈ {1, . . . ,H} (and state variables with

Reward Potentials for Planning with Learned Neural Networks 3

values S̄t = 〈s̄t1, . . . , s̄t|S|〉 ∈ R|S| for all time steps t ∈ {1, . . . ,H + 1}) such that

T (〈s̄t1, . . . , s̄t|S|, ā
t
1, . . . , ā

t
|A|〉) = S̄t+1 and C(〈s̄t1, . . . , s̄t|S|, ā

t
1, . . . , ā

t
|A|〉) = true for

all time steps t ∈ {1, . . . ,H}, and the initial and goal state constraints are sat-
isfied, i.e. I(S̄1) = true and G(S̄H+1) = true, where x̄t denotes the value of
variable x ∈ A ∪ S at time step t. Similarly, an optimal solution to Π is a plan
such that the total reward

∑H
t=1R(〈s̄t+1

1 , . . . , s̄t+1
|S| , ā

t
1, . . . , ā

t
|A|〉) is maximized.

For notational simplicity, we denote the tuple of variables 〈xd1 , . . . , xd|D|〉 as
〈xd|d ∈ D〉 given set D, and use the symbol _ for the concatenation of two tu-
ples. Given the notations and the description of the planning problem, we next
describe a data-driven planning framework using learned NNs.

2.2 Planning with Neural Network Learned Transition Models

Hybrid Deep MILP Planning [18] (HD-MILP-Plan) is a two-stage data-driven
framework for learning and solving planning problems. Given samples of state
transition data, the first stage of the HD-MILP-Plan process learns the transition
function T̃ using a NN with Rectified Linear Units (ReLUs) [13] and linear
activation units. In the second stage, the learned transition function T̃ is used
to construct the learned planning problem Π̃ = 〈S,A,C, T̃ , I,G,R〉. As shown
in Figure 1, the learned transition function T̃ is sequentially chained over the
horizon t ∈ {1, . . . ,H}, and compiled into a MILP. Next, we review the MILP
compilation of HD-MILP-Plan.

Fig. 1. Visualization of the learning and planning framework [18], where blue circles
represent state variables S, red circles represent action variables A, gray circles rep-
resent ReLUs U and w represent the weights of a NN. During the learning stage, the
weights w are learned from data. In the planning stage, the weights are fixed and the
planner optimizes a given total (cumulative) reward function with respect to the set of
free action variables A and state variables S.

2.3 Mixed-Integer Linear Programming Compilation of
HD-MILP-Plan

We begin with all notation necessary for HD-MILP-Plan.

4 Say et al.

Parameters

– U is the set of ReLUs in the neural network.
– O is the set of output units in the neural network.
– wi,j denotes the learned weight of the neural network between units i and j.
– A(u) is the set of action variables connected as inputs to unit u ∈ U ∪O.
– S(u) is the set of state variables connected as inputs to unit u ∈ U ∪O.
– U(u) is the set of ReLUs connected as inputs to unit u ∈ U ∪O.
– O(s) specifies the output unit that predicts the value of state variable s ∈ S.
– B(u) is a constant representing the bias of unit u ∈ U ∪O.
– M is a large constant used in the big-M constraints.

Decision Variables

– Xa,t is a decision variable with continuous domain denoting the value of
action variable a ∈ A at time step t.

– Ys,t is a decision variable with continuous domain denoting the value of state
variable s ∈ S at time step t.

– Pu,t is a decision variable with continuous domain denoting the output of
ReLU u ∈ U at time step t.

– P b
u,t = 1 if ReLU u ∈ U is activated at time step t, 0 otherwise (i.e., P b

u,t is
a Boolean decision variable).

MILP Compilation

maximize

H∑
t=1

R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) (1)

subject to

I(〈Ys,1|s ∈ S〉) (2)

C(〈Ys,t|s ∈ S〉_〈Xa,t|a ∈ A〉) (3)

G(〈Ys,H+1|s ∈ S〉) (4)

Pu,t ≤MP b
u,t ∀u ∈ U (5)

Pu,t ≤M(1− P b
u,t) + In(u, t) ∀u ∈ U (6)

Pu,t ≥ In(u, t) ∀u ∈ U (7)

Ys,t+1 = In(u, t) ∀u ∈ O(s), s ∈ S (8)

for all time steps t = 1, . . . ,H except for constraints (2)-(4). Expression In(u, t)
denotes the total weighted input of unit u ∈ U∪O at time step t, and is equivalent
to B(u) +

∑
u′∈U(u) wu′,uPu′,t +

∑
s∈S(u) ws,uYs,t +

∑
a∈A(u) wa,uXa,t.

In the above MILP, the objective function (1) maximizes the sum of rewards
over a given horizon H. Constraints (2-4) ensure the initial state, global and
goal state constraints are satisfied. Constraints (5-8) model the learned transi-
tion function T̃ . Note that while constraints (5-7) are sufficient to encode the

Reward Potentials for Planning with Learned Neural Networks 5

piecewise linear activation behaviour of ReLUs, the use of big-M constraints (5-
6) can hinder the overall performance of the underlying B&B solvers that rely on
the linear relaxation of the MILP. Therefore next, we turn to potential heuristics
that will be used to strengthen the MILP compilation of HD-MILP-Plan.

2.4 Potential Heuristics

Potential heuristics [15,19] are a family of heuristics that map a set of features to
their numerical potentials. In the context of cost-optimal classical planning, the
heuristic value of a state is defined as the sum of potentials for all the features
that are true in that state. Potential heuristics provide an efficient method for
computing a lower bound on the cost of a given state.

In this paper, we introduce an alternative use of potential functions to tighten
the linear relaxation of ReLU units in our HD-MILP-Plan compilation and im-
prove the search efficiency of the underlying B&B solver. We define the features
of the learned NN over its set of hidden units U (i.e., gray circles in Figure 1),
and compute the potential contribution (i.e., reward potential) of each hidden
unit u ∈ U to the reward function R for any time step t. These reward potentials
are then used to introduce additional constraints on ReLU activations that help
guide B&B search in HD-MILP-Plan. Specifically, we are interested in finding
a set of reward potentials, denoted as vonu and voffu representing the activation
(i.e., P b

u,t = 1) and the deactivation (i.e., P b
u,t = 0) of ReLUs u ∈ U , such that

the relation
∑

u∈U v
on
u P b

u,t + voffu (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉)

holds for all feasible values of P b
u,t, Ys,t+1 and Xa,t at any time step t. Once

values v̄onu and v̄offu are computed, we will add
∑

u∈U v̄
on
u P b

u,t + v̄offu (1−P b
u,t) ≥

R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) as a linear constraint to strengthen HD-MILP-
Plan. Next we describe bilevel programming that we use to model the problem
of finding optimal reward potentials.

2.5 Bilevel Programming

Bilevel programming [1] is an optimization framework for modeling two-level
asymetrical decision making problems with a leader and a follower problem where
the leader has complete knowledge of the follower, and the follower only observes
the decisions of the leader to make an optimal decision. Therefore, the leader
must incorporate the optimal decision of the follower to optimize its objective.

In this work, we use bilevel programming to compactly model the problem of
finding the optimal reward potentials that has exponential number of constraints.
In the bilevel programming description of the optimal reward potentials problem,
the leader selects the optimal values v̄onu and v̄offu of reward potentials, and
the follower selects the values of P b

u,t, Ys,t+1 and Xa,t such that the expression

R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉)−
∑

u∈U v
on
u P b

u,t + voffu (1− P b
u,t) is maximized.

That is, the follower tries to find values of P b
u,t, Ys,t+1 and Xa,t that violate

the relation
∑

u∈U v
on
u P b

u,t + voffu (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉)

as much as possible. Therefore the leader must select the values v̄onu and v̄offu

6 Say et al.

of reward potentials by incorporating the optimal decision making model of the
follower. Next, we describe the reward potentials for learned NNs.

3 Reward Potentials for Learned Neural Networks

In this section, we present the optimal reward potentials problem and an efficient
constraint generation framework for finding reward potentials for learned NNs.

3.1 Optimal Reward Potentials Problem

The problem of finding the optimal reward potentials over a set of ReLUs U for
any time step t can be defined as the following bilevel optimization problem.

Leader Problem

min
von
u ,voff

u ,Ys,t,Ys,t+1,Xa,t,P b
u,t

∑
u∈U

vonu + voffu (9)

subject to∑
u∈U

vonu P b
u,t + voffu (1− P b

u,t) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) (10)

Ys,t, Ys,t+1, Xa,t, P
b
u,t ∈ arg Follower Problem

Follower Problem

max
Ys,t,Ys,t+1,Xa,t,P b

u,t

R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉)−
∑
u∈U

vonu P b
u,t + voffu (1− P b

u,t)

(11)

subject to

Constraints (3) and (5-8)

In the above bilevel problem, the leader problem selects the values v̄onu and
v̄offu of the reward potentials such that their total sum is minimized (i.e., objec-
tive function (9)4), and their total weighted sum for all ReLU activations is an
upper bound to all values of the reward function R (i.e., constraint (10) and the
follower problem). Given the values v̄onu and v̄offu of the reward potentials, the
follower selects the values of decision variables Ys,t, Ys,t+1, Xa,t and P b

u,t such
that the difference between the value of the reward function R and the sum of re-
ward potentials is maximized subject to constraints (3) and (5-8). Next, we show
the correctness of the optimal reward potentials problem as the bilevel program
described by the leader (i.e., objective function (9) and constraint (10)) and the
follower (i.e., objective function (11) and constraints (3) and (5-8)) problems.

4 The objective function (9) is similar to the objective function of “All Syntactic
States” for potential heuristics used in classical planning [19].

Reward Potentials for Planning with Learned Neural Networks 7

Theorem 1 (Correctness of The Optimal Reward Potentials Prob-
lem). Given constraints (3) and (5-8) are feasible, the optimal reward potentials
problem finds the values v̄onu and v̄offu of reward potentials such that the relation∑

u∈U v̄
on
u P b

u,t + v̄offu (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) holds for all

values of P b
u,t, Ys,t+1 and Xa,t at any time step t.

Proof (by Contradiction). Let v̄onu and v̄offu denote the values of reward po-
tentials selected by the leader problem that violate the relation

∑
u∈U v̄

on
u P b

u,t +

v̄offu (1−P b
u,t) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) for some values Ȳs,t+1, X̄a,t and

P̄ b
u,t, implying R(〈Ȳs,t+1|s ∈ S〉_〈X̄a,t|a ∈ A〉)−

∑
u∈U v̄

on
u P̄ b

u,t+v̄
off
u (1−P̄ b

u,t) >
0. However, the feasibility of constraint (10) implies that the value of the objec-
tive function (11) must be non-positive (i.e., the follower problem is not solved
to optimality), which yields the desired contradiction.

Note that we omit the case when constraints (3) and (5-8) are infeasible
because it implies the infeasibility of the learned planning problem Π̃. Next,
we describe a finite-time constraint generation algorithm for computing reward
potentials.

3.2 Constraint Generation for Computing Reward Potentials

The optimal reward potentials problem can be solved efficiently through the
following constraint generation framework that decomposes the problem into a
master problem and a subproblem.5 The master problem finds the values v̄onu
and v̄offu of ReLU potential variables. The subproblem finds the values P̄ b

u,t of
ReLU variables that violate constraint (10) the most for given values v̄onu and
v̄offu , and also finds the maximum value of reward function R for given P̄ b

u,t

which is denoted as R∗(〈P̄ b
u,t|u ∈ U〉). Intuitively, the master problem selects

the values v̄onu and v̄offu of ReLU potentials that are checked by the subproblem
for the validity of the relation

∑
u∈U v̄

on
u P b

u,t + v̄offu (1 − P b
u,t) ≥ R(〈Ys,t+1|s ∈

S〉_〈Xa,t|a ∈ A〉) for all feasible values of P b
u,t, Ys,t+1 and Xa,t at any time

step t. If a violation is found, a linear constraint corresponding to a given P̄ b
u,t

and R∗(〈P̄ b
u,t|u ∈ U〉) is added back to the master problem and the procedure is

repeated until no violation is found by the subproblem.

Subproblem S: For a complete value assignment v̄onu and v̄offu to ReLU po-
tential variables, the subproblem optimizes the violation (i.e., objective function

5 As noted by our reviewers, our constraint generation framework is related to
Counterexample-guided Abstraction Refinement (CEGAR) [3]. The clear differences
between the typical use of CEGAR and our work are: (i) problem formalizations (i.e.,
bilevel programming versus iterative model-checking) and (ii) purposes (i.e., obtain-
ing valid bounds on planning reward function R versus verification of an abstract
model). Naturally, what constitutes a violation is also different (i.e., error on reward
estimation versus a spurious counterexample).

8 Say et al.

(11)) with respect to constraints (3) and (5-8) as follows.

max
Ys,t,Ys,t+1,Xa,t,P b

u,t

R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉)−
∑
u∈U

v̄onu P b
u,t + v̄offu (1− P b

u,t)

(12)

subject to

Constraints (3) and (5-8)

We denote the optimal values of ReLU variables P b
u,t, found by solving the

subproblem as P̄ b
u,t, and the value of the reward function R found by solving the

subproblem as R∗(〈P̄ b
u,t|u ∈ U〉). Further, we refer to subproblem as S.

Master problem M: Given the set of complete value assignments K to ReLU
variables with values P̄ b,k

u,t and optimal objective values R∗(〈P̄ b,k
u,t |u ∈ U〉) for all

k ∈ K, the master problem optimizes the regularized6 sum of reward potentials
(i.e., regularized objective function (9)) with respect to the modified version of
constraint (10) as follows.

min
von
u ,voff

u

∑
u∈U

vonu + voffu + λ
∑
u∈U

(vonu)2 + (voffu)2 (13)

subject to∑
u∈U

vonu P̄ b,k
u,t + voffu (1− P̄ b,k

u,t) ≥ R∗(〈P̄ b,k
u,t |u ∈ U〉) ∀k ∈ K (14)

We denote the optimal values of ReLU potential variables vonu and voffu ,
found by solving the master problem as v̄onu and v̄offu , respectively. Further, we
refer to master problem as M.

Reward Potentials Algorithm Given the definitions of the master problem
M and the subproblem S, the constraint generation algorithm for computing an
optimal reward potential is outlined as follows.

Given constraints (3) and (5-8) are feasible, Algorithm 1 iteratively computes
reward potentials vonu and voffu (i.e., line 3), and first checks if there exists an

activation pattern, that is a complete value assignment P̄ b,k
u,t to ReLU variables,

that violates constraint (10) (i.e., lines 4 and 5), and then returns the optimal

reward value R∗(〈P̄ b,k
u,t |u ∈ U〉) for the violating activation pattern. Given the

optimal reward value R∗(〈P̄ b,k
u,t |u ∈ U〉) for the violating activation pattern, con-

straint (14) is updated (i.e., lines 6-7). Since there are finite number of activation

patterns and solving S gives the maximum value of R∗(〈P̄ b,k
u,t |u ∈ U〉) for each

pattern k ∈ {1, . . . , 2|U |}, the Reward Potentials Algorithm 1 terminates in at
most k ≤ 2|U | iterations with an optimal reward potential for the learned NN.

6 The squared terms penalize arbitrarily large values of potentials to avoid numerical
issues. A similar numerical issue has been found in the computation of potential
heuristics for cost-optimal classical planning problems with dead-ends [19].

Reward Potentials for Planning with Learned Neural Networks 9

Algorithm 1 Reward Potentials Algorithm

1: k← 1, violation ←∞, M← objective function (13)
2: while violation > 0 do
3: v̄onu , v̄offu ←M
4: P̄ b,k

u,t , Ȳs,t+1, X̄a,t, R
∗(〈P̄ b,k

u,t |u ∈ U〉)← S(v̄onu , v̄offu)

5: violation = R(〈Ȳs,t+1|s ∈ S〉_〈X̄a,t|a ∈ A〉)−
∑

u∈U v̄onu P̄ b,k
u,t + v̄offu (1− P̄ b,k

u,t)

6: M ← M∪
∑

u∈U vonu P̄ b,k
u,t + voffu (1 − P̄ b,k

u,t) ≥ R∗(〈P̄ b,k
u,t |u ∈ U〉) (i.e., update

constraint (14))
7: k ← k + 1

Increasing the Granularity of the Reward Potentials Algorithm The
feature space of Algorithm 1 can be enhanced to include information on each
ReLUs input and/or output. Instead of computing reward potentials for only
the activation v̄onu and deactivation v̄offu of ReLU u ∈ U , we (i) introduce an
interval parameter N to split the output range of each ReLU u into N equal size
intervals, (ii) introduce auxiliary Boolean decision variables P ′

b
i,u,t to represent

the activation interval of ReLU u such that P ′
b
i,u,t = 1 if and only if the output

of ReLU u is within interval i ∈ {1, . . . , N}, and P ′
b
i,u,t = 0 otherwise, and

(iii) compute reward potentials for each activation interval v̄onu,1, . . . , v̄
on
u,N and

deactivation v̄offu of ReLU u ∈ U .

3.3 Strengthening HD-MILP-Plan

Given optimal reward potentials v̄onu,1, . . . , v̄
on
u,N and v̄offu , the MILP compilation

of HD-MILP-Plan is strengthened through the addition of following constraints:

∑
u∈U

N∑
i=1

v̄onu,iP
′b
i,u,t + v̄offu (1− xtu) ≥ R(〈Ys,t+1|s ∈ S〉_〈Xa,t|a ∈ A〉) (15)

N∑
i=1

P ′
b
i,u,t = P b

u,t (16)

Nu
(i− 1)

N
P ′

b
i,u,t ≤ Pu,t ≤ Nu − (Nu −Nu

i

N
)P ′

b
i,u,t ∀i ∈ {1, . . . , N}, u ∈ U

(17)

for all time steps t ∈ {1, . . . ,H} whereNu denotes the upperbound obtained from
performing forward reachability on the output of each ReLU u ∈ U in the learned
NN. Briefly, constraint (15) provides the upperbound on the reward function R
as a function of ReLU activation intervals and deactivations. Constraint (16)

ensures that (i) at most one auxillary variable P ′
b
i,u,t is selected, and (ii) at

least one auxillary variable P ′
b
i,u,t is selected if and only if ReLU u is activated.

Constraint (17) ensures that the output of each ReLU is within its selected
activation interval. Next, we present our experimental results to demonstrate

10 Say et al.

the efficiency and the utility of computing reward potential and strengthening
HD-MILP-Plan.

4 Experimental Results

In this section, we present computational results on (i) the convergence of Algo-
rithm 1, and (ii) the overall strengthening of HD-MILP-Plan with the addition
of constraints (15-17) for the task of planning over long horizons. First, we
present results on the overall efficiency of Algorithm 1 and the strengthening
of HD-MILP-Plan over multiple learned planning instances. Then, we focus on
the most computationally expensive domain identified by our experiments to
further investigate the convergence behaviour of Algorithm 1 and the overall
strengthening of HD-MILP-Plan as a function of time.

4.1 Experimental Setup

The experiments were run on a MacBookPro with 2.8 GHz Intel Core i7 16GB
memory. All instances and the respective learned neural networks from the HD-
MILP-Plan paper [18], namely Navigation, Reservoir Control and HVAC [18],
were selected.7 Both domain instance sizes and their respective learned NN sizes
are detailed in Table 1 where columns from left to right denote the name of
problem instances, the structures of the learned NNs where each number denotes
the width of a layer and the values of the planning horizon H, respectively. The
range bounds on action variables for Navigation domains were constrained to
[−0.1, 0.1]. CPLEX 12.9.0 [8] solver was used to optimize both Algorithm 1,
and HD-MILP-PLan, with 6000 seconds of total time limit per domain instance.
In our experiments, we show results for the base model (i.e., objective (1) and
constraints (2-8)) and the strengthened model with the addition of constraints
(15-17) for the values of interval parameter N = 2, 3.8 Finally in the master
problem, we have chosen the regularizer constant λ in the objective function
(9) to be 1√

M
where M is the large constant used in the big-M constraints of

HD-MILP-Plan (i.e., constraints (5-6)).

4.2 Overall Results

In this section, we present the experimental results on (i) the computation of
the optimal reward potentials using Algorithm 1, (ii) and the performance of
HD-MILP-Plan with the addition of constraints (15-17) over multiple learned
planning instances over long horizons. Table 2 summarizes the computational re-
sults and highlights the best performing HD-MILP-Plan settings for each learned
planning instance.

7 https://github.com/saybuser/HD-MILP-Plan
8 The preliminary experimental results for interval parameter N = 1 have not shown

significant improvements over the base encoding of HD-MILP-Plan.

Reward Potentials for Planning with Learned Neural Networks 11

Table 1. Domain and learned NN descriptions where columns from left to right denote
the name of problem instances, the structures of NNs used to learn each transition
model T̃ where each number denotes the width of a layer, and the values of the planning
horizon H, respectively.

Domain Instance Network Structure Horizon

Navigation (8-by-8 maze) 4:32:32:2 100

Navigation (10-by-10 maze) 4:32:32:2 100

Reservoir Control (3 reservoirs) 6:32:3 500

Reservoir Control (4 reservoirs) 8:32:4 500

HVAC (3 rooms) 6:32:3 100

HVAC (6 rooms) 12:32:6 100

Table 2. Summary of experimental results on the computationally efficiency of Al-
gorithm 1 and HD-MILP-Plan with the addition of constraint (15-17) over multiple
learned planning instances with long horizons.

Domain Setting Alg. 1 Cumul. Primal Dual Open Closed

Nav,8,100,Base - 6000 - -261.4408 16536 27622

Nav,8,100,N=2 345 6000 - -267.1878 6268 15214

Nav,8,100,N=3 1150 6000 - -267.056 6189 12225

Nav,10,100,Base - 6000 - -340.5974 17968 35176

Nav,10,100,N=2 800 6000 - -340.6856 14435 27651

Nav,10,100,N=3 1700 6000 - -339.8124 2593 7406

HVAC,3,100,Base - 260.21 Opt. found Opt. proved 0 289529

HVAC,3,100,N=2 7 88.21 Opt. found Opt. proved 0 2501

HVAC,3,100,N=3 9 194.44 Opt. found Opt. proved 0 10891

HVAC,6,100,Base - 6000 -1214369.086 -1213152.304 618687 648207

HVAC,6,100,N=2 8 6000 -1214365.427 -1213199.787 554158 567412

HVAC,6,100,N=3 10 6000 -1214364.704 -1213025.189 1011348 1021637

Res,3,500,Base - 33.01 Opt. found Opt. proved 0 1

Res,3,500,N=2 1 99.81 Opt. found Opt. proved 0 714

Res,3,500,N=3 2 90.27 Opt. found Opt. proved 0 674

Res,4,500,Base - 300.71 Opt. found Opt. proved 0 1236

Res,4,500,N=2 7 109.66 Opt. found Opt. proved 0 1924

Res,4,500,N=3 6 232.19 Opt. found Opt. proved 0 1294

12 Say et al.

The first column of Table 2 identifies the domain setting of each row. The
second column denotes the runtime of Algorithm 1 in seconds. The third column
(i.e., Cumul.) denotes the cumulative runtime of Algorithm 1 and HD-MILP-
Plan in seconds. The remaining columns provide information on the performance
of HD-MILP-Plan. Specifically, the fourth column (i.e., Primal) denotes the value
of the incumbent plan found by HD-MILP-Plan, the fifth column (i.e., Dual)
denotes the value of the duality bound found by HD-MILP-Plan, and the sixth
and seventh columns (i.e., Open and Closed) denote the number of open and
closed nodes in the B&B tree respectively. The bolded values indicate the best
performing HD-MILP-Plan settings for each learned planning instance where the
performance of each setting is evaluated first based on the runtime performance
(i.e., Cumul. column), followed by the quality of incumbent plan (i.e., Primal
column) and duality bound (i.e., Dual column) obtained by HD-MILP-Plan.

In total of five out of six instances, we observe that strengthened HD-MILP-
Plan with interval parameter N = 2 performed the best. The pairwise compari-
son of the base HD-MILP-Plan and strengthened HD-MILP-Plan with interval
parameter N = 3 shows that in almost all instances, the strengthened model
performed better in comparison to the base model. The only instance in which
the base model significantly outperformed the other two was the Reservoir Con-
trol domain with three reservoirs where the B&B solver was able to find an
optimal plan in the root node. Overall, we found that especially in the instances
where the optimality was hard to prove within the runtime limit of 6000 seconds
(i.e., all Navigation instances and HVAC domain with 6 rooms), strengthened
HD-MILP-Plan explored signigicantly less number of nodes in general while ob-
taining either higher quality incumbent plans or lower dual bounds. We observe
that Algorithm 1 terminated with optimal reward potentials in less than 10
seconds in both Reservoir Control and HVAC domains, and took as much as
1700 seconds in Navigation domain – highlighting the effect of NN size and com-
plexity (i.e., detailed in Table 1) on the runtime of Algorithm 1. As a result,
next we focus on the most computationally expensive domain identified by our
experiments, namely Navigation, to get a better understanding on the conver-
gence behaviour of Algorithm 1 and the overall efficiency of HD-MILP-Plan as
a function of time.

4.3 Detailed Convergence Results on Navigation Domain

In this section, we inspect the convergence of Algorithm 1 in the Navigation
domain for computing an optimal reward potential for the learned NNs.

Figure 2 visualizes the violation of constraint (10) as a function of time over
the computation of optimal reward potentials using the Reward Potentials Algo-
rithm 1 for the learned NNs of both Navigation 8-by-8 (i.e., top) and Navigation
10-by-10 (i.e., bottom) planning instances. In both, we observe that the viola-
tion of constraint (10) decreases exponentially as a function of time, showcasing
a long-tail runtime behaviour and terminates with optimal reward potentials.

