
28 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Temporal Multiagent Plan Execution: Explaining What Happened

Publisher:

Published version:

DOI:10.1007/978-3-030-30391-4

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1721065 since 2020-01-02T12:02:54Z



Temporal Multiagent Plan Execution:

Explaining what Happened

Gianluca Torta[0000−0002−4276−7213], Roberto Micalizio[0000−0001−9336−0651], and
Samuele Sormano

Dipartimento di Informatica, Università di Torino, Italy
{gianluca.torta,roberto.micalizio}@unito.it

samuele.sormano@edu.unito.it

Abstract. The paper addresses the problem of explaining failures that
happened during the execution of Temporal Multiagent Plans (TMAPs),
namely MAPs that contain both logic and temporal constraints about
the actions conditions and effects. We focus particularly on computing
explanations that help the user figure out how failures in the execution
of one or more actions propagated to later actions. To this end, we de-
fine a model that enriches knowledge about the nominal execution of the
actions with knowledge about (faulty) execution modes. We present an
algorithm for computing diagnoses of TMAPs execution failures, where
each diagnosis identifies the actions that executed in a faulty mode, and
those that failed instead because of the propagation of other failures.
Diagnoses are then integrated with temporal explanations, that detail
what happened during the plan execution by specifying temporal rela-
tions between the relevant events.

Keywords: Temporal Multiagent Plans ·Model-Based Diagnosis · SMT.

1 Introduction

Multiagent plans (MAPs) are an efficient way for accomplishing complex goals.
The underlying principle is to decompose a given complex goal into subgoals, and
then organize the activities of a team of agents so as that each agent achieves a
subgoal autonomously while coordinating with others. Plan execution, however,
is not always straightforward. The actual execution of actions, in fact, can be
affected by failures. When a failure occurs, detecting and diagnosing it is of
primary importance in order to resume the nominal execution.

The diagnosis of the execution of a multiagent plan (MAP) has been ad-
dressed in a number of works (see e.g., [8, 6, 7]), proposing different notions of
plan diagnosis and different diagnostic methodologies. These works, however, do
not model time explicitly, but only implicitly by assuming a sequence of identical
time steps at which atomic actions are performed. In these approaches, thus, it
is not possible to model durative actions [3]; however, in real world scenarios,
action duration (either within a nominal range, or with unexpected delays) can
strongly affect the success of the agent’s plan and of its interactions with others.



2 G. Torta et al.

Other works have addressed the diagnosis of delayed actions in MAPs [10, 9,
12]. Their objective is to provide the user with explanations of failures consisting
only of actions delays; whereas, the logical effects of action failures (i.e., missing
logical values that should hold as a consequence of an action) are not taken
into consideration. This restriction limits the applicability of the methods by
hindering their ability to handle cases of fault propagation from an action to
another one due to a missing effect.

This paper contributes with a comprehensive framework addressing the di-
agnosis of a MAP execution by taking into account both missing effects and
temporal deviations. We adopt a consistency-based notion of diagnosis: a MAP
diagnosis is a subset of actions whose non-nominal behavior is consistent with
the observations received so far. We then argue that, in a setting with agents
interactions and durative actions, such diagnoses may not be informative enough
for helping a human user figure out what happened during the plan execution.
As a remedy, we enrich diagnoses with temporal explanations that clarify how
primary action failures may have affected other actions in the MAP, even those
assigned to different agents. In this paper, we do not address the role of the
human in the diagnosis loop, directly. An outline of how human controllers can
be involved is given [9]. We deem, however, that the synthesis of such temporal
explanations is a fundamental step to increase users’ awareness.

Specifically, we propose a methodology to solve a diagnostic problem by in-
ferring the set of all the preferred diagnoses with minimal rank [4], i.e., with
the highest (order-of-magnitude) likelihood. Our approach is based on a single,
centralized diagnostic reasoner that must diagnose the behavior of a multiagent
system. Since we deal with both logic and temporal constraints to model faulty
action modes, the computation of all the preferred diagnoses is made by exploit-
ing a Satisfiability Modulo Theories (SMT) solver, that is able to handle both
kinds of conditions. We model propagation by considering literals that are shared
among the actions (i.e., produced as an effect by an action, and consumed as a
precondition by another action, even of a different agent). These shared literals
can be considered as resources that are dynamically generated, and consumed,
during the execution. To explain an action failure as an indirect consequence
of a previous failure, thus, we focus on the events that affect the values of the
literals shared by the two actions.

To the best of our knowledge, our proposal is the first one dealing with
both temporal and logic aspects in the diagnosis of multiagent plans. The most
similar work we are aware of is [2], where, however, the authors consider only
plans with a limited number of discrete time steps amenable to a SAT encoding,
and concentrate on conflicts among agents in the use of resources (e.g., road
intersections).

2 Temporal Multiagent Plans

We formalize a Temporal Multiagent Plan (TMAP) P as 〈T,A,O,CL,M〉:

– T is the team of cooperating agents ag1, ag2, . . .



TMAPs Execution: Explaining what Happened 3

– A is the set of action instances ac1, ac2, . . . included in the plan, each of
which is assigned to a specific agent agent(aci);

– O is a set of order constraints, that specifies a total order relation over
the actions of each agent ag ∈ T ; each pair 〈ac, ac′〉 ∈ O, ac, ac′ ∈ A,
agent(ac) = agent(ac′) means that ac is the predecessor of ac′, and ac′ is
the successor of ac;

– CL is the set of causal links between an action ac that produces a literal R
(i.e., has ¬R as pre-condition and R as effect) and another action ac′ that
consumes the literal R (i.e., has R as pre-condition and ¬R as effect); in
general agent(ac) can be different from agent(ac′); in such a case we say
that R is a shared literal;

– M is the set of all the possible behavioral modes that can be associated with
the action instances in A. In particular, M(ac) denotes the set of all modes
associated with instance ac ∈ A. Each mode m ∈ M(ac) is a tuple of the
form 〈label, pre, eff , range, rank〉:
• label is the mode name;
• pre and eff are sets of grounded literals: pre is the pre-condition for the

execution of ac in mode m; whereas, eff is the set of effects obtained by
performing ac in mode m1;

• range is an interval of time corresponding to the possible durations of
the action when it behaves in mode m;

• rank is a non-negative integer value representing the order-of-magnitude
probability of the mode [4]: lower ranks correspond to higher probabili-
ties.

Set M(ac) must contain at least one distinguished mode N (nominal) with
rank 0. Ranks are sometimes also named levels of surprise, indicating how
much surprising is an event for an involved operator. Therefore, they can be
usualy specified by a human expert instead of learned from data that may
be unavailable.

We have omitted concurrency and mutual-exclusion constraints from this defi-
nition in order to avoid excessive complexity and keep our focus on diagnosis.
While the causal links in CL, as we defined it, cannot capture all the forms of
mutual exclusion, we shall see that implicit mutex constraints play an important
role in agents interactions through shared literals. Concurrency and other forms
of mutual exclusion, e.g., the use of a resource that has a single instance, could
be easily accommodated in our framework.

If we assume that all the actions will be executed in the N mode, a TMAP
can be interpreted as a flexible schedule of the plan [11], that guarantees that
all the causal links are respected and all the plan actions are smoothly executed.
However, the TMAP also contains fundamental information associated with the
possible actions failures. In particular, modes different from N are not used for
the planning purpose, but for the diagnostic one; such modes allow actions to
obtain different effects from the nominal, expected ones.

1 For the sake of discussion, we assume that all modes M(ac) of an action ac have the
same preconditions pre.



4 G. Torta et al.

ag1:

ag2:

ag3:

ag4:

ac11

load(o, loc1)

ac12

move(loc1,loc2)

ac13

put(o,loc2)

ac21

move(loc3, loc2)

ac22

load(o, loc2)

ac23

move(loc2,loc4)

ac24

put(o, loc4)

ac31

move(loc5,loc4)

ac32

load(o,loc4)

ac33

move(loc4,loc2)

ac34

put(o,loc2)

ac41

move(loc7, loc6)

ac42

move(loc6, loc5)

ac43

move(loc5, loc2)

ac44

load(o, loc2)

Fig. 1. An example TMAP.

Example 1. As an example TMAP P , let us consider a case with four agents:
T = {ag1, ag2, ag3, ag4} (see Figure 1). The set of actions is A = {ac11, . . . ,
ac44}, with order relations O and (nominal) causal links CL as shown in the
figure, respectively, by the solid and dashed arrows.

Now, we assume that the fifteen actions included in MAP P are instances
of just three types of actions: move, load, and put. Intuitively, in the TMAP for
Figure 1, the four agents have to cooperate for moving an object o from location
loc1 to location loc2 and then loc4, and then back to loc2 again. For instance, ag1
moves object o by loading it in loc1, and carrying it to location loc2. Note the
nominal causal link between ac13 and ac22, meaning that in a nominal execution
of the plan ag2 will load block o from loc2 after it has been moved there by ag1.

The table in Figure 2 shows the modes M(ac) of each action type, with
associated label, pre- and post-conditions, range, and rank.

For instance, in nominal mode (N), a move(ag,p1,p2) requires the agent to
be in place p1, causes the agent to arrive in place p2, and has an execution time
in the interval [1, 3). The rank is 0, meaning that the N mode is preferred (i.e.,
the most likely). In mode F3, the action has an execution time in the interval
[10, 25], a rank 3, and leaves the agent in p1. Similar modes and time intervals
are associated with the load and put actions. Of course, parameter o in load and
put represents an object that can be manipulated by multiple agents during the
TMAP execution.

It is important to note that, for all action types, the fault modes have the
same pre-conditions of the N mode (but different effects, at least in terms of
duration). When such common pre-conditions are not satisfied, we assume a
special mode FPROP (failure propagation). This mode denotes that the action
was skipped (i.e., it never started). The set of the effects of FPROP is therefore
empty, and the action duration is 0. Also the rank is 0 because it represents
a secondary failure, and hence does not contribute to the rank of the overall



TMAPs Execution: Explaining what Happened 5

act pre m post range rank

move(ag,p1,p2) at(ag,p1)

N at(ag,p2) [1,3) 0
F1 at(ag,p2) [3,10) 1
F2 at(ag,p2) [10,25] 2
F3 ∅ [10,25] 3

load(ag,p,o)
at(ag,p),
at(o,p),
holds(ag,∅)

N ¬at(o,p),
holds(ag,o)

[1,2) 0

F1 ¬at(o,p),
holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

put(ag,p,o)
at(ag,p),
holds(ag,o)

N at(o,p),
¬holds(ag,o)

[1,2) 0

F1 at(o,p),
¬holds(ag,o)

[2,10) 1

F2 ∅ [10,25] 2

Fig. 2. Example modes.

diagnosis. An action in FPROP mode does not have direct effects on the world,
but may have indirect effects on plan execution since some of the missing effects
could be preconditions for subsequent actions.

3 Plan Execution Failure Problem

Timed Observations. We define a timed observation as a pair 〈e, t〉, where e is
the observed event, and t is the time when e occurred. In our TMAP framework,
an observable event can be a single ground literal, possibly with a negative
polarity. For instance, at(ag1, p1) and ¬at(ag1, p1) are two alternative observable
events. Of course, we assume that observations are reliable and consistent (i.e.,
the same literal does not appear with both polarities at the same time). During
the execution of a plan, only a few of these events will be observed (due to partial
observability).
Plan Execution Failure (PEF) problem. It is important to note that the
agents share the same environment and resources, and cooperate with each other
by exchanging services: the effects brought about by an agent may be the precon-
ditions for the actions of another agent. In principle, therefore, the misbehavior
of an agent could affect its later activities as well as other agents’ activities.

We say that action ac is ready when its predecessor ac′ s.t. 〈ac′, ac〉 ∈ O has
finished. We assume that, after an action is ready, it will execute as soon as all
its pre-conditions are true. In fact, as a consequence of previous failures, the
preconditions could be brought about too late, or might even not be provided
at all. Let P = 〈T,A,O,CL,M〉 be a TMAP.

Definition 1. A mapping H : A→M(A)∪{FPROP } is a hypothesis about the
modes of actions in P that assigns each action ac ∈ A with a mode m ∈M(ac)
or special mode FPROP .



6 G. Torta et al.

Since action modes are associated with time intervals and logic pre-/post-
conditions, a hypothesis H can be used to estimate a set of possible executions
of P , that may differ for the times at which actions start and end; we call these
possible executions temporal execution profiles.

Definition 2 (Temporal Execution Profile). Given a TMAP P , and a hy-
pothesis H, a temporal execution profile θ is an ordered sequence of pairs 〈s0, t0〉,
. . . , 〈sn, tn〉, such that si (i : 0..n) is a state of the whole system consisting of
all the atoms holding at time ti. For each ac ∈ A, the events Ts(ac) (start) and
Te(ac) (end) occur in exactly two states, si and sk, respectively, such that ti
precedes tk. Moreover:

1. each si is a set of atoms that are true at time ti and that represents the state
of the whole system

2. if acj starts at time ti with mode in M(acj), then the preconditions of acj
for mode H(acj) (i.e., the mode assigned by H to acj) hold at time ti, and
any other action that starts at time ti, or is already in progress at that time,
is not in conflict with acj according to the “no moving targets” rule [3], for
which no two actions can simultaneously make use of a value if one of the
two is accessing the value to update it;

3. if acj starts at time ti with mode FPROP , then: ti = tk + τ (where tk is the
end time of the predecessor ack of acj); the preconditions of acj do not hold
at time ti; for each t ∈ [tk, ti], if the preconditions of acj held at time t, some
other action in conflict with acj started or was already in progress at time t

4. if acj ends at time ti, then the post-conditions of mode H(acj) of action acj
hold at time ti

5. for each action ac ∈ A, the distance between the times when the action starts
and terminates belong to m.range where m is H(ac);

6. s0 is the initial given state;
7. sn is the state where the effects of the last performed actions are added.

Conditions 2 and 4 state that the pre-conditions and effects of an action
ac performed with modality m = H(ac) are true, respectively, when the action
starts and when the action terminates. Note that condition 2 ensures that two
actions that modify the same literal are executed in mutual exclusion; this is
a fundamental constraint for actions that affect the value of a shared literal.
Condition 3 states that an action is associated with special mode FPROP only
if it has not been allowed to start with true pre-conditions until a timeout τ has
expired. Condition 5 imposes that in θ the duration of each action ac respects
the intervals of possible durations associated with mode m assumed in H.

Of course, given a TMAP P and a hypothesis H, many temporal execution
profiles can be derived: TP (H) denotes the set of all possible temporal execution
profiles that results from P when only the modalities in H are allowed.

More generally, since each action is associated with a number of modes, we
denote with TP the space of possible temporal execution profiles for the plan P

obtained by considering all possible hypotheses.
Let Obs be a sequence of timed observations over actions in P . Obs can be

used as a filter on TP by pruning off those profiles that are not consistent with



TMAPs Execution: Explaining what Happened 7

them. More precisely, a temporal execution profile θ ∈ TP is consistent with Obs

iff for each timed observation 〈e, t〉 ∈ Obs, if we let ti be the unique time instant
in θ such that ti ≤ t < ti+1, then si |= e (where 〈si, ti〉 ∈ θ). In other words, the
timed observation 〈e, t〉 must agree with the state of the world si that holds at
t according to τ .

It is sufficient that this does not hold for one timed observation in Obs to
say that θ is not consistent with Obs. We will denote as TP (Obs) the subset of
the profile space consistent with Obs.

Definition 3 (PEF problem). A Plan Execution Failure (PEF) problem is a
pair 〈P,Obs〉 where P is a TMAP and Obs a set of timed observations.

The goal of solving a PEF is to find hypotheses H that are consistent with
the observations:

TP (H) ∩ TP (Obs) 6= ∅. (1)

It is well known that the number of consistency-based diagnoses can be very
large, especially when the observability is low. Therefore, we are not interested in
any hypothesis H that satisfies equation 1, but only in the hypotheses that also
satisfy a preference criterion. More precisely, we look for solutions that minimize
the rank (i.e., maximize the probability) associated with the action modes.

Definition 4. Given a TMAP P = 〈T,A,O,CL,M〉 and a hypothesis H about
actions in P , the rank of H, denoted as rank(H), is

rank(H) =
∑

ac∈A

H(ac).rank.

In fact, since we assign rank 0 to failures that depend on previous failure, and the
rank of failures that are independent can be comulated, the rank of a hypothesis
is simply the sum of the ranks of the modes assumed in the hypothesis itself. Of
course, there exists only one hypothesis H0 with rank 0 in which all actions are
assumed nominal.

Definition 5 (PEF solution). Let P be a TMAP, and let 〈P,Obs〉 be a PEF
problem, a solution to such a problem is an hypothesis δ such that:

1. δ satisfies equation (1);
2. rank(δ) is minimal: no other hypothesis H ′ that satisfies equation (1) has

rank(H ′) < rank(δ)

As usual in a diagnostic setting, we are not interested in just one solution,
but in all minimal solutions, in fact, unless other preference criteria are given,
all these minimal solutions should be returned as an answer to a PEF problem.

Example 2. Let us consider the plan of example 1. Although in the original
plan, action put(o, loc2) of agent ag1 was assumed to make o available for action
load(o, loc2) of ag2, this may not be the case in a real execution scenario. Assume
that the previous action of ag2, i.e., move(loc3, loc2), had an F1 delay and took



8 G. Torta et al.

8 time instants. In the meanwhile, the three move actions of ag4 have taken a
total of 6 time instants, so that the object released by ag1 at loc2 at time 4 is
actually loaded by ag4. This situation makes actions ac22, ac24, ac32, and ac34
fail with mode FPROP , because they don’t have the necessary preconditions to
be executed. However, a diagnosis that (except for N modes) lists: ac21(F1),
ac22(FPROP ), ac24(FPROP ), ac32(FPROP ), ac34(FPROP ) is not a satisfactory
explanation of what happened. Indeed, the fact that ac21 had a delay F1 does
not necessarily imply all the other events and (propagation) failures: think, e.g.,
that the delay caused by F1 was just a duration of 3 time instants for ac21. In
the next section we propose a notion of temporal explanation that yields more
information than just the diagnosis.

4 Explaining Failure Propagations

A solution δ to a PEF problem provides a user with a labeling of (failure)
modes to the plan actions that is consistent with the available observations.
In particular, a special mode FPROP in δ is used to denote those actions that
have been affected by previously occurred action failures (i.e., it is a secondary
failure). However, this is not in general sufficient, for the user, to understand
what has actually happened. In fact, a secondary failure might be caused by
the co-occurrence of two or more primary failures (e.g., when two actions delay
independently and their consequences sum up affecting a third action). Such
configurations are not easy to discover, and to increase the comprehension of a
user, a δ diagnosis needs to be further explained to extract implicit, contingent
connections between the primary failure(s) and the secondary ones.

Intuitively, failures can propagate via the shared literals, that is, via the
resources produced by an action and consumed by another one. For example,
an action may fail because one of the required inputs is not available at the
right time, and this may happen because the producer failed in supplying it
(including supplying it with too much delay), or because another action has
erroneously consumed the resource in its place. Explaining δ, thus, means tracing
back the temporal relations among the actions that are related to some resource
of interest, and whose occurrence justifies a secondary failure.

Definition 6 (Temporal Explanation of δ w.r.t. R). Let δ be a PEF so-
lution to 〈P,Obs〉. A Temporal Explanation (explanation in short) E(δ,R) of δ
w.r.t. a shared literal R is a set of Allen algebra relations among actions in P

defined as follows. Let δR+ (resp. δR−) be the subset of actions in δ that produce
(resp. consume) a shared literal R. Moreover, let δR(FPROP ) (resp. δR(FPROP ))
be the subset of δR+ ∪ δR− containing actions with mode equal to (resp. different
from) FPROP . Then, an explanation E(δ,R) for δ w.r.t. R is a set such that:

– for each ac ∈ δR(FPROP ), E(δ,R) specifies two Allen algebra relations ρprec
and ρsucc w.r.t. its predecessor and its successor in δR(FPROP ) (except for
the first and last action). Relation ρprec is either after or meets after; relation
ρs is either before or meets;



TMAPs Execution: Explaining what Happened 9

– for each ac ∈ δR(FPROP ), E(δ,R) specifies two Allen Algebra during re-
lations ρR (when ac becomes ready) and ρF (when ac timeouts and fails
with FPROP ). Relations ρR and ρF relate ac either with a single action in
δR(FPROP ), or with (the interval I in between) two actions ac′, ac′′ in set
δR(FPROP ).

Some comments are in order. First of all, note that, due to the mutual exclusion
among actions that produce/consume R, the actions in δR(FPROP ) respect a
total order, specified through the (meets) before/after relations in E(δ,R). Such
an order partitions the timeline in a set ΠR of intervals of action execution and
intervals between two actions.

In addition, an action ac ∈ δR(FPROP ) that was supposed to produce/consume
R, but failed because of missing pre-conditions, can actually overlap with actions
in δR(FPROP ). In fact, the action has never started, and what we are interested in
knowing is the interval between when ac became ready (i.e., when it became the
current action for its agent), and when ac failed with mode FPROP . Such events,
that determine the interval W during which ac is “willing” to produce/consume
R are placed in partition ΠR by during relation in E(δ,R). It follows that W is
contextualized in E(δ,R) against all the other intervals regarding the execution
of actions that have handled resource R, and hence provides the user with an
explanation of why action ac could not produce/consume R during W .

A (full) explanation of a diagnosis δ is simply a set E(δ) of several sub-
explanations E(δ,R), one for each shared literal R. Note that, given a diagnosis
δ, it is in general possible to find several alternative explanations, corresponding
to different orders of events compatible with δ. Such alternatives are equally
plausible according to our model, and are therefore computed and returned to
the human user. The following examples should help clarify the above definition.

Example 3. Let us refer to example 2. The producers of literal R = at(o, loc2)
are as follows: ac13, and ac34; while the consumers of R are: ac22, and ac44.
According to example 2, the diagnosis δ (except for N modes) lists: ac21(F1),
ac22(FPROP ), ac24(FPROP ), ac32(FPROP ), ac34(FPROP ). The explanation that
we have informally sketched in example 2, should now be formalized as a suitable
explanation E(δ,R). Figure 3 shows E(δ,R) graphically on a diagram where time
increases from left to right. Note that, besides the actions related with R and
their Allen algebra relations specified by E(δ,R) (black), the schema also shows
some other actions with mode assignments specified by the diagnosis δ (gray);
such actions are depicted just to further increase the information conveyed by
the schema to the reader.

The set of non-FPROP actions that have to do with R are just ac13 and ac44,
so that the timeline is partitioned in five regions (dotted vertical bars): before
ac13; during ac13; between ac13 and ac44; during ac44; after ac44. The definition
of explanation requires us to relate ac13 and ac44, and, in the scenario described
by example 2, the relation is ac13 before ac44, i.e., when ac13 ends, some time
passes before ac44 becomes ready and consumes at(o, loc2). Note that R would
be available for other consumers between the end of ac13 to the start of ac44.



10 G. Torta et al.

Fig. 3. An Explanation of Diag-
nosis δ = {ac21(F1), ac22(FP ),
ac24(FP ), ac32(FP ), ac34(FP )}.

Fig. 4. An Explanation of Diag-
nosis δ′ = {ac21(F1), ac23(F1),
ac32(FP ), ac34(FP ), ac44(FP )}.

However, according to explanation E(δ,R), ac22 becomes ready and then fails
with mode FPROP (segment starting with > and ending with ♦) only after ac44
ends. By looking at the figure, it is easy to see that such a delay is due to the
failure with mode F1 of action ac21. The figure also shows actions ac24 and
ac32, that are respectively a put and load related to another literal at(o, loc4)
(indicated by the ր after the actions), which fail as a consequence of the failure
of ac22 (see the causal links in the plan, Figure 1). Finally, also action ac34 fails
as a consequence of the failure of ac32.

Let us now consider an explanation for a different diagnosis δ′, according
to which actions ac21 and ac23 fail with mode F1 (delay), and actions ac32,
ac34, and ac44 fail with mode FPROP (Figure 4). The upper part of the figure
shows the explanation of δ w.r.t. literal at(o, loc2), while the lower part shows
the explanation of δ for literal at(o, loc4). In particular, ac13 produces literal
at(o, loc2), which is consumed by ac22 (in this case, immediately), as prescribed
by the plan. However, we see that although the put action ac24 involving literal
at(o, loc4) succeeds, the associated load action ac32 fails with mode FPROP ,
which in turn propagates to the failure of actions ac34 and ac44 on at(o, loc2)
that depend on ac32 (causal links in the plan, Figure 1).

By just looking at the upper part of the figure, then, we are left without
an explanation of the failure of ac32. We have to look at the part of the figure
showing the explanation for literal at(o, loc4), where we realize that action ac32
became ready and then failed with mode FPROP before action ac24 (from which
ac32 depends) was executed. The cause of the delay is clearly a combination of
the delays caused by the failures of actions ac21 and ac23 with mode F1.



TMAPs Execution: Explaining what Happened 11

5 Translation to SMT

In order to address a PEF problem by exploiting an SMT solver, we have to
encode the TMAP and the observations Obs in the language accepted by the
solver. We recall that an SMT problem is an extension of the well known propo-
sitional satisfiability (SAT) problem where formulas can contain relations and
functions from various theories including real and integer linear arithmetic. Sim-
ilar to SAT, when a set of formulas is satisfiable, the solver is able to return
a satisfying assignment to the variables. In this work, we have adopted the Z3
solver [1]. Due to space constraints, we will focus just on the most relevant as-
pects of the encoding process. In order to encode action types (e.g., move, load),
we need to encode the predicates that appear in their pre-conditions and effects,
e.g. at and holds. We define them as uninterpreted functions (UF), i.e., functions
for which the Z3 solver will try to find an interpretation that satisfies the set
of formulas being checked. Note that most of the predicates are in fact fluents,
i.e., they have time as one of their arguments. For example, at(ag,p,t) asserts
that agent ag is at place p at time t. For diagnostic purposes, a fundamental
predicate is mode(ac,m), that defines the mode m of an action ac.

Action types, with their behaviors determined by modes, pre-conditions and
effects, are expressed as defined functions (DF). Unlike UFs, DFs have a body
that specifies how to compute the function value given the arguments. A DF
receives all the parameters relevant to the action, plus two time points Ts and
Te that represent the action starting and ending times, and returns a Boolean
value. For example, the signature of the move action is:

move(ag : Agent, ac : Action, from : Pos, to : Pos, Ts : Int, Te : Int) : Bool

The body of the DF specifies, for each modem ∈M(ac) and for the special mode
FPROP , the pre-conditions and the effects taken from the TMAP definition.

if (pre-cond) mode(ac,N) ⇒ [N post-cond]
...

mode(ac, Fk) ⇒ [Fk post-cond]
else mode(ac, FPROP ) ∧ [FPROP post-cond]

The plan itself is encoded as a sequence of assertions that build the instances
of action types that make up the plan. Finally, the timed observations Obs are
easily encoded by asserting the truth of the associated fluent, e.g. the observation
〈at(ag1, p1), t1〉 will be encoded by asserting at(ag1, p1, t1).

Constraints between time points are expressed as linear arithmetic relations:

Te(ac) > Ts(ac); Te(ac
′) < Ts(ac) ≤ Te(ac

′) + τ

Note that, in the second formula, ac′ is the predecessor of ac in the plan of the
agent. A fundamental point that needs to be addressed by our translation is
the definition of suitable frame-axioms, i.e., formulas prescribing that a fluent
does not change if none of the actions changing it is taken. For instance, in our
example logistic domain, fluent at(ag,p,t) is only possibly changed at the end of



12 G. Torta et al.

a move action. Moreover, no other agent can change the value of at(ag,p,t). So,
for each action ac that is not a move:

at(ag, p, Te(ac)) = at(ag, p, Ts(ac)) and at(ag, p, Ts(ac)) = at(ag, p, Te(ac
′))

where ac′ is the predecessor of ac. Things are more complicated for fluents
such as at(o,p,t) (where o is an object) that can be changed by multiple agents.
According to our assumptions, we impose that such actions must be executed in
mutual exclusion. However, in general, for each action ac, we must also assert
that:

at(o, p, Ts(ac)) = at(o, p,max({Te(ac
′) : Te(ac

′) < Ts(ac)}))

where all actions ac′ that can modify the fluent are considered by the max()
operator on the right hand side. The encoding of time and persistency relations
highlights the benefits of adopting a SMT solver instead of a SAT solver for
checking the consistency of hypotheses. In a SAT-encoding of a plan whose
timespan is [0, N ], it is necessary to create a copy of each variable for each time
instant in [0, N ]. On the contrary, the SMT encoding allows us to focus just on
the values of the fluents at the relevant time points, that for a TMAP are the
start/end times of actions and the times of observations.

Concurrency constraints are the most difficult ones to encode, especially be-
cause we require that an action is actually executed as soon as it is possible to
do so. We can’t describe in detail such constraints due to lack of space. Suffice
it to say that, for each shared literal R in the TMAP P , we need to introduce
a predicate wants(ac,±R, T ), that denotes the fact that an action ac wants to
consume (+) or produce (−) literal R at time T . Then, we specify a number of
constraints involving the actions PR = PR+ ∪ PR− (that produce/consume R)
to handle the situations that can arise during plan execution: mutual exclusion,
waiting for R to be produced/consumed (possibly competing with other waiting
agents), timing out and executing in mode FPROP .

6 Solving PEF Problems

Given the encoding of a PEF problem in the input language of Z3, we exploit the
ability of Z3 to produce an unsat core every time it is invoked on an unsatisfiable
instance. An unsat core is a set of assertions in the input to Z3 that cannot hold
simultaneously and therefore require to withdraw at least one of them in order
to get satisfiability. Given the set of unsat cores that is cumulatively produced
during the search for the solutions, we can avoid to explore the parts of the
search space that do not hit (i.e., withdraw at least an assignment from) all of
them. This technique is well known in diagnosis, also on approaches based on
SMT [5].

Let us assume that we have a function EncodeTMAPZ3 that, given a TMAP
P , encodes it in the Z3 input language as explained in the previous section. Figure
5 shows the CBFS (Conflict-based Best First Search) diagnostic algorithm for
solving a PEF specified by P and Obs. The algorithm is strongly based on the



TMAPs Execution: Explaining what Happened 13

CBFSDiagnosis(P = 〈T,A,O,CL,M〉, Obs)
1. Sys ← EncodeTMAPZ3(P)
2. Pef ← Sys ∪ EncodeObsZ3(Obs)
3. UCores ← ∅; ∆ ← ∅; done? ← false; best ← ∞
4. while not done? do
5. σ ← NextBestPlateauResolvingConflicts(UCores)
6. if rank(σ) > best then
7. done? ← true
8. else
9. Pefσ ← Pef ∪ EncodePlateauZ3(σ)

10. (µ, γ) ← CheckSATZ3(Pefσ)
11. if µ 6= null then
12. best ← rank(σ)
13. while µ 6= null do
14. δ ← project(µ, {mode(ac,m) ∈ µ : ac ∈ A})
15. ∆ ← ∆ ∪ {δ}
16. Pefσ ← Pefσ ∪ EncodeAssignmentZ3(¬δ)
17. (µ, γ) ← CheckSATZ3(Pefσ)
18. end while
19. else
20. UCores ← UCores ∪ γ

21. end if
22. end if
23. end while
24. return ∆

Fig. 5. The CBFS diagnostic algorithm.

high-level schema of Conflict-directed A∗ (cd A∗) [13], with some variations
explained below.

At each iteration of the top-level while loop, algorithm cd A∗ would require
to generate a full assignment of modes to actions that resolves the conflicts
found so far. Instead, we generate a constraint σ on the modes of the actions
with function NextBestPlateauResolvingConflicts() (line 5). Such a constraint:
(i) contains specific assignments σF of faults (excluding FPROP ) to actions in
order to hit all the unsat cores γ ∈ UCores ; (ii) constrains the remaining actions
to have either mode N or FPROP ; (iii) has minimum rank among assignments
that hit UCores. Therefore, σ looks as follows:

σ =acF1 (ϕ1) ∧ ... ∧ acFm(ϕm)∧
(acR0

1 (N) ∨ acR0

1 (FPROP )) ∧ ... ∧ (acR0

n (N) ∨ acR0

n (FPROP ))

where actions acFi ∈ σF are assigned a specific faulty mode ϕi (excluding
FPROP ), while actions ac

R0
i (where the superscript R0 denotes the fact that such

actions contribute a rank 0 to the assignment) can take mode N or FPROP . This
explains the term plateau in the name of the function that computes constraints
σ: a single constraint may indeed generate several diagnoses of equal rank (i.e.,



14 G. Torta et al.

Explain(Pef, δ)
1. Pefδ ← Pef ∪ EncodeAssignmentZ3(δ)
2. (µ, γ) ← CheckSATZ3(Pefδ)
3. while µ 6= null do
4. eraw ← project(µ, {Ts(ac) ∈ µ : ac ∈ A})
5. eAll ← EncodeAllenAlgebra(eraw)
6. E ← E ∪ eAll

7. Pefδ ← Pefδ ∪ ¬eAll

8. (µ, γ) ← CheckSATZ3(Pefδ)
9. end while

10. return E

Fig. 6. The Explain algorithm.

cost) by assigning combinations of modes N or FPROP to the acR0
i actions (see

below).
When all the minimum rank solutions ∆ to a given TMAP have already been

found, a constraint σ with a higher rank than the best one is generated (line 6),
and the algorithm returns set ∆. Otherwise, the constraint σ is added to the
Z3 encoding Pef of the PEF problem (TMAP and observations), and the result
Pefσ is then checked by Z3 for satisfiability. If Pefσ is unsatisfiable, Z3 returns
an unsat core γ, that is added to the set UCores.

Otherwise, a satisfying model µ is returned by Z3. The best rank of solutions
is updated with the rank of σF . Then, the algorithm enters an inner while loop
where: the full assignment δ to the action modes prescribed by µ is added to
the set ∆ of preferred diagnoses; and then Pefσ is checked again for satisfiability
excluding δ (to avoid finding it again).

The explanations of a diagnosis δ are computed with the Explain algorithm
shown in Figure 6. Diagnosis δ is added to the encoding Pef of the PEF problem
solved by δ, and the result Pefδ is checked for satisfiability with Z3. Of course,
since δ is a diagnosis, the while loop is entered at least once. The times of start
and end of each action are extracted from model µ, and then they are abstracted
into set eAll of the corresponding Allen algebra relations introduced in definition
6. For example, if a put(ag,p,o) ends at time t, and a load(ag’,p,o) starts at time
t + 1, then a relation meets is established between put and load. After adding
eAll to the set E of explanations of δ and negating it in Pefδ, Z3 is called again
to look for other explanations of δ.

7 Implementation and results on Test Cases

We have implemented the two SMT-based approaches to diagnosis described
above as Java programs exploiting the Z3 solver. The tests have been run on
a machine running Ubuntu 18.04.1 LTS, equipped with an i7 7700HQ CPU
at 2.80 GHz, and 8 GB RAM. We have considered a Logistic domain which
reflects the domain used in the examples. In such a domain, as mentioned above,



TMAPs Execution: Explaining what Happened 15

CBFS
time #sol time/sol #expl

ag 2
ac 8 (R2) 0.48 2.0 0.24 2.0

ag 4
ac 10 (R2) 1.32 2.5 0.53 3.0
ac 20 (R2) 6.83 4.0 1.71 6.1
ac 20 (R4) 25.53 15.6 1.64 23.2

Table 1. avg time (sec), sols, time/sol, and explanations of experiments.

agents can move, load, and put objects, giving rise to several kinds of inter-
agent interactions. We have experimented our approach by running a number of
software simulated tests under different configurations, defined by varying the
following dimensions:#ag (2 and 4 agents);#ac (8, 10, 20 actions per agent); and
#rnk (injected failures of ranks 2, 4). In order to study the effect of interactions
among agents, we have introduced inter-agent links in the plans used in the
configurations as follows: 2 ag x 8 act with 2 links; 4 ag x 10 act with 3 links;
and 4 ag x 20 act with 7 links.

The observability rate (i.e., ratio between the number of actions with ob-
servable effects and the total number of actions) was 30%. We have chosen this
level of observability because it has proved to be high enough for our algorithm
to (almost) always include the diagnosis with the injected failures in the list of
preferred diagnoses, and low enough to challenge our algorithm with a certain
ambiguity in discriminating between the “real” diagnosis and alternative ones.

In Table 1, we show results obtained with 4 different configurations of in-
creasing complexity. The average total time for solving the PEF problems goes
from 0.48s (2 agents x 8 actions, rank 2), up to 25.53s (4 agents x 20 actions,
rank 4). It should be noted that the total time includes the computation of
all the preferred diagnoses, as well as their temporal explanations. If we look
at the average time taken for computing each preferred diagnosis (including its
explanations), the increase is more limited, going from 0.24s to 1.71s. Indeed,
as the test cases become more challenging (more agents, more actions, higher
rank of failures), the average number of preferred diagnoses increases (from 2.0
to 15.6), as well as the average number of associated explanations (from 2.0 to
23.2). Note that the time/sol of the 3rd and the 4th configurations is almost the
same, despite the fact that the former has test cases with rank 2 and the latter
of rank 4. This seems to indicate that the time/sol is not affected significantly
by the rank of test cases.

8 Conclusions

The diagnosis of Temporal Multiagent Plans (TMAPs) has been addressed by a
number of approaches in literature that focused either on diagnosing delays [10,
9, 12], or on diagnosing violation of logic conditions [8, 6, 7]. In this paper, we



16 G. Torta et al.

have presented a novel approach that deals with both aspects. As a consequence,
the propagation of failures from one action to another (and one agent to another
one) is particularly complex, because it can be due to delays and/or missing
logic effects. Therefore, in our framework we first single out diagnoses (possi-
bly containing secondary failures) by means of a conflict-based search. We then
explain these secondary failures by inferring the temporal profile of the pro-
duction/consumption of shared resources whose misuse caused the very same
failures. These temporal profiles allow a user to gain a better understanding
about the causes of a secondary failure by relating it to the (primary) failure of
another action that has caused an unexpected effect on some shared resource.

In this work, action failures in plan execution are considered as independent of
one another, except when the actions interact through shared literals. Following
[10], we may try to extend the present work by considering that action failures
can be related also when they involve some common features of the agent or the
environment (e.g., a motor or a traffic jam for a move). Since plan diagnosis is
the pre-condition for plan repair, another future line of work will explore how to
exploit the (on-line) computation of diagnoses to inform a re-planning process
that tries to achieve (most of) the original goals.

References

1. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Int. conf. on Tools and
Alg. for the Construction and Analysis of Systems. pp. 337–340. Springer (2008)

2. Elimelech, O., Stern, R., Kalech, M., Bar-Zeev, Y.: Diagnosing resource usage
failures in multi-agent systems. Expert Systems with Applications 77, 44–56 (2017)

3. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

4. Goldszmidt, M., Pearl, J.: Rank-based systems: a simple approach to belief revision,
belief update, and reasoning about evidence and actions. In: Proc. KR92. pp. 661–
672 (1992)

5. Grastien, A.: Diagnosis of hybrid systems with smt: opportunities and challenges.
In: Proceedings of the 21st European Conf. on AI. pp. 405–410. IOS Press (2014)

6. de Jonge, F., Roos, N., Witteveen, C.: Primary and secondary diagnosis of multi-
agent plan execution. Journal of Autonomous Agent and MAS 18, 267–294 (2009)

7. Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms
for teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007)

8. Micalizio, R., Torasso, P.: Cooperative monitoring to diagnose multiagent plans.
Journal of Artificial Intelligence Research 51, 1–70 (2014)

9. Micalizio, R., Torta, G.: Diagnosing delays in multi-agent plans execution. In:
Proceedings of the 20th ECAI. pp. 594–599. IOS Press (2012)

10. Micalizio, R., Torta, G.: Explaining interdependent action delays in multiagent
plans execution. Autonomous Agents and Multi-Agent Syst. 30(4), 601–639 (2016)

11. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating robust schedules through
temporal flexibility. In: ICAPS. vol. 4, pp. 209–218 (2004)

12. Roos, N., Witteveen, C.: Diagnosis of simple temporal networks. In: Proc. of
ECAI’08. pp. 593–597 (2008)

13. Williams, B.C., Ragno, R.J.: Conflict-directed a* and its role in model-based em-
bedded systems. Discrete Applied Mathematics 155(12), 1562–1595 (2007)


