Skip to main content

Personalized Transaction Kernels for Recommendation Using MCTS

  • Conference paper
  • First Online:
  • 1086 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11793))

Abstract

We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via hash functions that allow to effectively store and retrieve personalized slices of data and context. In order to quickly focus on the relevant properties of the next item to display, we propose the use of Monte-Carlo tree search on the learned preference values. Empirically, on real-world transaction data, both the preference models as well as the search tree exhibit excellent performance over baseline approaches.

M. Tavakol and T. Joppen—Have contributed equally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Basilico, J., Hofmann, T.: Unifying collaborative and content-based filtering. In: Proceedings of the 21st International Conference on Machine Learning (ICML 2004), p. 9. ACM (2004)

    Google Scholar 

  2. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  3. Cao, B., He, L., Kong, X., Philip, S.Y., Hao, Z., Ragin, A.B.: Tensor-based multi-view feature selection with applications to brain diseases. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2014), pp. 40–49 (2014)

    Google Scholar 

  4. Cao, B., Kong, X., Yu, P.S.: A review of heterogeneous data mining for brain disorder identification. Brain Inform. 2(4), 211–233 (2015)

    Article  Google Scholar 

  5. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Inf. Retr. 13(3), 201–215 (2010)

    Article  Google Scholar 

  6. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_59

    Chapter  Google Scholar 

  7. Dullemond, K., Peeters, K.: Introduction to Tensor Calculus. University of Heidelberg (2010). http://www.e-booksdirectory.com/details.php?ebook=9967

  8. Fürnkranz, J., Hüllermeier, E. (eds.): Preference Learning. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8

    Book  MATH  Google Scholar 

  9. Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: Fürnkranz, J., Joachims, T. (eds.) Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 359–366. Omnipress, Haifa (2010)

    Google Scholar 

  10. de Gemmis, M., Iaquinta, L., Lops, P., Musto, C., Narducci, F., Semeraro, G.: Learning preference models in recommender systems. In: Fürnkranz and Hüllermeier [8], pp. 387–407

    Chapter  Google Scholar 

  11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), pp. 263–272. IEEE (2008)

    Google Scholar 

  12. Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 133–142. ACM (2002)

    Google Scholar 

  13. Kamishima, T., Kazawa, H., Akaho, S.: A survey and empirical comparison of object ranking methods. In: Fürnkranz and Hüllermeier [8], pp. 181–201

    Chapter  Google Scholar 

  14. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques forrecommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  16. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on the World Wide Web (WWW 2010), pp. 661–670. ACM (2010)

    Google Scholar 

  17. Liebman, E., Khandelwal, P., Saar-Tsechansky, M., Stone, P.: Designing better playlists with Monte Carlo tree search. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI 2017), pp. 4715–4720 (2017)

    Google Scholar 

  18. Oyama, S., Manning, C.D.: Using feature conjunctions across examples for learning pairwise classifiers. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 322–333. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_31

    Chapter  MATH  Google Scholar 

  19. Pham, N., Pagh, R.: Fast and scalable polynomial kernels via explicit feature maps. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 239–247. ACM (2013)

    Google Scholar 

  20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on the World Wide Web (WWW 2001), pp. 285–295. ACM (2001)

    Google Scholar 

  21. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) COLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44581-1_27

    Chapter  Google Scholar 

  22. Shi, Q., et al.: Hash kernels. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS 2009), pp. 496–503. JMLR, Clearwater Beach (2009)

    Google Scholar 

  23. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  24. Smalter, A., Huan, J., Lushington, G.: Feature selection in the tensor product feature space. In: Proceedings of the 9th IEEE International Conference on Data Mining (ICDM 2009), pp. 1004–1009. IEEE (2009)

    Google Scholar 

  25. Tavakol, M., Brefeld, U.: A unified contextual bandit framework for long- and short-term recommendations. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_17

    Chapter  Google Scholar 

  26. Tavakol, M., Brefeld, U.: Factored MDPs for detecting topics of user sessions. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 33–40. ACM (2014)

    Google Scholar 

  27. Vanchinathan, H.P., Nikolic, I., De Bona, F., Krause, A.: Explore-exploit in top-n recommender systems via Gaussian processes. In: Proceedings of the 8th ACM Conference on Recommender Systems, pp. 225–232. ACM (2014)

    Google Scholar 

  28. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Fürnkranz and Hüllermeier [8], pp. 45–64

    Chapter  Google Scholar 

  29. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456. ACM (2011)

    Google Scholar 

  30. Wang, Y., Tung, H.Y., Smola, A.J., Anandkumar, A.: Fast and guaranteed tensor decomposition via sketching. In: Advances in Neural Information Processing Systems, pp. 991–999 (2015)

    Google Scholar 

  31. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature hashing for large scale multitask learning. In: Proceedings of the 26th International Conference on Machine Learning (ICML 2009), pp. 1113–1120. ACM (2009)

    Google Scholar 

  32. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction. J. Mach. Learn. Res. 3(Feb), 1083–1106 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Christian Wirth for contributing in our discussions and providing helpful ideas during the work. Tobias Joppen has been supported by the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Tavakol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tavakol, M., Joppen, T., Brefeld, U., Fürnkranz, J. (2019). Personalized Transaction Kernels for Recommendation Using MCTS. In: Benzmüller, C., Stuckenschmidt, H. (eds) KI 2019: Advances in Artificial Intelligence. KI 2019. Lecture Notes in Computer Science(), vol 11793. Springer, Cham. https://doi.org/10.1007/978-3-030-30179-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30179-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30178-1

  • Online ISBN: 978-3-030-30179-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics