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Abstract. In this paper, we explore various statistical techniques for
anomaly detection in conjunction with the popular Long Short-Term
Memory (LSTM) deep learning model for transportation networks. We
obtain the prediction errors from an LSTM model, and then apply three
statistical models based on (i) the Gaussian distribution, (ii) Extreme
Value Theory (EVT), and (iii) the Tukey’s method. Using statistical
tests and numerical studies, we find strong evidence against the widely
employed Gaussian distribution based detection rule on the prediction
errors. Next, motivated by fundamental results from Extreme Value The-
ory, we propose a detection technique that does not assume any parent
distribution on the prediction errors. Through numerical experiments
conducted on several real-world traffic data sets, we show that the EVT-
based detection rule is superior to other detection rules, and is supported
by statistical evidence.

Keywords: Anomaly Detection · LSTM · Threshold · Extreme Value
Theory.

1 Introduction

Mobility modeling can aid the design of sustainable transportation systems,
making it a crucial part of Intelligent Transportation Systems (ITS). A popular
example can be the Mobility-On-Demand service providers such as e-hailing taxis
that rely on efficient passenger mobility modeling for rerouting their drivers. The
demand for taxis changes dynamically with daily human mobility patterns, along
with other non-periodic events. While short-term taxi demand forecasting mod-
els may learn periodic patterns in demand [7], [12], they are normally unable to
accurately capture non-periodic mobility events. It is necessary to detect these
unusual events as they often indicate useful, and critical information that can
yield instructive insights, and help to develop more accurate prediction models
and strategies. This task of finding patterns in data that do not conform to a
certain expected behavior is called anomaly detection. Transportation networks
present several situations where one may find anomalous behavior and patterns.
For example, sudden spikes in taxi demand might indicate the ending of a con-
cert, drops in traffic speed might be the effect of an unprecedented event such
as a road accident, and so on.

http://arxiv.org/abs/1909.06041v1
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The identification of anomalies has been traditionally tackled using statistical
and machine learning techniques; for a survey, see [4]. The substantial advances
made by deep learning methods in recent years, in various machine learning
problems, have encouraged researchers to explore them for anomaly detection
as well [3]. The suitability of deep learning models for anomaly detection stems
from their unsupervised learning nature and the ability to learn highly complex
non-linear sequences. Popular deep learning models such as the Long Short-Term
Memory (LSTM) [14] and related Recurrent Neural Networks (RNNs) [13] have
shown superior anomaly detection performance compared to traditional anomaly
detection models [6]. When presented with normal non-anomalous data, the
LSTM can learn and capture the normal behavior of the system. Later, when
the LSTM encounters a data instance that deviates significantly from the rest of
the set, it generates a high prediction error, suggesting anomalous behavior. This
form of prediction-based anomaly detection has found applications in cardiology
[5], automobiles [22], radio communications [17], Cyber-Physical Systems (CPS)
[10], and telemetry [9], among others.

Prediction-based anomaly detection requires the application of a set of de-
tection rules on the prediction errors. Usually, this is performed by employing a
traditional anomaly detection algorithm on top of the prediction errors. Often,
the detection rule involves assuming an underlying parametric distribution on
the prediction errors, which is mostly Gaussian [14]. In addition to being compu-
tationally efficient and mathematically tractable, a distribution based detection
rule does not require large memory storage (unlike clustering-based approaches)
or suitable kernel functions (unlike Support Vector Machines). If the assump-
tions regarding the underlying data distribution hold, this technique provides a
statistically justifiable solution for anomaly detection. However, its disadvantage
is also rooted in this assumption; faithful detection is possible only if the data
conforms to a particular distribution.

Given the rise in prediction-based anomaly detection methods and related
research [3], it is essential to place increased emphasis on post-prediction error
evaluation methods that have received comparatively less focus yet are instru-
mental for accurate anomaly detection. Since the prediction errors are often
assumed to be Gaussian [14], we investigate this assumption by conducting sta-
tistical tests on seven diverse real-world data sets. In particular, we compare this
Gaussian-based decision rule against decision rules based on Extreme Value The-
ory (EVT) [1]. An important result from EVT suggests that the extreme values
of any distribution follow a Generalized Pareto Distribution (GPD), regardless of
the parent distribution. This result allows us to develop a parametric distribution
based detection rule on the prediction errors, without making critical assump-
tions about the input data distribution. Currently, EVT-based detection rules
have not been explored for LSTM-based anomaly detection, setting our work
apart from the existing literature. Further, we compare these two distribution-
based detection rules against a detection rule based on Tukey’s method [23] that
makes no explicit assumptions on the distribution.
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1.1 Our Contributions

We compare three detection rules for LSTM-based anomaly detection: (i) the
Gaussian-based detection rule that makes assumptions about the parent distri-
bution, (ii) the EVT-based detection rule that does not assume a parent distri-
bution but makes assumptions about the distribution of the tail, and (iii) the
Tukey’s method based detection rule that does not make any assumptions on
the distribution. The major findings of this paper are as follows:

1. Using the Shapiro-Wilk test for Normality, we reject the null hypothesis that
the prediction errors follow the Normal distribution with high confidence.

2. We find that the EVT-based detection rule has superior anomaly detection
performance compared to the Gaussian-based detection rule and Tukey’s
method based detection rule.

3. The false-positive regulator of the EVT-based detection rule has a lower
variance than that of the Gaussian-based detection rule, resulting in faster
parameter tuning.

The rest of the paper is organized as follows. Section 2 provides a brief de-
scription of the data sets. Our anomaly detection methodology, along with the
three detection rules and evaluation metrics are explained in Section 3. This is
followed by a discussion on the statistical tests in Section 4. The experimental
settings and results are elaborated in Section 5. We summarize our contributions
in Section 6.

2 Data Sets

We consider seven real-world data sets for our comparison study: two taxi de-
mand data sets, three traffic-based data sets, and two data sets from other ap-
plication domains. The travel time, occupancy and speed data sets are real-time
data, obtained from a traffic detector and collected by the Minnesota Depart-
ment of Transportation. Discussions on the traffic data sets and the tempera-
ture sensor data set are available at the Numenta Anomaly Benchmark GitHub
repository1. Brief descriptions of all data sets used are given below.

1. Vehicular Travel Time: The data set is obtained from a traffic sensor and has
2500 readings from July 10, 2015, to September 17, 2015, with eight marked
anomalies.

2. Vehicular Speed: The data set contains the average speed of all vehicles
passing through the traffic detector. A total of 1128 readings for the period
September 8, 2015 - September 17, 2015, is available. There are three marked
unusual sub sequences in the data set.

3. Vehicular Occupancy: There are a total of 2382 readings indicating the per-
centage of the time, during a 30-second period, that the detector sensed a
vehicle. The data is available for a period of 17 days, from September 1,
2015, to September 17, 2015, and has two marked anomalies.

1 https://github.com/numenta/NAB/tree/master/data
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4. New York City Taxi Demand [16]: The publicly available data set contains
the pick-up locations and time stamps of street hailing yellow taxi services
from the period of January 1, 2016, to February 29, 2016. We pick three
time-sequences with clearly evident anomalies from data aggregated over 15
minute time periods in 1 km2 grids.

5. Bengaluru Taxi Demand: This data set is obtained from a private taxi service
provider in Bengaluru, India and has GPS traces of passengers booking a
taxi by logging into the service provider’s mobile application. Similar to the
New York City data set, this data is also available for January and February
2016. We aggregate the data over 15 minute periods in 1 km2 grids and pick
three sequences with clearly visible anomalies.

6. Electrocardiogram (ECG) [11]: There are a total of 18000 readings, with
three unusual sub sequences labeled as anomalies. The data set has a re-
peating pattern, with some variability in the period length.

7. Machine Temperature: This data set contains temperature sensor readings
from an internal component of a large industrial machine. The readings are
for the period between December 2, 2013, to February 19, 2014. There are a
total of 22695 readings taken every 5 minutes, consisting of four anomalies
with known causes.

3 Anomaly Detection

This section outlines our prediction-based anomaly detection, along with the
detection strategies.

3.1 Prediction Model

We use the Long Short-Term Memory (LSTM) network [8] as the time-series
prediction model. The most recent lb values of every data set are fed into the
model to output la future values. We refer to parameters lb, la as look-back
and look-ahead respectively. Dropout and early stopping are employed to avoid
over-fitting. Before training any neural network model, it is necessary to set
suitable values for various hyper-parameters. These parameters define the high-
level features of the model, such as its complexity, or capacity to learn. For
example, in a neural network model, the important hyper-parameters are the
number of hidden recurrent layers, the dropout values, the learning rate, and
the number of units in each layer. We use the Tree-structured Parzen Estimator
(TPE) Bayesian Optimization [2] to select these hyper-parameters. The output
layer is a fully connected dense layer with linear activation. The Adam optimizer
is used to minimize the Mean Squared Error.

Each data set is divided into a training set, a hold-out validation set, and
a test set. The training set is assumed to be free of anomalies. This is a rea-
sonable assumption in real-world anomaly detection scenarios where the occur-
rence of anomalous behavior is rare compared to the occurrence of instances
of normal behavior. The validation and test set are mixtures of anomalous and



LSTM-Based Anomaly Detection 5

non-anomalous data instances. The prediction model is trained on normal data
without any anomalies, i.e., on the training data, so that it learns the normal
behavior of the time-series. Once the model is trained, anomaly detection is per-
formed by using the prediction errors as anomaly indicators. In this study, the
prediction error is defined as the absolute difference between the input received
at time t and its corresponding prediction from the model. Next, we discuss three
techniques (detection rules) by which the prediction errors can be used to set
an anomaly threshold. If any prediction error value lies outside of the threshold,
then the corresponding input value can be considered as a possible anomaly.

3.2 Gaussian-based Detection

The prediction errors from the training data are assumed to follow a Gaussian
distribution. The mean, µ, and variance, σ2, of the Gaussian distribution are
computed using the Maximum Likelihood Estimation (MLE). The Log Prob-
ability Densities (Log PDs) of errors are calculated based on these estimated
parameters and used as anomaly scores [20]. A low value of Log PD indicates
that the likelihood of an observation being an anomaly is high. A validation set
containing both normal data and anomalies is used to set a threshold τg on the
Log PD values. The threshold is chosen such that it can separate all the anoma-
lies from normal observations while incurring as few false positives as possible.
The threshold is then evaluated on a separate test set.

3.3 EVT-based Detection

Let X be a random variable and F (x) = P (X ≤ x) be its Cumulative Distribu-
tion Function (CDF). The tail of the distribution is given by F̃ (x) = P (X > x).
A key result from the Extreme Value Theory (EVT) [1] shows that the distribu-
tion of the extreme values is not highly sensitive to the parent data distribution.
This enables us to accurately compute probabilities without first estimating the
underlying distribution. Under a weak condition, the extreme events have the
same kind of distribution, regardless of the original one, known as the Extreme
Value Distribution (EVD):

Gγ : y → exp
(

−

(

1 + γy
)

−

1

γ

)

, γ ∈ R, 1 + γy > 0, (1)

where γ is the extreme value index of the distribution. By fitting an EVD to the
unknown input distribution tail, it is then possible to evaluate the probability of
potential extreme events. In some recent work [19], the authors use results from
EVT to detect anomalies in a uni-variate data stream, following the Peaks-Over-
Threshold (POTs) approach. Based on an initial threshold t, the POTs approach
attempts to fit a Generalized Pareto Distribution (GPD) to the excesses, X − t.
Once the parameters of the GPD are obtained using MLE, the threshold can be
computed as:

τe = t+
σ̂

γ̂

(( qn

Nt

)

−γ̂

− 1
)

, (2)
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where γ̂ and σ̂ are the estimated parameters of the GPD, q is some desired
probability, n is the total number of observations, Nt is the number of peaks,
i.e., the number ofXi s.t.Xi > t. We calculate P (X > τe) for all the observations
and those data instances with P (X > τe) < q can be considered as plausible
anomalies. We apply this methodology to the prediction errors obtained from
the LSTM. The authors in [19] recommend choosing q in the range [10−3, 10−5]
and initial t as the 98% quantile, which we follow in our study.

3.4 Tukey’s Method Based Detection

Tukey’s method [23] uses quartiles to define an anomaly threshold. It makes
no distributional assumptions and does not depend on a mean or a standard
deviation. In Tukey’s method, a possible outlier lies outside the threshold τt =
Q3 + 3 × (Q3 − Q1), where Q1 is the lower quartile or the 25th percentile, and
Q3 is the upper quartile or the 75th percentile. The prediction errors from the
training, validation and test sets are concatenated, and the lower and upper
quartiles are calculated. The values lying outside τt are identified as possible
outliers.

3.5 Evaluation Metrics

We consider three evaluation metrics for comparing the detection rules: (i) Preci-
sion, P , which is the ratio of true positives to the sum of true positives and false
positives, (ii) Recall, R, which is the ratio of true positives to the sum of true
positives and false negatives, and (iii) F1-score, F1, which is the harmonic mean
of Precision and Recall. Since F1-score summarizes both Precision and Recall,
we consider the detection rule with the highest F1 as the superior anomaly de-
tection technique. True positives refer to the correctly predicted anomalies. False
positives are the non-anomalies that we incorrectly identify as being anomalies.
False negatives refer to the anomalies incorrectly identified as non-anomalous
instances.

4 Statistical Tests

We conduct two sets of statistical tests: (i) the Shapiro-Wilk test [18] for testing
the Normality of the prediction errors, and (ii) the Anderson-Darling test [21]
for checking the compliance of the tail distribution to a Generalized Pareto
Distribution (GPD).

The Shapiro-Wilk test [18] calculates a W statistic that tests whether a sam-
ple comes from a Normal distribution. The W statistic measures the correlation
between the given data and ideal normal scores. If the p-value is less than the
chosen significance level (typically less than 0.05), then the null hypothesis can
be rejected and there is evidence that the data tested are not Normally dis-
tributed. The Anderson-Darling test [21] is used to assess whether a sample of
the data comes from a specific probability distribution. The test statistic A2
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measures the distance between the hypothesized distribution and the empirical
CDF of the data. Based on the test static and the p-values obtained, the null
hypothesis that the data follow a specified distribution can (cannot) be rejected.
The Anderson-Darling is a modification of the Kolmogorov-Smirnov (K-S) test
[15] and gives more weight to the tails than does the K-S test.

The p-values obtained by conducting the Shapiro-Wilk test on the prediction
errors and the Anderson-Darling test on the excesses X− t are given in Table 1.
The null hypothesis is rejected for p-values less than 0.001. For all the data sets
under study, based on the p-values of the Shapiro-Wilk test, we rejected the null
hypothesis that the prediction errors follow a Gaussian distribution. At the same
time, statistical evidence from the Anderson-Darling test suggests that the tail
distributions of the various prediction errors tend to follow GPD. Hence, while
assuming a Normal distribution on the prediction errors may not be suitable for
LSTM-based hybrid anomaly detection, a GPD seems to be a more reasonable
fit.

Table 1. P-values obtained from the statistical tests. The decision to reject the null
hypothesis is taken when the p-values lie below 0.001. The null hypothesis that the
prediction errors follow a Gaussian distribution is rejected, and that the tails of the
prediction errors follow a Generalized Pareto Distribution is accepted.

