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ABSTRACT

We present an algorithm that quickly finds falsifying inputs for

hybrid systems, i.e., inputs that steer the system towards violation

of a given temporal logic requirement. Our method is based on

a probabilistically directed search of an increasingly fine grained

spatial and temporal discretization of the input space. A key feature

is that it adapts to the difficulty of a problem at hand, specifically

to the local complexity of each input segment, as needed for falsifi-

cation. In experiments with standard benchmarks, our approach

consistently outperforms existing techniques by a significant mar-

gin. In recognition of the way it works and to distinguish it from

previous work, we describe our method as a “Las Vegas tree search”.

CCS CONCEPTS
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physical systems; •Mathematics of computing→ Stochastic

control and optimization; • Theory of computation → Ran-

dom search heuristics;

KEYWORDS

cyber-physical system, hybrid system, testing, falsification, stochas-

tic optimization, temporal logic, Las Vegas tree search

1 INTRODUCTION

The falsification problem we consider seeks a (time-bounded) in-

put signal that causes a hybrid system model to violate a given

temporal logic specification. A popular way to address this is to

first construct a “score function” [20] that quantifies how much

of the specification has been satisfied during the course of an ex-

ecution. The falsification can then be treated as an optimization

problem, which can be solved using standard algorithms. This ap-

proach, especially using “robustness” [16] as the score function,

has been successfully applied, resulting in a number of now mature

tools [4, 11].

Despite its apparent success, the commonly used robustness

semantics [16] is in general not a perfect optimization function.

Greedy hill climbing may lead to local optima, hence robustness is

only an heuristic score function [21] with respect to the falsification

problem. In practice, standard optimization algorithms overcome

this limitation by including stochastic exploration. The most so-

phisticated of these can also model the dynamics of the system

(e.g., [2]), in order to estimate the most productive direction of in-

put signal space to explore. There is, however, “no free lunch” [30],

and high performance general purpose optimization algorithms are

not necessarily the best choice. For example, such algorithms often

optimize with respect to the entire input trace, without exploiting

the time causality of the problem, i.e., the fact that a good trace

(one that eventually falsifies the property) may be dependent on a

good trace prefix.

The contribution of this paper is a fast randomized falsification

algorithm (section 3.1) that exploits the time-causal structure of

the problem and that adapts to local complexity. In common with

alternative approaches, our algorithm searches a discretized space

of input signals, but in our case the search space also includes

multiple levels of spatial and temporal granularity (section 3.2). The

additional complexity is mitigated by an efficient tree search that

probabilistically balances exploration and exploitation (section 3.3).

The performance of our algorithm benefits from the heuristic

idea to explore simple (coarse granularity) inputs first, then gradu-

ally switch to more complex inputs that include finer granularity.

Importantly, the finer granularity tends only to be added where

it is needed, thus avoiding the exponential penalty of searching

the entire input space at the finer granularity. While it is always

possible to construct pathological problem instances, we find that

our approach is very effective on benchmarks from the literature,

including the Powertrain benchmark [22], which is considered a

difficult challenge for falsification. Our experimental results (sec-

tion 4) demonstrate that our algorithm can consistently beat the

best existing methods, in terms of speed and reliability of finding a

falsifying input.

2 PRELIMINARIES

In this work we represent a deterministic black-box system model

as an input/output functionM : ([0,T ] → Rn ) → ([0,T ] → Rm ).
In general,M comprises continuous dynamics with discontinuities.

M takes a time-bounded, real-valued input signal u : [0,T ] → Rn
of length |u | = T and transforms it to a time bounded output

signal y : [0,T ] → Rm of the same length, but potentially different

dimensionality. The dimension n of the input indicates that at each

moment t ≤ T within the time horizonT , the valueu(t) ∈ Rn of the

input is an n-dimensional real vector (analogously for the output).

We denote by u1u2 the concatenation of signals u1 and u2 that
have the same dimensions, such that u1u2 : [0,T1 + T2] → Rn .
Concatenation of more than two signals follows naturally and is de-

noted u1u2u3 · · · . A constant input signal segment is written (t ,v),
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where t is a time duration and v ∈ Rn is a vector of input val-

ues. A piecewise constant input signal is the concatenation of such

segments.

In this work we adopt the syntax and robustness semantics of

STL defined in [13]. The syntax of an STL formula is thus given by

φ = ¬φ | φ ∨ φ | φ ∧ φ | φ UI φ | □Iφ | ^Iφ | µ, (1)

where the logical connectives and temporal operators have their

usual Boolean interpretations and equivalences, I is the interval of
time over which the temporal operators range, and atomic formulas

µ ≡ f (x1, . . . ,xm ) ≥ 0 are predicates over the spatial dimensions

of a trace. The robustness of trace y with respect to formula φ,
denoted ρ(φ,y), is calculated inductively according to the following
robustness semantics, using the equivalence ρ(φ,y) ≡ ρ(φ,y, 0).

ρ(µ,y, t) = f (x1[t], . . . ,xm [t]), for µ ≡ f (x1, . . . ,xm ) ≥ 0

ρ(¬φ,y, t) = −ρ(φ,y, t)
ρ(φ1∨φ2,y, t) = max(ρ(φ1,y, t), ρ(φ2,y, t))
ρ(φ1∧φ2,y, t) = min(ρ(φ1,y, t), ρ(φ2,y, t))

ρ(φ1UI φ2,y, t) = max

t ′∈t+I

(
min

t ′′∈[t,t ′)
(ρ(φ1,y, t ′′)),min(ρ(φ2,y, t ′))

)
ρ(^Iφ,y, t) = max

t ′∈t+I
(ρ(φ,y, t ′))

ρ(□Iφ,y, t) = min

t ′∈t+I
(ρ(φ,y, t ′))

An important characteristic of the robustness semantics is that

it is faithful to standard boolean satisfaction, such that

ρ(φ,y) > 0 =⇒ y |= φ and ρ(φ,y) < 0 =⇒ y ̸ |= φ. (2)

Together, these equations justify using the robustness semantics

ρ(φ,M(u)) to detect whether an input u corresponds to the viola-

tion of a requirement φ. This correspondence is exploited to find

such falsifying inputs through global hill-climbing optimization:

Find u∗ = arg min

u ∈([0,T ]→Rn )
ρ(φ,M(u)) such that ρ(φ,M(u∗)) < 0.

(3)

Of course, finding an adequate falsifying input u∗ is generally hard

and subject to the limitations of the specific optimization algorithm

used.

Sound approximations of the lower and upper bounds of the

robustness of a prefix y can sometimes be used to short-cut the

search. We thus define lower and upper bounds in the following

way.

Lower: ρ(φ,y) = min

y′
ρ(φ,yy′) Upper: ρ(φ,y) = max

y′
ρ(φ,yy′)

(4)

A lower bound ρ(φ,M(u))) > 0 can be used to detect that a prefix

cannot be extended to a falsifying trace (e.g., after the deadline

for a harmful event has passed). An upper bound ρ(φ,M(u)) < 0

similarly impliesM(uu ′) ̸|= φ for all u ′, concluding that input u is

already a witness for falsification (e.g., a limit is already exceeded).

3 APPROACH

We wish to solve the following falsification problem efficiently:

Find u∗ such that ρ(φ,M(u∗)) < 0. (5)

Our approach is to repeatedly construct input signalsu = u1u2u3 · · · ,
where ui is drawn from a predetermined search space of candidate

input segments,A. The choice is probabilistic, according to a distri-

bution D that determines the search strategy, i.e., which inputs are

likely to be tried next given a partially explored search space. The

construction of each input is done incrementally, to take advantage

of the potential short cuts described at the end of section 2.

Algorithm 1 “adaptive Las Vegas Tree Search” (aLVTS) codifies

the high level functionality of this probabilistic approach, described

in detail in section 3.1.

The effectiveness of our algorithm in practice comes from the

particular choices ofA andD, which let the search gradually adapt
to the difficulty of the problem. The set A (defined in section 3.2)

contains input segments of diverse granularity, which intuitively

corresponds to how precise the input must be in order to find a

falsifying trace. The distribution D (defined in section 3.3) initially

assigns high probabilities to the “coarsest” input segments in A.

Coarse here means that the segments tend to be long in relation to

the time horizonT and large in relation to the extrema of the input

space. The algorithm probabilistically balances exploration and

exploitation of segments, but as the coarser segments become fully

explored, and the property has not been falsified, the algorithm

gradually switches to finer-grained segments.

3.1 Algorithm

Algorithm 1: Adaptive Las Vegas Tree Search (aLVTS)

Input:

system modelM : u → y,
with u : [0, t] → Rn and y : [0, t] → Rm

time-bounded specification ϕ
set of all possible input trace segments A
Output:

u such thatM(uu ′) ̸|= ϕ for all u ′, or
⊥ after timeout or maximum number of iterations

1 unexplored(u) ← A for all u

2 explored(u) ← � for all u

3 repeat

4 u ← ⟨⟩
5 while unexplored(u) , � ∨ explored(u) , � do

6 sample u ′ ∼ D(u)
7 if u ′ ∈ unexplored(u) then
8 unexplored(u) ← unexplored(u) \ {u ′}
9 y ←M(uu ′)

10 if ρ(ϕ,y) < 0 then

11 return uu ′

12 if ρ(ϕ,y) > 0 then

13 continue line 3

14 explored(u) ← explored(u) ∪ {u ′}
15 u ← uu ′

16 until timeout or maximum number of iterations;
17 return ⊥

Algorithm 1 searches the space of input signals constructed

from piecewise constant (over time) segments, which are chosen
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at random according to the distribution defined by D in line 6.

This distribution is a function of the numbers of unexplored and

explored edges at different levels of granularity, and thus defines

the probabilities of exploration, exploitation and adaptation. The

precise calculation made by D is described in section 3.3.

As the search proceeds, the algorithm constructs a tree whose

nodes each correspond to a unique input signal prefix. The edges

of the tree correspond to the constant segments that make up the

input signal. The root node corresponds to time 0 and the empty

input signal (line 4).

To each node identified by an input signal prefix u is associated

a set of unexplored edges, unexplored(u) ⊆ A, that correspond

to unexplored input signal segments, and a set of explored edges,

explored(u) ⊆ A, that remain inconclusive with respect to falsifica-

tion. Initially, all edges are unexplored (line 1 and line 2). Once an

edge has been chosen (line 6), the unique signal segment associated

to the edge may be appended to the signal prefix associated to the

node, to form an extended input signal. If the chosen edge is unex-

plored, it is removed from the set of unexplored edges (line 8) and

the extended input signal uu ′ is transformed by the system into an

extended output signal (line 9). If the requirement is falsified by the

output signal (y in line 10), the algorithm immediately quits and

returns the falsifying input signal (line 11). If the requirement is

satisfied, with no possibility of it being falsified by further exten-

sions of the signal (line 12), the algorithm quits the current signal

(line 13) and starts a new signal from the root node (line 4). This

is the case, in particular, when the length of the signal exceeds

the time horizon of the formula as a consequence of the definition

of ρ in eq. (4). If the requirement is neither falsified nor satisfied,

the edge is added to the node’s set of explored edges (line 14). Re-

gardless of whether the chosen edge was previously explored or

unexplored, if the signal remains inconclusive, the extended input

signal becomes the focus of the next iterative step (line 15).

3.2 Definition of A
Given an input signal segment u ′ of length t time units and value

(v1, . . . ,vn ) ∈ Rn , let vi and vi denote the minimum and maxi-

mum possible values, respectively, of dimension i ∈ {1, . . . ,n}. For
each integer level l ∈ {0, . . . , lmax}, we define the set of possible
proportions of the interval [vi ,vi ] as

pl = {(2j + 1)/2l | j ∈ N0 ≤ (2l − 1)/2}.
The numerators of all elements are coprime with the denomina-

tor, 2
l
, hence pi ∩ pj = � for all i , j. By definition, p0 also

includes 0. Hence, p0 = {0, 1}, p1 =
{
1

2

}
and p2 =

{
1

4
, 3
4

}
, etc. The

set of possible values of dimension i at level l is thus given by

vi,l = vi + pl × (vi −vi ).
Rather than making the granularity of each dimension independent,

we interpret the value of l as a granularity “budget” that must

be distributed among the (non-temporal) dimensions of the input

signal. The set of possible per-dimension budget allocations for

level l is given by

bl = {(b1, ...,bn ) ∈ Nn0 | b1 + · · · + bn = l}.
For example, with n = 2, b3 = {(0, 3), (1, 2), (2, 1), (3, 0)}. If we
denote the set of possible time durations at level l by tl , then the

Table 1: Size of Al for input dimensionality n and level l
given that the size of tl is one.

n l = 0 1 2 3 4 5 6 7 8 9 10

2 4 4 9 20 44 96 208 448 960 2048 4352

3 8 12 30 73 174 408 944 2160 4896 11008 24576

set of possible input segments at level l is given by

Al =
⋃

(b1, ...,bn )∈bl
tl × v1,b1 × · · · × vn,bn .

Note that while tl is not required here to share the granularity

budget, this remains a possibility. Our implementation (section 4.1)

actually specifies tl by defining a fixed number of control points per

level, (k0, . . . ,klmax
), such that the tl = {T /kl } are singleton sets.

The sizes of various Al for different choices of n and l , assuming

|tl | = 1, are given in table 1.

In summary, an input segment u ′ = (t ,v1, . . . ,vn ) ∈ Al has t ∈
tl and corresponding budget allocation b1 + · · · + bn = l , with the

value vi for each dimension given by vi = vi + pi (vi −vi ), where
pi = (2ji + 1)/2bi , for some ji , defines the proportion between

minimum vi and maximum vi .
By construction, Ai ∩ Aj = �, for all i , j. Hence, we define

unexploredl (u) = unexplored(u) ∩ Al and

exploredl (u) = explored(u) ∩ Al .

The set of all possible input signal segments is given by A =
A0 ∪ A1 ∪ · · · ∪ Almax

.

Figure 1 depicts the construction of A for two dimensions. The

majority of candidate input points is concentrated on the outer

contour, corresponding to an extreme choice for one dimension

and a fine-grained choice for the other dimension. While this bias

appears extreme, as layers are exhausted, finer-grained choices

become more likely. For example, after two points from A0 have

been tried, all remaining points from both levels in the second panel

would be equally probable.

3.3 Definition of D
The distribution D(u) is constructed implicitly. First, a granularity

level l ∈ {0, . . . , lmax} is chosen at random, with probability in

proportion to the fraction of edges remaining at the level, multiplied

by an exponentially decreasing scaling factor. Defining the overall

weight of level l as

wl =
|unexploredl (u)| + |exploredl (u)|

2
l · |Al |

,

level l is chosen with probabilitywl /
∑lmax

i=0 wi .

Having chosen l , one of the following strategies is chosen uni-

formly at random:

(1) select u ′ ∈ unexploredl (u), uniformly at random;

(2) select u ′ ∈ exploredl (u), uniformly at random;

(3) select u ′ ∈ exploredl (u), uniformly at random from those

that minimise ρ(φ,M(uu ′));
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A0

A1 A2

A3 A4

Figure 1: Construction ofA for n = 2 and lmax = 4, withA0 representing the extremes of the two spatial dimensions. Showing

A0,A0 ∪ A1, . . . ,A0 ∪ A1 ∪ A2 ∪ A3 ∪ A4. Larger points correspond to more likely values.

(4) select u ′ ∈ exploredl (u), uniformly at random from those

that minimise ρ(φ,M(uu ′u∗)), where u∗ denotes any, arbi-
trary length input signal suffix that has already been explored

from uu ′.

Strategy 1 can be considered pure exploration, while strategies 3–4

are three different sorts of exploitation. In the case that unexploredl (u)
or exploredl (u) are empty, their corresponding strategies are infea-

sible and a strategy is chosen uniformly at random from the feasible

strategies. If for all u ′ ∈ explored(u), explored(uu ′) = �, then strat-

egy 4 is equivalent to strategy 3, but it is not infeasible.

3.4 Design Choices

In contrast to Monte Carlo tree search (MCTS), which typically

makes a good decision by reaching a goal statemultiple times during

playout, our algorithm expects to reach a goal state only once. In

place of a statistic about reaching goal states, we therefore adopt

a heuristic, namely the lowest robustness. Using this heuristic is

typically muchmore effective than choosing entirely at random, but

simply substituting the heuristic value for the statistic in the UCT

formula (upper confidence bound applied to trees [25], successfully

used with MCTS) is plausible, but nevertheless questionable in our

application. Moreover, the deterministic way that UCT balances

exploration and exploitation is often not optimal in the context of

falsification.

Our design choices are guided by the observation that simple,

coarse-grained input signals either immediately solve typical falsi-

fication problems, or need only small modifications to do so. Since

such signals may be quickly explored exhaustively, our level scaling

factors are designed to make this happen with high probability.

Unexplored edges have unknown potential, while every explored

edge does not yet lead to falsification, but does not exclude it. The

only exception to this occurs when all the edges of a node have

been explored and discarded. In this unlikely case the edge leading

to such a node exists and can be traversed, but the node and its

trace are immediately rejected (line 5).

While not explicit in the presentation of algorithm 1, our ap-

proach is deliberately incremental in the evaluation of the system

model. In particular, we can re-use partial simulations to take ad-

vantage of the fact that traces share common prefixes. Hence, for

example, one can associate to every visited u the terminal state of

the simulation that reached it, using this state to initialize a new

simulation when subsequently exploring uu ′. This idea also works

for the calculation of robustness. We note, however, that incremen-

tal simulations may be impractical. For example, suspending and

re-starting Simulink can be more expensive than performing an

entire simulation from the start. Under such circumstances, the

inner loop of our algorithm can be replaced by a recursion that

executes the model on the complete input, returning the trace from

the innermost recursion. The checks in lines 11 and 13 can be done

on the appropriate prefix of the output returned from the recursive

call (which takes place in line 9).

4 EVALUATION

We briefly describe our implementation and the benchmarks, then

present the results of an experimental comparison with random

sampling and Breach.

4.1 Implementation

We have implemented algorithm 1 in the prototype tool FalStar,

using the Scala programming language and interfacing to MAT-

LAB/Simulink through a Java API. The code is publicly available

on github,
1
including all files and instructions required to re-run

our experiments.

Themain data structure is an explicit representation of the search

tree. Its nodes are labelled by inputs and the scores relevant for

strategies 3 and 4 of section 3.3. Similarly, we keep track of the sets

unexploredl and exploredl for each level l .
We do not re-run the simulation for every new input segment,

as implied by line 9 of algorithm 1. Instead, we cache the output

traces within the tree data structure, alongside their inputs. As

mentioned in section 3.4, the cost of pausing and resuming a simu-

lation in Simulink incurs a prohibitively large overhead, hence we

have implemented a recursive algorithm that executes exactly one

simulation up to the full time horizon T per trial/iteration of the

outer loop.

The implementation supports initial parameters with respect

to the input signals, such as engine speed ω that should remain

constant, by augmenting the first level of the search tree with an

additional dimension for each of the parameters.

Currently, the possible time durations tl for each level l can be

specified statically as singleton sets, using a sequence of numbers of

control points (k0, . . . ,klmax
), such that tl = {T /kl }. The particular

choices depend on the requirements of the case study, as noted

1
https://github.com/ERATOMMSD/falstar

https://github.com/ERATOMMSD/falstar
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below. We make use of both progressive subdivisions (increasing kl
with l ) and constant subdivision (keeping kl the same for all l ).

We use the algorithm from [12] to compute the robustness of

STL formulas efficiently, and the approach from [14] to compute

the respective upper and lower bounds.

FalStar exposes its functionality through a simple specification

and scripting language. In the spirit of the SMT-LIB file format [6],

the language is S-expression-based, to facilitate integration with

other tools. Using this interface one can declare models, input signal

specifications, as well as STL requirements. In addition to solving

falsification problems and generating reports, FalStar can be used

to simulate systems for a given input or to compute robustness

values of given STL requirements for specified output traces. To aid

comparisons, FalStar can also call Breach as an alternative solver,

or generate a standalone MATLAB script to run Breach.

4.2 Benchmarks

The benchmarks here are based on automotive Simulink models

that are commonly used in the falsification literature. We focus

on those benchmarks that have at least one time-varying input, in

contrast to just searching for an initial configuration.

Automatic Transmission. This benchmark was proposed in [18]

and consists of a Simulink model and its related requirements.

The model has two inputs: throttle and brake. Depending on the

speed and engine load, an appropriate gear is automatically selected.

Besides the current gear д, the model outputs the speed v and

engine ω. We consider the following requirements:

AT1 = □[0,30] v < 120

AT2 (i) = □[0,30]
(
д = i =⇒ v > 10 · i

)
for i ∈ {3, 4}

AT3 = ¬
(
□[10,30]v ∈ [50, 60]

)
AT4 (v,ω) =

(
□[0,10] v < v

)
∨
(
^[0,30] ω < ω

)
There are a few noteworthy details. The robustness score of AT2

remains∞ until д = i is found by unguided search, and will jump

abruptly to a finite value at that time. To falsify AT3, a fairly pre-

cise speed between 50 and 60 has to be reached and maintained,

which requires a fine grained control of the input, which could be a

challenge for aLVTS. To falsify AT4 one must balance keeping the

engine RPM ω ≤ ω while accelerating sufficiently to reach speed

v > v before the deadline at time 10.

The input signal for the benchmarks is piecewise constant with

4 control points for random sampling/Breach, which is sufficient to

falsify all requirements. We choose 6 levels, with 2,2,3,3,3,4 control

points, respectively, corresponding to a time granularity of input

segment durations between 15 (=
30

2
, coarsest) to 7.5 (=

30

4
, finest).

Powertrain Control. The benchmark was proposed for hybrid

systems verification and falsification in [22]. It comprises a detailed

model of a fuel control system that maintains the air-to-fuel AF
ratio close to a reference value AF

ref
. The model has two control

algorithms: During startup and when high power is requested, it

operates in feed-forward mode, whereas otherwise measurements

of the actual air-to-fuel are fed back into the controller.Falsification

tries to detect amplitude and duration of spikes in the air-to-fuel

ratio that occur as a response either to mode switches or to changes

in the throttle θ at a given engine speed ω. The relation between

the three quantities is nontrivial and in part determined by time

delays. The input θ ∈ [0, 62.1) (normal mode) and θ ∈ [61.2, 81.2)
(power mode) varies throughout the trace, whereas ω ∈ [900, 1100]
is initially chosen and kept constant. Requirements are expressed

with respect to the normalized error µ = |AF −AF
ref
|/AF

ref
, where

AF
ref

depends dynamically on the current mode.

We consider requirement 27 from [22], denoted AFC27 in the

following, which states that after a falling or rising edge of the

throttle, µ should return to the reference value within 1 time unit

and stay close to it for some time. We represent this as

AFC27 = □[11,50] (rise ∨ fall) =⇒ □[1,5] |µ | < 0.008,

where rising and falling edges of θ are detected by rise = θ < 8.8 ∧
^[0,ϵ ] 40.0 < θ and fall = 40.0 < θ ∧^[0,ϵ ] θ < 8.8 for ϵ = 0.1. The

concrete bound of 0.008 in AFC27 and the edge detection parameters

are taken from the report of the ARCH friendly competition on

falsification (which featured this problem in 2017 [9] and 2018 [10])

as a balance between difficulty of the problem and ability to find

falsifying traces. The interval [11, 50] over which the requirement

is checked begins 1 time unit after the transition from startup to

normal mode at time 10. Without this short delay, falsification

would trivially discover the large spike following the mode switch.

The input signal is piecewise constant with 10 control points,

again following [9, 10], and 5 levels with 10 control points each for

aLVTS.

4.3 Experimental Results

We compare the performance of aLVTS with uniform random sam-

pling (both implemented in FalStar
2
) and with with the state-

of-the-art stochastic global optimization algorithm CMA-ES [19]

implemented in the falsification tool Breach.
3
We do not make

a comparison with Breach’s Nelder-Mead algorithm, since it has

significantly poorer performance than CMA-ES on almost all of

the benchmarks. The machine and software configuration was:

CPU Intel i7-3770, 3.40GHz, 8 cores, 8Gb RAM, 64-bit Ubuntu 16.04

kernel 4.4.0, MATLAB R2018a, Scala 2.12.6, Java 1.8.

We compare two performance metrics: success rate (how many

falsification trials were successful in finding a falsifying input) and

the number of iterations made, which corresponds to the number

of simulations required and thus indicates time. To account for the

stochastic nature of the algorithms, the experiments were repeated

for 50 trials. For a meaningful comparison of the number of itera-

tions until falsification, we tried to maximize the falsification rate

for a limit of 300 iterations per trial.

The number of iterations of the top-level loop in algorithm 1 in

our implementation corresponds exactly to one complete Simulink

simulation up to the time horizon (cf. section 4.1). For random sam-

pling and CMA-ES, the number of iterations likewise corresponds

to samples taken by running exactly one simulations each. Hence

the comparison is fair and, as the overhead is dominated by sim-

ulation time, the numbers are roughly proportional to wall-clock

times.

Table 2 summarizes our results in terms of success rate, and

average number of iterations (M) and standard deviation (SD) of

2
https://github.com/ERATOMMSD/falstar commit 43f5ca7

3
https://github.com/decyphir/breach release version 1.2.9

https://github.com/ERATOMMSD/falstar
https://github.com/decyphir/breach


Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo

Table 2: Experimental Results comparing the success rate

out of of 50 trials (“succ.” , higher is better) and number

of iterations averaged over successful trials (“iter.”, lower is

better, where M=arithmetic mean, SD=standard deviation)

of uniform random sampling, Breach/CMA-ES, and Fal-

Star/algorithm 1 for a maximum of 300 iterations per trial.

The best results for each requirement are highlighted.

Breach: FalStar:

Random CMA-ES aLVTS

succ. iter. succ. iter. succ. iter.

Formula /50 M SD /50 M SD /50 M SD

AT1 43 106.6 83.9 50 39.7 23.6 50 8.5 6.7

AT2 (i = 3) 50 41.0 36.7 50 13.2 9.1 50 33.4 27.5

AT2 (i = 4) 49 67.0 60.8 6 17.8 15.9 50 23.4 22.5

AT3 19 151.1 98.1 50 145.2 63.0 50 86.3 52.1

AT4 (a) 36 117.3 71.8 50 97.0 47.7 50 22.8 10.6

AT4 (b) 2 117.7 9.2 49 46.7 58.0 50 47.6 23.5

Summary AT 199 95.3 47.9 255 42.8 29.0 300 29.2 19.4

AFC27 15 129.1 90.8 41 121.0 49.3 50 3.9 4.3

Parameters AT4 (a): v = 80,ω = 4500, AT4 (b): v = 50,ω = 2700.

Summary AT for succ.: sum, for iter.: geometric mean (see [17]).

successful trials. The unambiguously (possibly equal) best results

are highlighted in blue. Where the lowest average number of iter-

ations was achieved without finding a falsifying input for every

trial, we highlight in grey the lowest average number of iterations

for 100% success. We thus observe that aLVTS achieves the best

performance in all but one case, AT2 (i = 3). Importantly, within the

budget of 300 iterations per trial, aLVTS achieves a perfect success

rate. CMA-ES is successful in 296 trials out of the total 350, with

sub maximal success for AT2 (i = 4) and AFC27. In comparison,

random sampling succeeds in only 214 trials, with sub maximal

success in all but AT2.

The number of iterations required for falsification varies signifi-

cantly between the algorithms and between the benchmarks. For

the automatic transmission benchmarks, as an approximate indi-

cation of relative performance, CMA-ES requires about 50% more

iterations as aLVTS (geometric mean: 42.8 vs. 29.2), and random

sampling requires again twice as many as CMA-ES. Except for AT2,

variance of aLVTS is lower than that of CMA-ES.

Looking at the individual benchmarks, CMA-ES is only consis-

tently faster than aLVTS on AT2 (i = 3). Despite having fewer

average iterations on AT2 (i = 4), CMA-ES cannot be considered

faster than aLVTS because most of its trials fail to find a falsifying

input—the numbers of iterations are not comparable. For the pow-

ertrain model (AFC27), the performance of aLVTS is more than an

order of magnitude better: 3.9 iterations on average, compared to

121 for CMA-ES.

Figure 2 compares all trial runs for AFC27, ordered by the number

of iterations required for falsification. Similar plots for the automatic

transmission benchmarks are shown in fig. 3. The shape of each

curve gives an intuition of the performance and consistency of its

corresponding algorithm. In general, fewer iterations and more
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Figure 2: Relative performance of falsification algorithms

with AFC27 powertrain requirement: fewer iterations and

more successful results are better.

successful results are better, so it is immediately clear that our

aLVTS performs significantly better than both random sampling

and CMA-ES.

4.4 Discussion

For AT1, aLVTS quickly finds the falsifying input signal, as the

required throttle of 100 and brake of 0 are contained in level 0 and

are very likely to be tried early on. In contrast, even though this is

a problem that is well-suited to hill-climbing, CMA-ES has some

overhead to sample its initial population, as clearly visible in fig. 4a.

While CMA-ES deals very well with AT2 for i = 3, it struggles

to find falsifying inputs for i = 4 (cf. figs. 4b and 4c). We attribute

this to the fact that reaching gear 4 by chance occurs rarely in the

exploration of CMA-ES when the robustness score is uninformative.

aLVTS not only explores the spatial dimensions, but takes oppor-

tunistic jumps to later time points, which increases the probability

of discovering a trace (prefix) where the gear is reached.

A priori, one would expect CMA-ES to perform well with AT3

and AT4, exploiting its continuous optimization to fine tune in-

puts between conflicting requirements. E.g., AT3 requires that v
is both above 50 and below 60; AT4 requires that v is high while

maintaining low ω, which is proportional tov . One would similarly

expect the limited discrete choices made by aLVTS to hinder its

ability to find falsifying inputs. Despite these expectations, our

results demonstrate that in most situations aLVTS converges to a

falsifying input more consistently and with fewer iterations than

CMA-ES. We speculate that this is because CMA-ES is too slow to

reach the “sweet spots” in the input space, where its optimization

is efficient.

For AT3, there are a few instances where where aLVTS does

not quickly find a good prefix towards the corridor v ∈ [50, 60] at
time 10 (the rightmost points in fig. 4d), which can be explained by

the probabilistic nature of the search.
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Regarding two instances of AT4 in figs. 4e and 4f, , the graph

for aLVTS is generally smoother and shallower, whereas CMA-ES

shows consistent performance for only some of the trials but takes

significantly more time on the worst 10 trials. We remark that the

two parameter settings seem to pose opposite difficulty for the two

algorithms, as CMA-ES is significantly quicker for two thirds of

the trials for the second instance. It is unclear what causes this

variation in performance of CMA-ES.

The plateaux apparent in some of the results using CMA-ES are

difficult to explain, but suggest some kind of procedural logic or

counter to decide termination. In contrast, the curves for random

sampling and aLVTS are relatively smooth, reflecting their purely

probabilistic natures.

5 RELATEDWORK

The idea to find falsifying inputs using robustness as an optimiza-

tion function for global optimization originates from [16] and has

since been extended to the parameter synthesis problem (e.g., [23]).

Two mature implementations in MATLAB are S-Taliro [4] and

Breach [11], which have come to define the benchmark in this field.

We describe their optimization algorithms below. Approaches to

make the robustness semantics more informative are [3, 15]. These

use integrals instead of min/max in the semantics of temporal op-

erators.

Underminer [5] is a recent falsification tool that learns the (non-)

convergence of a system to direct falsification and parameter min-

ing. It supports STL formulas, SVMs, neural nets, and Lyapunov-like

functions as classifiers. Other global approaches include [1], which

partitions the input space into sub-regions from which falsification

trials are run selectively. This method uses coverage metrics to

balance exploration and exploitation. Comprehensive surveys of

simulation based methods for the analysis of hybrid systems are

given in [7, 24].

Users of S-Taliro and Breach can select from a range of opti-

mization algorithms (Uniform Random, Nelder-Mead, Simulated

Annealing, Cross-Entropy, CMA-ES). These cover a variety of trade-

offs between exploration of the search space and exploitation of

known good intermediate results. As such, their performance varies

with the structure of the problem at hand.

In general, global optimization needs to find a solution in an

unstructured combinatorial search space, where the different param-

eters are assumed, a priori, to be independent. Good combinations

of parameter choices have to be discovered first, before the opti-

mization can work effectively (cf. AT2 and AT3). This incurs an

exponential cost of exhausting the different combinations, which

is mitigated in different ways by the various algorithms. Nelder-

Mead is seeded by a constant number of samples and tries to obtain

better points in the search space by making linear combinations of

the previous ones, according to a fixed scheme. The price paid is

not just lack of exploration, but also the danger of selecting mid

points between good and bad values in some dimensions, as a conse-

quence of the weighted average of linear combinations. To this end,

Cross-Entropy methods and CMA-ES discover relations between

parameters and exploit these by decorrelating the choices across

independent dimensions (i.e., not trying all possible combinations),

as explained nicely in the context of falsification in [28]. Simulated

Annealing, on the other hand, relies on fairly unguided random

exploration, and thus requires many iterations to converge, which

can be prohibitively expensive for complex models.

In comparison, our approach explicitly takes into account the

temporal structure of the falsification problem. The exponential

search space is pruned by focusing on the early part of the input

signal, by investigating a small number of coarse choices first, and

by ignoring those prefixes which are unpromising according to

the robustness heuristic. As demonstrated by our experiments, the

strength of optimization algorithms to discover precise solutions in

the continuous input space does not seem efficient when the mass

of falsifying traces is large and exploration is the key factor.

The characteristic of our approach to explore the search space

incrementally is shared with rapidly-exploring random trees (RRTs).
The so-called star discrepancy metric guides the search towards

unexplored regions and a local planner extends the tree at an exist-

ing node with a trajectory segment that closely reaches the target

point. RRTs have been used successfully in robotics [26] and also

in falsification [14]. On the other hand, the characteristic of taking

opportunistic coarse jumps in time is reminiscent of stochastic local

search [8] and multiple-shooting [33].

Monte Carlo tree search (MCTS) has been applied to a model

of aircraft collisions in [27]; and in a falsification context more

recently [32] to guide global optimization, building on the previous

idea of time-staging [31]. That work noted the strong similarities

between falsification using MCTS and statistical model checking

(SMC) using importance splitting [20]. The robustness semantics of

STL, used in [31, 32] and the present approach to guide exploration,

can be seen as a “heuristic score function” [21] in the context of

importance splitting. All these approaches construct trees from

traces that share common prefixes deemed good according to some

heuristic. The principal difference is that importance splitting aims

to construct a diverse set of randomly-generated traces that all

satisfy a property (equivalently, falsify a negated property), while

falsification seeks a single falsifying input. The current work can be

distinguished from standard MCTS and reinforcement learning [29]

for similar reasons. These techniques tend to seek optimal policies

that make good decisions in all situations, unnecessarily covering

the entire search space.

6 CONCLUSION

We have presented a probabilistic algorithm that finds inputs to a

hybrid system that falsify a given temporal logic requirement. On

standard benchmarks our algorithm significantly and consistently

outperforms existing methods. While the falsification problem is

inherently hard (no theoretically best solution can exist), we be-

lieve that we have found an approach that gives good results in

practice, with probabilistic certainty. We believe the reason it works

well stems from a property shared by many falsification problems,

namely, that there tends to be a significant mass of falsifying inputs.

By design it scales with the difficulty of the problem, finding trivial

solutions (extreme inputs) immediately and has a small constant

overhead for “almost easy” problems. This pays off, in particular,

for system models that are expensive to simulate, such as the pow-

ertrain benchmark. The approach admits incremental computation

of simulations and can easily be parallelized.
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As future work, we wish to extend the method with some form

of optimization, e.g., by interpolation of previously seen traces,

reminiscent of the linear combinations computed by Nelder-Mead.

We expect that this would help to “fine-tune” results with small

positive robustness into full solutions, mitigating the limitation

inherent in the discretization of the input space. Likewise, extrapo-

lation of results could be used to propagate the robustness from one

level to the next, reducing the need to look at different branches

with similar inputs. Finally, we plan to apply the approach to more

benchmarks, specifically those that combine discrete and continu-

ous input domains.
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Figure 3: Performance comparison for the automatic transmission benchmark
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(a) Performance plot for AT1
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(b) Performance plot for AT2 (i = 3)
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(c) Performance plot for AT2 (i = 4)
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(d) Performance plot for AT3
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(e) Performance plot for AT4 (v = 80, ω = 4500)
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(f) Performance plot for AT4 (v = 50, ω = 2700)
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