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Abstract. Data streams are related to large amounts of data that can
continuously arrive with a probability distribution that may change over
time. Depending on the changes in the data distribution, different phe-
nomena can occur, like new classes can appear or concept drift can occur
in existing classes. Machine Learning algorithms have been often used to
model this data. New classes are patterns that were not seen during the
training of the current classification model, but appear after some time.
Concept drift occurs when the concepts associated with a dataset change
as new data arrive. This paper proposes a new algorithm based on kNN
that uses micro-clusters as prototypes and incrementally updates the
micro-clusters or creates new micro-clusters when novelties are detected.
In the online phase, each instance close to a micro-cluster is considered an
extension of the micro-cluster, being used to adapt the model to concept
drift. The proposed algorithm is experimentally compared with a state-
of-the-art classifier from the data stream literature and one baseline.
According to the experimental results, the proposed algorithm increases
the predictive performance over time by incrementally learning changes
in the data distribution.

Keywords: Data stream · Concept drift · Novelty detection ·
Online learning

1 Introduction

Data streams are known as data that can continuously arrive in streams, with
a probability distribution that can change over time [14]. As new data arrive,
models previously induced can become outdated [6]. In addition, due to the great
amount of data generated, it is not feasible to store all incoming data in the main
memory, requiring the removal of previous outdated data and online processing
of incoming data [12,16].

Depending on the changes in the data distribution, different phenomena can
occur, like concept drifts [14,25] and novelties [12,20]. Concept drift refers to
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changes in the concept definitions of a normal class [15]. Novelties concepts are
are patterns that were not present during the training of the classification model,
but appear later on in the data stream [12]. In these situations, it is important
to adapt the classification model to the current data distribution, otherwise its
predictive performance can decrease along the time.

In this work, normal concepts are a set of normal classes used to train the
classification model and novelties concepts are the new classes that emerge in a
data stream along the time [12].

Novelty detection is a Machine Learning (ML) task based on the identification
of novelties in the data [11]. In data streams, the novelty detection can be divided
in two phases: offline and online phase. In the offline phase, a classification model
is trained using an initial, static, labeled dataset. In the online phase, the model
is updated using unlabeled data arriving in streams. The update occurs when
the predictive performance of the model decreases, usually because of change in
the data distribution. Thus, the model can be continuously updated [15].

One of the strategies to deal with novelty detection and concept drift is by
explicitly detecting changes in parts of the stream, comparing the current con-
cept with previous concepts from time to time [19]. An example of this strategy
is to continuously calculate the model classification error. This strategy assumes
that the data arriving in the stream are labeled.

Another strategy is to store in a buffer the potential novelty classes instances.
However, the use of a buffer with fixed size may ignore instances with relevant
information about persistent concepts. Furthermore, the size of the buffer affects
its efficient use when the degree and speed of changes vary in the data stream.
Another deficiency of updating the model using a buffer with fixed size is the
possibility to forget old, but relevant, information.

There are two problems in assuming that the arriving data is labeled. First,
the process of labeling an instance usually has a cost, which increases with the
complexity and need of domain expertise. Second, if the data arrives in high
speed, there will not be enough time to label them. Thus, in this paper we
assume that the instances in a data stream come unlabeled.

Due to the lack of labeled data in a data streams, the update of the model
can rely only on the predictive attribute values. To deal with this limitation
it is possible to use clustering algorithms. Clusters can summarize the main
data profiles present in a data stream and be updated to incorporate changes
in class profiles and detect the appearance of novelties [2]. When clustering
algorithms are applied to data streams, micro-clusters can be used as a strategy
to summarize data present in different periods of time [3]. Each micro-cluster
can be structured as a temporal extension of a CF (Cluster Feature Vector) [24],
which is a compact statistical representation of a set of instances.

In this paper we propose Higia, a novelty detection algorithm based on kNN
(k -Nearest Neighbor) that uses micro-clusters [3] as prototypes and incremen-
tally updates the micro-clusters or creates new micro-clusters when a novelty
is detected. Higia training is divided into offline learning and online learning.
During the offline learning phase, we assume that there is data from one or more
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normal classes. The instances from each normal class are summarized into a set
of micro-clusters. Each micro-cluster has instances from the same normal class
label. In the online learning phase, each instance close to a micro-cluster is con-
sidered an extension of the micro-cluster, a concept drift. This instance is then
used to adapt the predictive model to this concept drift. However, if a set of new
instances are close together in a dense region, they are considered representative
of new classes, named novelties.

This paper is structured as follows. Section 2, presents previous related works
for novelty and concept drift detection in data streams. Data stream, novelty,
concept drift and micro-clusters are introduced in Section 3. The proposed algo-
rithm, Higia, is described in Sect. 4. Section 5 presents the experimental setup
and analyses the results obtained. Finally, Sect. 6 has the main conclusions from
this study and points out future work directions.

2 Related Work

This section briefly presents previous works using ML-based approaches for nov-
elty and concept drift detection in data streams. Most of these studies use super-
vised ML algorithms, classification algorithms, to induce classifiers.

Most of the classification algorithms proposed for data stream mining are
based on online learning [9,12,15,19]. Some of them continuously update the
classification model using true labeled data [1,4,21]. However, as previously men-
tioned, true labels are not always available at feasible time, delaying the updating
of the classification model. Assuming the absence of labels in the online phase,
others apply clustering algorithms in the arriving data. Thus, the clusters are
representatives of normal and new classes [5,12,17,23].

One of the first algorithms to use clusters for novelty detection in data
streams is OLINDDA (OnLIne Novelty and Drift Detection Algorithm) [23],
[22]. During the offline phase a single model is build by a set of clusters with
data from the normal classes. After, in the online phase, whenever a new instance
arrives, it is calculated the distance between it and the closest cluster from the
normal model. When the distance is large, according to a threshold value, the
instance is stored in a buffer, where it can later be defined as a novelty after a
clustering step.

ECSMiner [21] (Enhanced Classifier for Data Streams with novel class Miner)
is an ensemble of models, each model is represented by a set of clusters created
using the clustering algorithm k -means. ECSMiner also stores in a buffer the
instances that are distant from the normal clusters. The ensemble is updated
when the instances stored in the buffer receive their true label. Afterwards, the
ensemble predictive accuracy is calculated. The model with the lowest accuracy
is updated with the novelties found in the buffer. While waiting for labeled data,
the model can wait for a long period of time to be updated, which could reduce
the accuracy of the ensemble. Besides, it is not always guaranteed that all data
will be labeled, since it may be application dependent.

Another novelty detection algorithm, MINAS (MultI-class learNing Algo-
rithm for data Streams) [12], also uses an offline phase followed by an online
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phase. In its offline phase, the data is separated by labels in subsets. From each
subset it is generated a set of micro-clusters representing each class. In the online
phase, the incoming data is stored in a buffer if is not identified by the model.
When the buffer reaches a certain size, a clustering algorithm is applied in the
data stored in the buffer. Valid micro-clusters are marked as extension of a known
class or as novelty, and are incorporated into the classification model.

3 Problem Formalization

A data stream is a sequence of instances, potentially of infinity size, that can
be formally represented by [12,15,16]: Dtr = {(X1, y1), (X2, y2), ..., (Xtr, ytr)},
where Xtr is an instance arriving in time tr and ytr is the target class of this
instance. Due to finite resources, each instance must be processed only once.

Concept drift is a change in the distribution probability of a problem tar-
get classes [15]. Formally, the joint probability distribution Ptr+1(X, y) over
instances X and label y can change over time, defined by tr, so that Ptr(X, y) �=
Ptr+1(X, y).

Assuming that in the offline phase a dataset has m classes, the set Y Nor =
{y1, y2, ..., ym} represents the set of Normal Classes. These classes are used to
build the initial classification model. Afterwards, during the online phase, a novel
class, ym+1, has the following property: ym+1, /∈ Y Nor i.e., ym+1 was not used
in the training of the classification model, but emerges during the online phase.
Therefore, for any given new set of novel classes, Y New = {ym+1, ym+2, ..., yn}
any novelty detection approach must be able to fast detect novelties as they
appear [12,16]. Considering the sets of normal classes and new classes, the total
set of classes is simply defined as Y = Y Nor ∪ Y New.

Micro-clustering [3] is a strategy commonly used to summarize data coming
from a stream in different periods of time. Each micro-cluster Cj = (n,LS ,SS , t)
stores four components: the number of its instances n, the linear sum of its
instances LS , the square sum of its instances SS and the timestamp, t, of when
the last instance was incorporated in the micro-cluster. By using these values,
it is possible to calculate the centroid (cj = LS/n) and the radius (rCj

=
2 × (SS ×n/n2 +SS/n2)) of a micro-cluster, which can be used to classify new
instances.

4 Methodology

The proposed algorithm, Higia, is based on the assumption that in a data stream,
an ideal classifier should be able to learn the current concept in feasible time
without forgetting relevant past information [9].

Higia induces a classification model using unsupervised online learning. Its
training also occurs by an offline phase followed by an online phase. In the
offline phase, a predictive model, illustrated by Fig. 1, is induced from a batch
containing labelled data. As in [12], the model is composed by micro-clusters
created using the CluStream algorithm [3].
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Fig. 1. Higia offline phase.

In the online phase, illustrated by Fig. 2, as new data arrives, the model
classify each new instance as normal, extension or unknown. For the classifica-
tion, the model calculates the euclidean distance between each instance and the
centroids of the micro-clusters from the normal classes.

Algorithm 1. Higia: Online Phase
1: input: Xtr, T, k
2: Let ψk be a list of the k nearest micro-clusters to Xtr

3: if majority of ψk have the same label then
4: Let Cj be the nearest micro-cluster to Xtr

5: Let cj be the centroid of Cj

6: Let radius (Cj) be the radius of Cj

7: dist ← EuclidianDistance(Xtr, Cj)
8: if dist ≤ radius (Cj) then
9: update Cj with Xtr

10: classify Xtr with the same label of Cj

11: else if dist ≤ (radius (Cj) × T ) then
12: create extension of Cj with centroid Xtr and radius 0.5
13: classify Xtr with the same label of Cj

14: else
15: add Xtr to buffer
16: classify Xtr as unknown

Algorithm 1 describes how Higia works in the online learning phase when a
new instance, Xtr, arrives. First, Higia finds the k micro-clusters closest to Xtr.
If the majority of these micro-clusters have the same label and if the smallest
distance is less than the radius of the nearest micro-cluster Cj , the instance is
classified with the label of Cj . Besides, Cj is updated with Xtr. If the distance
is larger than the radius of Cj , but is smaller than a given threshold T , the
instance is added to the model as an extension. The threshold is multiplied by
the radius of Cj and indicates the maximum drift of Cj .

If the distance is larger than the radius of Cj and T , then Xtr is labeled as
unknown and stored in a buffer. The instances stored in the buffer are incre-
mentally forming micro-clusters. When a micro-cluster has a given amount of
instances, defined by a hyperparameter, a novelty is found and the new micro-
cluster is added to the model as a new class.
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Fig. 2. Higia online phase.

5 Experimental Evaluation

In this section, we present the experiments carried out to assess the predictive
performance of Higia. In this experiments, Higia was compared with two other
algorithms, MINAS and the kNN algorithm. From the algorithms described in
Sect. 2, MINAS is the only unsupervised algorithm for multiclass novelty detec-
tion. The kNN algorithm from the MOA framework [8] was used as a baseline.
In the offline phase, all three algorithms are initialized with the same batch of
labeled data representing 10% of the dataset. We assume that the instances in
the training data are from the normal classes and that new classes can continu-
ously appear during the online phase.

We adopted the accuracy measure to evaluate the predictive performance of
the models over time. The accuracy is the amount of correctly classified data
divided by the amount of total data in a window of 1000 instances. We also use
the total accuracy measure to evaluate the performance for the whole dataset.

For a more detailed analyses we used the evaluation approach proposed
in [21]. This evaluation approach has 3 measures: MNew = the percentage of
instances from the new classes misclassified as existing class, FNew = the per-
centage of instances from the normal classes classified as novelties, and Err =
average misclassification error.

The accuracy counts as mistake the instances classified as unknown. To anal-
yse the algorithms in terms of misclassification of the total classes, (Y ), without
the influence of unknown, we used the Err measure.

5.1 Datasets

The experiments were performed on both synthetic and real datasets, commonly
used in novelty detection studies [3,4,10,13,18,21]. The synthetic datasets are:
MOA, SynD, CDT, UG and Gear. The real dataset used was the Forest Cover
dataset.
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The MOA dataset [12] has concept drift, appearance of new classes, recur-
rence and disappearance of existing classes. The real shape of the clusters in this
dataset is normally distributed hyper-spheres. The SynD [4,13,21] has no nov-
elty, but the concept associated with known classes changes over time. Finally,
CDT, UG and Gear are non stationary datasets1. In these datasets, a single
novelty occurs and concept drifts happens at every interval of 400 instances in
CDT, 1000 instances in UG and 2000 instances in Gear.

Regarding the only real dataset, Forest Cover [7], it contains observations
from 7 types of forest in the United States. It has 7 classes and 54 attributes.
In the experiments, the training set is formed by observations from 3 normal
classes.

Table 1 presents some basic statistics collected from these datasets: the num-
ber of normal and new classes, number of attributes, number of instances in the
minority and majority classes.

Table 1. Statistical information for each dataset

Statistics 1CDT MOA Gear UG SynD Forest Cover

Attributes 2 4 2 2 10 54

Classes 2 4 2 2 2 7

Normal classes 1 2 2 1 2 3

New classes 1 2 0 1 0 4

Instances MinCla 7199 9987 99935 44999 124660 587

Instances MajCla 7200 18180 100065 45000 125340 18350

5.2 Results and Discussion

In these experiments we used the default parameters of MINAS. Because MINAS
uses the label of the nearest micro-cluster to classify a new instance, we set k = 1
in the Higia algorithm. As for the other parameter of Higia, the threshold, we set
it to threshold = 1.1 as in MINAS [12]. Also for Higia, we experimentally defined
the parameter radius = 0.5. The kNN has the default parameters, k = 1 and
window size (w = 1000), and there is no online training. It is used to understand
how the model looses predictive accuracy over time without its update to the
changes in the data stream.