Data Sets
P-values

Shapiro-Wilk Test Anderson-Darling Test

Vehicular Travel Time 0.000 0.005

Vehicular Speed 2.38e-22 0.005

Vehicular Occupancy 6.64e-23 0.37

NYC Taxi Demand 2.62e-42 0.14

Bengaluru Taxi Demand 4.45e-43 0.57

Electrocardiogram 0.000 0.002

Machine Temperature 0.000 0.002

5 Experiments

As mentioned in Section 3, hyper-parameter optimization is performed prior to
the model training process. The chosen set of parameters for each data set is
given in Table 2. We follow the same model settings as [20] for the ECG and
Machine Temperature data sets. For the traffic speed, travel time and vehicular
occupancy data sets, the limited availability of readings suggested look-back and
look-ahead times of 1 each. We have over 10 million points for the New York and
Bengaluru cities, allowing for a large look-back time. The considerable amount
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of data in these two cases allows the LSTM to learn better representations of
the input data, aiding the anomaly detection process. The models ran for 100
epochs with a batch size of 64, minimizing the Mean Squared Error.

Table 2. The experimental settings for the data sets considered. The optimal set of
hyper-parameters for each data set is chosen after running the Tree-structured Parzen
Estimator (TPE) Bayesian Optimization.

Data Sets LSTM Architecture lb, la

Vehicular Travel Time
1 Recurrent layer: {20}, Dropout: 0.2,

1 Dense layer: {1}, Learning rate: 0.01
1, 1

Vehicular Speed
1 Recurrent layer: {60}, Dropout: 0.19,

1 Dense layer: {1}, Learning rate: 0.0001
1, 1

Vehicular Occupancy
1 Recurrent layer: {50}, Dropout: 0.23,

1 Dense layer: {1}, Learning rate: 0.0001
1, 1

NYC Taxi Demand
2 Recurrent layers: {50, 20}, Dropout: 0.4,

1 Dense layer:{24}, Learning rate: 0.0001
5760, 24

Bengaluru Taxi Demand
2 Recurrent layers: {20, 10}, Dropout: 0.25,

1 Dense layer:{24}, Learning rate: 0.0001
5760, 24

Electrocardiogram
2 Recurrent layers: {60, 30}, Dropout: 0.1,

1 Dense layer:{5}, Learning rate: 0.05
8, 5

Machine Temperature
2 Recurrent layers: {80, 20}, Dropout: 0.1,

1 Dense layer: {12}, Learning rate: 0.1
24, 12

5.1 Results

Once the predictions are obtained from the models, we applied the three detec-
tion rules based on different assumptions. The detection performance obtained
on one of the time-sequences from the New York City data set is given in Figs.
1 - 3. The numerical results obtained on evaluating the detection rules using
Precision, Recall and F1-score are available in Table 3, along with the values of
the false-positive regulators, τg and q.

The false-positive regulators are the parameters that impact the performance
of the detection algorithms. The false-positive regulator for the Gaussian-based
detection rule, τg, is chosen for each time-sequence such that the F1-score on the
validation errors is maximized. The false-positive regulator for the EVT-based
anomaly detection, q, is set from an initialization data stream. An initial thresh-
old t has to be chosen for the EVT-based detection, typically 98% quantile. We
set q using the same initialization stream that is used for setting t. The initial-
ization stream contains the prediction errors from the training and validation
sets. The probability q is chosen so that the EVT-based anomaly detection picks
up all the anomalies from the initialization stream. We observe that the thresh-
old τg has a higher variability compared to that of the probability q. While q
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false-positives.
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Table 3. Evaluation of the detection rules on the data sets considered. The best
technique for each data set is shown in bold and shows the superior performance of the
EVT-based detection rule.

Data Sets

Normality

Assumption

Tail Assumption

from EVT

Tukey’s

Method

P R F1 τ P R F1 q P R F1

Vehicular Travel Time 0.14 0.40 0.21 -20 0.33 0.40 0.36 10−4 0.04 0.60 0.07

Vehicular Speed 0.58 1.0 0.73 -18 0.75 0.85 0.79 10−3 0.75 0.85 0.79

Vehicular Occupancy 1.0 1.0 1.0 -23 1.0 1.0 1.0 10−5 0.33 1.0 0.5

NYC Taxi

Demand

T1 1.0 1.0 1.0 -19 1.0 1.0 1.0 10−5 1.0 0.14 0.25

T2 0.2 1.0 0.33 -17 1.0 1.0 1.0 10−5 0.07 1.0 0.14

T3 0.75 1.0 0.85 -15 0.75 1.0 0.85 10−5 0.5 1.0 0.66

Bengaluru

Taxi Demand

T1 1.0 0.4 0.57 -25 1.0 1.0 1.0 10−4 0.31 1.0 0.47

T2 0.33 1.0 0.5 -18 0.33 1.0 0.5 10−4 0.04 1.0 0.07

T3 0.6 0.5 0.54 -25 0.57 0.66 0.61 10−4 0.15 0.83 0.26

Electrocardiogram 0.50 0.23 0.32 -23 0.50 0.28 0.36 10−4 0.42 0.57 0.49

Machine Temperature 0.004 0.50 0.009 -19 0.10 0.50 0.16 10−4 0.002 0.50 0.005

remains in the range [10−3, 10−5], τg varies between -15 and -25. Further, while
a single q value is sufficient for different time-sequences from the same data set
(e.g., New York City Taxi Demand), different τg values are required for differ-
ent streams of data from the same set. This translates into a relatively slower
parameter tuning for the Gaussian-based detection on comparison with that of
the EVT-based detection.

Tukey’s method is able to detect most of the anomalies but results in a large
number of false-positives, which is not desirable. In other words, Tukey’s method
has a high Recall, but poor Precision. Only in the ECG data set, the Tukey’s
method achieves better prediction performance than the others. The fraction of
anomalies is higher in the ECG data set, and hence, the anomalies cover a large
spectrum above the upper quartile. Since the Tukey’s method thresholds the
raw prediction errors based on the upper quartile, it results in good anomaly
detection for the ECG data set.

Regardless of the application domain, we see that EVT-based detection
rules provide consistently better performance that Gaussian-based and Tukey’s
method based detection rules. These findings suggest that presuming a Gaussian
distribution on the prediction errors is a very strong assumption and might not
hold for several scenarios. A more sensible assumption would be to assume that
the tails follow GPD, which appears to be valid across diverse settings. On the
other hand, assuming no distribution can result in multiple false alarms.
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6 Contributions

Across application domains, accurate detection of abnormal patterns plays a
vital role in the construction of reliable prediction algorithms. In this paper,
we compared three detection rules that can be used with deep learning based
anomaly detection, in the context of transportation networks. Each detection
rule makes specific assumptions about the distribution of the prediction errors
obtained from the Long Short-Term Memory (LSTM) network. Using statis-
tical tests and numerical analysis, we showed that the widely used Gaussian
distribution assumption on the prediction errors need not always hold. However,
the tails distributions of the prediction errors are seen to follow a Generalized
Pareto Distribution (GPD). This statistical evidence prompted us to devise a
set of detection rules based on Extreme Value Theory (EVT).

The EVT-based detection rule consistently achieved more accurate anomaly
detection compared to the Gaussian-based detection rule and Tukey’s method.
More variability was observed in the false-positive regulator values of the Gaussian-
based detection rule compared to that of the EVT-based detection rule. The
Gaussian-based detection required fixing of different false-positive regulator val-
ues for different sequences from the same data set, which in turn necessitated
extensive parameter tuning. On the other hand, the EVT-based rule needed
only a single value of false-positive regulator to achieve good performance across
multiple streams from the same data set.

This paper follows an LSTM-based hybrid approach for anomaly detection.
To get a comprehensive overview of various anomaly detection techniques, one
should conduct an extensive comparison study of statistical, machine learning,
and deep learning based models. Such a study is the next natural avenue for fu-
ture research. Further, we aim to develop an end-to-end deep anomaly detection
model by directly modifying the objective function of the LSTM to detect the
anomalies.
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