Skip to main content

Towards a Transparent Deep Ensemble Method Based on Multiagent Argumentation

  • Conference paper
  • First Online:
Book cover Explainable, Transparent Autonomous Agents and Multi-Agent Systems (EXTRAAMAS 2019)

Abstract

Ensemble methods improve the machine learning results by combining different models. However, one of the major drawbacks of these approaches is their opacity, as they do not provide results explanation and they do not allow prior knowledge integration. As the use of machine learning increases in critical areas, the explanation of classification results and the ability to introduce domain knowledge inside the learned model have become a necessity. In this paper, we present a new deep ensemble method based on argumentation that combines machine learning algorithms with a multiagent system in order to explain the results of classification and to allow injecting prior knowledge. The idea is to extract arguments from classifiers and combine the classifiers using argumentation. This allows to exploit the internal knowledge of each classifier, to provide an explanation for the decisions and facilitate integration of domain knowledge. The results demonstrate that our method effectively improves deep learning performance in addition to providing explanations and transparency of the predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. SIGMOD Rec. 22(2), 207–216 (1993). https://doi.org/10.1145/170036.170072

    Article  Google Scholar 

  3. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In: ECAI (2000)

    Google Scholar 

  4. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6), 373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4

    Article  MATH  Google Scholar 

  5. Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks for rule extraction in classification problems. Neural Process. Lett. 35(2), 131–150 (2012). https://doi.org/10.1007/s11063-011-9207-8

    Article  Google Scholar 

  6. Besnard, P., et al.: Introduction to structured argumentation. Argument Comput. 5(1), 1–4 (2014). https://doi.org/10.1080/19462166.2013.869764

    Article  Google Scholar 

  7. Bologna, G., Hayashi, Y.: A rule extraction study on a neural network trained by deep learning. In: 2016 International Joint Conference on Neural Networks, IJCNN 2016, Vancouver, BC, Canada, 24–29 July 2016, pp. 668–675. IEEE (2016). https://doi.org/10.1109/IJCNN.2016.7727264

  8. Bologna, G., Hayashi, Y.: A comparison study on rule extraction from neural network ensembles, boosted shallow trees, and SVMs. Appl. Comput. Intell. Soft Comput. 2018, 1–20 (2018)

    Article  Google Scholar 

  9. Bonzon, E., Maudet, N.: On the outcomes of multiparty persuasion. In: McBurney, P., Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS (LNAI), vol. 7543, pp. 86–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33152-7_6

    Chapter  Google Scholar 

  10. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  11. Cocarascu, O., Toni, F.: Detecting deceptive reviews using argumentation. In: Proceedings of the 1st International Workshop on AI for Privacy and Security, PrAISe 2016, pp. 9:1–9:8. ACM, New York (2016). https://doi.org/10.1145/2970030.2970031

  12. Craven, M., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural networks. In: ICML (1994)

    Google Scholar 

  13. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Proceedings of the 8th International Conference on Neural Information Processing Systems, NIPS 1995, pp. 24–30. MIT Press, Cambridge (1995)

    Google Scholar 

  14. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  15. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995). http://dblp.uni-trier.de/db/journals/jair/jair2.html#DietterichB95

    Article  Google Scholar 

  16. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  17. Forgy, C.: Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif. Intell. 19(1), 17–37 (1982)

    Article  Google Scholar 

  18. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm (1996)

    Google Scholar 

  19. Fu, L.: Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 24, 1114–1124 (1994)

    Article  Google Scholar 

  20. Garcia, F.J.C., Robb, D.A., Liu, X., Laskov, A., Patrón, P., Hastie, H.F.: Explain yourself: a natural language interface for scrutable autonomous robots. CoRR arXiv:abs/1803.02088 (2018)

  21. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2018)

    Article  Google Scholar 

  22. Prakken, H.: Models of persuasion dialogue. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 281–300. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_14

    Chapter  Google Scholar 

  23. Hao, Z., Yao, L., Liu, B., Wang, Y.: Arguing prism: an argumentation based approach for collaborative classification in distributed environments. In: Decker, H., Lhotská, L., Link, S., Spies, M., Wagner, R.R. (eds.) DEXA 2014. LNCS, vol. 8645, pp. 34–41. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10085-2_3