Reward Potentials for Planning with Learned Neural Networks 13

Fig. 2. Convergence of Algorithm 1 as a function of time for the learned NNs of both
Navigation 8-by-8 (i.e., top) and Navigation 10-by-10 (i.e., bottom) planning instances.
The violation of constraint (10) decreases exponentially as a function of time, show-
casing a long-tail runtime behaviour and terminates with optimal reward potentials.

4.4 Detailed Strengthening Results on Navigation Domain

Next, we inspect the overall strengthening of HD-MILP-Plan with respect to
its underlying linear relaxation and search efficiency as a result of constraints
(15-17), for the task of planning over long horizons in the Navigation domain.

Figures 3 and 4 visualize the overall effect of incorporating constraints (15-
17) into HD-MILP-Plan as a function of time for the Navigation domain with
(a) 8-by-8 and (b) 10-by-10 maze sizes. In both Figures 3 and 4, linear relaxation
(i.e. top), number of closed nodes (i.e., middle), and number open nodes (i.e.,
bottom), are displayed as a function of time. The inspection of both Figures 3
and 4 show that once the reward potentials are computed, the addition of con-
straints (15-17) allows HD-MILP-Plan to obtain a tighter bound by exploring
signigicantly less number of nodes. In the 8-by-8 maze instance, we observe that
HD-MILP-Plan with constraints (15-17) outperforms the base HD-MILP-Plan
by 1700 and 3300 seconds with interval parameter N = 2, 3, respectively. In
the 10-by-10 maze instance, we observe that HD-MILP-Plan with constraints
(15-17) obtains a tighter bound compared to the base HD-MILP-Plan by 3750
seconds and almost reaches the same bound by the time limit (i.e., 6000 seconds)
with interval parameter N = 2, 3, respectively.

The inspection of the top subfigures in Figures 3 and 4 shows that increas-
ing the value of the interval parameter N increases the computation time of
Algorithm 1, but can also increase the search efficiency of the underlying B&B

14 Say et al.

Fig. 3. Linear relaxation and search efficiency comparisons in Navigation domain with
an 8-by-8 maze between the base and the strengthened HD-MILP-Plan using Algo-
rithm 1 with interval parameter N = 2, 3. Overall, we observe that HD-MILP-Plan
with constraints (15-17) outperforms the base HD-MILP-Plan by 1700 and 3300 sec-
onds with interval parameter N = 2, 3, respectively.

solver through increasing its exploration and pruning capabilities, as demon-
strated by the middle and bottom subfigures in Figures 3 and 4. Overall from
both instances, we conclude that HD-MILP-Plan with constraints (15-17) ob-
tains a linear relaxation that is at least as good as the base HD-MILP-Plan by
exploring significantly less number of nodes in the B&B search tree.

5 Related Work

In this paper, we have focused on the important problem of improving the effi-
ciency of B&B solvers for optimal planning with learned NN transition models
in continuous action and state spaces. Parallel to this work, planning and deci-
sion making in discrete action and state spaces [12,17,16], verification of learned
NNs [9,6,7,14], robustness evaluation of learned NNs [20] and defenses to adver-
sarial attacks for learned NNs [10] have been studied with the focus of solving
very similar decision making problems. For example, the verification problem
solved by Reluplex [9]9 is very similar to the planning problem solved by HD-
MILP-Plan [18] without the objective function and horizon H = 1. Interestingly,
the verification problem can also be modeled as an optimization problem [2] and
potentially benefit from the findings presented in this paper. For future work, we

9 Reluplex [9] is a SMT-based learned NN verification software.

Reward Potentials for Planning with Learned Neural Networks 15

Fig. 4. Linear relaxation and search efficiency comparisons in Navigation domain with
an 10-by-10 maze between the base and the strengthened HD-MILP-Plan using Algo-
rithm 1 with interval parameter N = 2, 3. Overall, we observe that HD-MILP-Plan with
constraints (15-17) obtains a tighter bound compared to the base HD-MILP-Plan by
3750 seconds and reaches almost the same bound by the time limit (i.e., 6000 seconds)
with interval parameter N = 2, 3, respectively.

plan to explore how our findings in this work translate to solving other important
tasks for learned neural networks.

6 Conclusion

In this paper, we have focused on the problem of improving the linear relaxation
and the search efficiency of MILP models for decision making with learned NNs.
In order to tacke this problem, we used bilevel programming to correctly model
the optimal reward potentials problem. We then introduced a novel finite-time
constraint generation algorithm for computing the potential contribution of each
hidden unit to the reward function of the planning problem. Given the precom-
puted values of the reward potentials, we have introduced constraints to tighten
the bound on the reward function of the planning problem. Experimentally, we
have shown that our constraint generation algorithm efficiently computes re-
ward potentials for learned NNs, and the overhead computation is justified by
the overall strengthening of the underlying MILP model as demonstrated on the
task of planning over long horizons. With this paper, we have shown the potential
of bridging the gap between two seemingly distant literatures; the research on
planning heuristics and decision making with learned NN models in continuous
action and state spaces.

16 Say et al.

References

1. Bard, J.: Practical Bilevel Optimization: Algorithms And Applications. Springer
US (09 2000). https://doi.org/10.1007/978-1-4757-2836-1

2. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of
piecewise linear neural network verification (2017)

3. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Veri-
fication. pp. 154–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

4. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. Journal of Machine Learning
Research 12, 2493–2537 (2011)

5. Deng, L., Hinton, G.E., Kingsbury, B.: New types of deep neural network learning
for speech recognition and related applications: an overview. In: IEEE International
Conference on Acoustics, Speech and Signal Processing. pp. 8599–8603 (2013)

6. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) Automated Technology for Verification
and Analysis. pp. 269–286. Springer International Publishing, Cham (2017)

7. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) Computer Aided Verification. pp.
3–29. Springer International Publishing, Cham (2017)

8. IBM: IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual (2019)
9. Katz, G., Barrett, C., Dill, D., Julian, K., Kochenderfer, M.: Reluplex: An efficient

smt solver for verifying deep neural networks. In: Twenty-Ninth International Con-
ference on Computer Aided Verification. CAV (2017)

10. Kolter, Zico, W., Eric: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: Thirty-First Conference on Neural Information
Processing Systems (2017)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Twenty-Fifth Neural Information Processing
Systems. pp. 1097–1105 (2012), http://dl.acm.org/citation.cfm?id=2999134.
2999257

12. Lombardi, M., Gualandi, S.: A lagrangian propagator for artificial neu-
ral networks in constraint programming. vol. 21, pp. 435–462 (Oct 2016).
https://doi.org/10.1007/s10601-015-9234-6, https://doi.org/10.1007/

s10601-015-9234-6

13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: Twenty-Seventh International Conference on Machine Learning. pp.
807–814 (2010), http://www.icml2010.org/papers/432.pdf

14. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying
properties of binarized deep neural networks. In: Thirty-Second AAAI Conference
on Artificial Intelligence. pp. 6615–6624 (2018)

15. Pommerening, F., Helmert, M., Roger, G., Seipp, J.: From non-negative to gen-
eral operator cost partitioning. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence. pp. 3335–3341 (2015)

16. Say, B., Sanner, S.: Compact and efficient encodings for planning in factored state
and action spaces with learned binarized neural network transition models (2018)

17. Say, B., Sanner, S.: Planning in factored state and action spaces with learned
binarized neural network transition models. In: Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence. pp. 4815–4821 (2018).

https://doi.org/10.1007/978-1-4757-2836-1
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1007/s10601-015-9234-6
https://doi.org/10.1007/s10601-015-9234-6
https://doi.org/10.1007/s10601-015-9234-6
http://www.icml2010.org/papers/432.pdf

Reward Potentials for Planning with Learned Neural Networks 17

https://doi.org/10.24963/ijcai.2018/669, https://doi.org/10.24963/ijcai.

2018/669

18. Say, B., Wu, G., Zhou, Y.Q., Sanner, S.: Nonlinear hybrid planning with
deep net learned transition models and mixed-integer linear programming. In:
Twenty-Sixth International Joint Conference on Artificial Intelligence. pp. 750–
756 (2017). https://doi.org/10.24963/ijcai.2017/104, https://doi.org/10.24963/
ijcai.2017/104

19. Seipp, J., Pommerening, F., Helmert, M., Roger: New optimization functions
for potential heuristics. In: Twenty-Fifth International Conference on Automated
Planning and Scheduling. pp. 193–201 (2015)

20. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: Seventh International Conference on Learning
Representations (2019)

https://doi.org/10.24963/ijcai.2018/669
https://doi.org/10.24963/ijcai.2018/669
https://doi.org/10.24963/ijcai.2018/669
https://doi.org/10.24963/ijcai.2017/104
https://doi.org/10.24963/ijcai.2017/104
https://doi.org/10.24963/ijcai.2017/104

	Reward Potentials for Planning with Learned Neural Network Transition Models