Next, we present the predictive accuracy over time of the 3 algorithms. As
can be seen in Fig. 3, the predictive performance of Higia was better than those
obtained by MINAS and the kNN baseline. Higia incrementally updates the
normal and the new micro-clusters in the classification model. As consequence,
model represents the current probability distribution of the data streams better

1 https://www.sites.google.com/site/nonstationaryarchive/.

https://www.sites.google.com/site/nonstationaryarchive/
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than MINAS. The model induced and updated by the MINAS algorithm is
sensitive to the buffer size, i.e., the model needs to wait until the buffer is full of
unknown instances to be updated. Thus, by not being able to quickly adapt to
the changes in the data stream, the model loose accuracy along the time.
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Fig. 3. Predictive accuracy over time

The baseline, kNN, presented the worst predictive performance in most of
the datasets. This is somewhat expected, since it does not learn along the time.
However, we can see from Fig. 3e that, for one of the datasets, the baseline had
the best predictive accuracy. A possible reason is that the training set of this
dataset has data from all classes. Meanwhile, for this dataset, different from the
baseline, the generalization of the models induced by MINAS and Higia was not
able to capture the behavior of the data. This indicates the importance of the
initial training even in data stream scenarios with concept drift.
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Table 2 summarizes the predictive performance obtained by the Higia and
MINAS algorithms in all datasets. According to these results, for the datasets
MOA, CDT and UG, Higia had the lowest FNew, but the highest MNew. This
shows that Higia models gave more relevance to the normal classes than to the
novelties. The only exception is the CoverType dataset. However, these results
did not seem to affect the accuracy, Acc, of Higia in most datasets. Higia pre-
sented the lowest Err values in almost all datasets, meaning that, for these
datasets the model made less missclassifications and labeled less instances as
unknown than MINAS.

Table 2. Performance metrics for each algorithm

MNew FNew Err Acc

Higia MINAS Higia MINAS Higia MINAS Higia MINAS

MOA 0.11 0.00 0.00 0.46 0.08 0.48 0.62 0.46

SynD 0.00 0.00 0.00 0.00 0.30 0.34 0.70 0.66

CoverType 0.18 0.46 0.49 0.24 0.49 0.54 0.37 0.23

CDT 0.43 0.00 0.01 0.00 0.46 0.03 0.47 0.68

GEARS 0.00 0.00 0.00 0.00 0.34 0.66 0.66 0.34

UG 0.78 0.41 0.03 0.36 0.60 0.70 0.68 0.24

An exception occurred for the dataset CDT, which has a seasonal overlap
between the normal class and the new class. For this dataset, Higia incremen-
tal learning mixed instances from different classes into the same micro-clusters,
reducing Acc and increasing Err.

Additional experiments were performed to analyse the impact of the parame-
ter k (k = 1, 3, 5, 10, 20) in Higia predictive accuracy. We used the CDT dataset
because Higia had a lower performance with this dataset. Figure 4 shows that,
for this dataset, the accuracy is more stable over time for higher k. We also see
a reduction of Err, Table 3, with the increase of the parameter k.

Table 3. Higia (k = 1, 3, 5, 10, 20) performance metrics for dataset CDT

MNew FNew Err ACC

1NN 0.43 0.01 0.46 0.47

3NN 0.42 0.01 0.41 0.51

5NN 0.38 0.01 0.32 0.54

10NN 0.32 0.02 0.32 0.47

20NN 0.45 0.02 0.35 0.60
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Fig. 4. Higia accuracy over time in CDT dataset varying k.

6 Conclusions and Future Work

Data stream mining has gained a great deal of attention in the last decades.
Novelty detection algorithms have been successfully applied to many applica-
tions. However, most of the proposed algorithms assume that instances arriving
in a stream are labeled, which is often not the case.

This paper presented Higia, a new unsupervised learning algorithm based
on micro-clusters for novelty and concept drift detection in data streams. The
micro-clusters are incrementally updated every time a new instance arrives from
a data stream. When a novelty is detected, Higia creates new micro-clusters to
represent the new class.

Considering several performance metrics, Higia was compared with MINAS,
a state-of-the-art unsupervised novelty detection algorithm, and a k -NN-based
baseline. According to the experimental results, Higia presented a better pre-
dictive performance than these other algorithms. Besides, Higia labeled less
instances as unknown because it can faster adapt the model to the current con-
cept than the compared algorithms.

As future work, the authors want to study alternatives to discard outdated
information and the inclusion of an unsupervised concept drift tracker.
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