    Chapter  Google Scholar 

  24. Harbers, M.: Self-explaining agents in virtual training. In: EC-TEL PROLEAN (2008)

    Google Scholar 

  25. Hruschka, E.R., Ebecken, N.F.: Extracting rules from multilayer perceptrons in classification problems: a clustering-based approach. Neurocomputing 70(1), 384–397 (2006). https://doi.org/10.1016/j.neucom.2005.12.127. http://www.sciencedirect.com/science/article/pii/S0925231206000403, Neural Networks

    Article  Google Scholar 

  26. Johnson, W.L.: Agents that learn to explain themselves. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, AAAI 1994, vol. 2, pp. 1257–1263. American Association for Artificial Intelligence, Menlo Park (1994)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  28. Kontarinis, D.: Debate in a multi-agent system: multiparty argumentation protocols (2014)

    Google Scholar 

  29. van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence, IAAI 2004, pp. 900–907. AAAI Press (2004)

    Google Scholar 

  30. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 30:31–30:57 (2018). https://doi.org/10.1145/3236386.3241340

    Article  Google Scholar 

  31. Lu, H., Setiono, R., Liu, H.: Effective data mining using neural networks. IEEE Trans. Knowl. Data Eng. 8(6), 957–961 (1996). https://doi.org/10.1109/69.553163

    Article  Google Scholar 

  32. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction. In: International Joint Conference on Neural Networks (IJCNN 2001), pp. 1870–1875 (2001)

    Google Scholar 

  33. Marchant, I., et al.: Score should be preferred to Framingham to predict cardiovascular death in French population. Eur. J. Cardiovasc. Prev. Rehabil. 16, 609–615 (2009)

    Article  Google Scholar 

  34. Mcburney, P., Parsons, S.: Dialogue games in multi-agent systems. Informal Logic 22, 2002 (2002)

    Google Scholar 

  35. Molineaux, M., Dannenhauer, D., Aha, D.W.: Towards explainable NPCS: a relational exploration learning agent. In: AAAI Workshops (2018)

    Google Scholar 

  36. Re, M., Valentini, G.: Ensemble methods: a review, pp. 563–594 (2012)

    Google Scholar 

  37. Reed, C.: Representing dialogic argumentation. Knowl.-Based Syst. 19, 22–31 (2006)

    Article  Google Scholar 

  38. Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induction. In: IJCNN 2001, vol. 3, pp. 1870–1875 (2001)

    Google Scholar 

  39. Searle, J.: Speech Acts. An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)

    Book  Google Scholar 

  40. Thimm, M., Kersting, K.: Towards argumentation-based classification. In: Logical Foundations of Uncertainty and Machine Learning, Workshop at IJCAI 2017, August 2017. http://www.mthimm.de/publications.php

  41. Tran, S.N., d’Avila Garcez, A.: Knowledge extraction from deep belief networks for images. In: IJCAI 2013 Workshop on Neural-Symbolic Learning and Reasoning (2013)

    Google Scholar 

  42. Wardeh, M., Bench-Capon, T., Coenen, F.: Arguing from experience using multiple groups of agents. Argument Comput. 2(1), 51–76 (2011)

    Article  Google Scholar 

  43. Wardeh, M., Coenen, F., Bench-Capon, T.: Multi-agent based classification using argumentation from experience. Auton. Agents Multi-Agent Syst. 25(3), 447–474 (2012). https://doi.org/10.1007/s10458-012-9197-6

    Article  Google Scholar 

  44. Zilke, J.R., Loza Mencía, E., Janssen, F.: DeepRED – rule extraction from deep neural networks. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI), vol. 9956, pp. 457–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46307-0_29

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naziha Sendi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sendi, N., Abchiche-Mimouni, N., Zehraoui, F. (2019). Towards a Transparent Deep Ensemble Method Based on Multiagent Argumentation. In: Calvaresi, D., Najjar, A., Schumacher, M., Främling, K. (eds) Explainable, Transparent Autonomous Agents and Multi-Agent Systems. EXTRAAMAS 2019. Lecture Notes in Computer Science(), vol 11763. Springer, Cham. https://doi.org/10.1007/978-3-030-30391-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30391-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30390-7

  • Online ISBN: 978-3-030-30391-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics