Skip to main content

Learning Minimal DFA: Taking Inspiration from RPNI to Improve SAT Approach

  • Conference paper
  • First Online:
Book cover Software Engineering and Formal Methods (SEFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11724))

Included in the following conference series:

Abstract

Inferring a minimal Deterministic Finite Automaton (DFA) from a learning sample that includes positive and negative examples is one of the fundamental problems in computer science. Although the problem is known to be NP-complete, it can be solved efficiently with a SAT solver especially when it is used incrementally. We propose an incremental SAT solving approach for DFA inference in which general heuristics of a solver for assigning free variables is replaced by that employed by the RPNI method for DFA inference. This heuristics reflects the knowledge of the problem that facilitates the choice of free variables. Since the performance of solvers significantly depends on the choices made in assigning free variables, the RPNI heuristics brings significant improvements, as our experiments with a modified solver indicate; they also demonstrate that the proposed approach is more effective than the previous SAT approaches and the RPNI method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the presence of symmetry. In: Proceedings of the 39th Annual Design Automation Conference, pp. 731–736. ACM (2002)

    Google Scholar 

  2. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for Boolean satisfiability. IEEE Trans. Comput. 55(5), 549–558 (2006)

    Article  Google Scholar 

  3. Avellaneda, F., Petrenko, A.: FSM inference from long traces. In: Havelund, K., Peleska, J., Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 93–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_6

    Chapter  Google Scholar 

  4. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 100(6), 592–597 (1972)

    Article  MathSciNet  Google Scholar 

  5. Brown, C.A., Finkelstein, L., Purdom, P.W.: Backtrack searching in the presence of symmetry. In: Mora, T. (ed.) AAECC 1988. LNCS, vol. 357, pp. 99–110. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51083-4_51

    Chapter  Google Scholar 

  6. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  8. Freeman, J.W.: Improvements to propositional satisfiability search algorithms. Ph.D. thesis. Citeseer (1995)

    Google Scholar 

  9. Heule, M.J.H., Verwer, S.: Software model synthesis using satisfiability solvers. Empir. Softw. Eng. 18(4), 825–856 (2013)

    Article  Google Scholar 

  10. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS, vol. 1695, pp. 62–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48159-1_5

    Chapter  Google Scholar 

  11. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM (2001)

    Google Scholar 

  12. Oncina, J., Garcia, P.: Inferring regular languages in polynomial updated time. In: Pattern Recognition and Image Analysis: Selected Papers from the IVth Spanish Symposium, pp. 49–61. World Scientific (1992)

    Google Scholar 

  13. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by MEI (Ministère de l’Économie et Innovation) of Gouvernement du Québec and NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florent Avellaneda or Alexandre Petrenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avellaneda, F., Petrenko, A. (2019). Learning Minimal DFA: Taking Inspiration from RPNI to Improve SAT Approach. In: Ölveczky, P., Salaün, G. (eds) Software Engineering and Formal Methods. SEFM 2019. Lecture Notes in Computer Science(), vol 11724. Springer, Cham. https://doi.org/10.1007/978-3-030-30446-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30446-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30445-4

  • Online ISBN: 978-3-030-30446-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics