
Efficient Formal Verification for the Linux
Kernel

Daniel Bristot de Oliveira1,2,3[0000−0002−4577−7855],
Tommaso Cucinotta2[0000−0002−0362−0657], and
Rômulo Silva de Oliveira3[0000−0002−8853−9021]

1 RHEL Platform/Real-time Team, Red Hat, Inc., Pisa, Italy.
2 RETIS Lab, Scuola Superiore Sant’Anna, Pisa, Italy.

3 Department of Systems Automation, UFSC, Florianópolis, Brazil.

Abstract. Formal verification of the Linux kernel has been receiving
increasing attention in recent years, with the development of many mod-
els, from memory subsystems to the synchronization primitives of the
real-time kernel. The effort in developing formal verification methods
is justified considering the large code-base, the complexity in synchro-
nization required in a monolithic kernel and the support for multiple
architectures, along with the usage of Linux on critical systems, from
high-frequency trading to self-driven cars. Despite recent developments
in the area, none of the proposed approaches are suitable and flexible
enough to be applied in an efficient way to a running kernel. Aiming to
fill such a gap, this paper proposes a formal verification approach for the
Linux kernel, based on automata models. It presents a method to auto-
generate verification code from an automaton, which can be integrated
into a module and dynamically added into the kernel for efficient on-the-
fly verification of the system, using in-kernel tracing features. Finally, a
set of experiments demonstrate verification of three models, along with
performance analysis of the impact of the verification, in terms of latency
and throughput of the system, showing the efficiency of the approach.

Keywords: Verification · Linux Kernel · Automata · Testing.

1 Introduction

Real-time variants of the Linux operating system (OS) have been successfully
used in many safety-critical and real-time systems belonging to a wide spectrum
of applications, going from sensor networks [19], robotics [39], factory automa-
tion [17] to the control of military drones [11] and distributed high-frequency
trading systems [13, 10], just to mention a few. However, for a wider adoption of
Linux in next-generation cyber-physical systems, like self-driving cars [42], au-
tomatic testing and formal verification of the code base is increasingly becoming
a non-negotiatable requirement. One of the areas where it is mostly difficult and
non-trivial to adopt such techniques is the one of the kernel, due to its inherent
complexity. This need has fomented the development of many formal models for



2 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

the Linux kernel, like the Memory Model [2] and formal verification of spinlock
primitives [28]. However, Linux lacks a methodology for runtime verification that
can be applied broadly throughout all of the in-kernel subsystems.

Some complex subsystems of Linux have been recently modeled and verified
by using automata. For example, modeling the synchronization of threads in
the PREEMPT RT Linux kernel achieved practical results in terms of problems
spotted within the kernel [33] (and fixes being proposed afterwards). As a conse-
quence, the kernel community provided positive feedback, underlining that the
event and state abstractions used in automata look natural to the modeling of
the kernel behavior, because developers are already accustomed to using and
interpreting event traces in these terms [31, 30].

The problem, however, is that the previously proposed approach [33] relies
on tracing events into an in-kernel buffer, then moving the data to user-space
where it is saved to disk, for later post-processing. Although functional, when it
comes to tracing high-frequency events, the act of in-kernel recording, copying to
user-space, saving to disk and post-processing the data related to kernel events
profoundly influences the timing behavior of the system. For instance, tracing
scheduling and synchronization-related events can generate as many as 900000
events per second, and more than 100 MB per second of data, per CPU, making
the approach non-practical, especially for big muti-core platforms.

An alternative could be hard-coding the verification in the Linux kernel code.
This alternative, however, is prone not to become widely adopted in the kernel.
It would require a considerable effort for acceptance of the code on many sub-
systems. Mainly because complex models can easily have thousands of states.
A second alternative would be maintaining the verification code as an external
patchset, requiring the users to recompile the kernel before doing the check-
ing, what would inhibit the full utilization of the method as well. An efficient
verification method for Linux should unify the flexibility of using the dynamic
tracing features of the kernel while being able to perform the verification with
low overheads.

Paper Contributions. This paper proposes an efficient automata-based verifica-
tion method for the Linux kernel, capable of verifying the correct sequences of
in-kernel events as happening at runtime, against a theoretical automata-based
model that has been previously created. The method starts from an automata-
based model, as produced through the well-known Supremica modeling tool,
then it auto-generates C code with the ability of efficient transition look-up time
in O(1) for each hit event. The generated code embedding the automaton is
compiled as a module, loaded on-the-fly into the kernel and dynamically asso-
ciated with kernel tracing events. This enables the run-time verification of the
observed in-kernel events, compared to the sequences allowed by the model, with
any mismatch being readily identified and reported. The verification is carried
out in kernel space way more efficiently than it was possible to do in user-space,
because there is no need to store and export the whole trace of occurred events.
Indeed, results from performance analysis of a kernel under verification show



Efficient Formal Verification for the Linux Kernel 3

that the overhead of the verification of kernel operations is very limited, and
even lower than merely activating tracing for all of the events of interest.

2 Background

This section provides the background for the two main concepts used for the
verification of Linux: the automata-based formal method used for modeling, and
the tracing mechanism within the kernel at the basis of the verification process.

2.1 Automata and Discrete Event System

A Discrete Event System (DES) can be described in various ways, for example
using a language (that represents the valid sequences of events that can be ob-
served during the evolution of the system). Informally speaking, an automaton
is a formalization used to model a set of well-defined rules that define such a
language.

The evolution of a DES is described with all possible sequence of events
e1, e2, e3, ...en, ei ∈ E, defining the language L that describes the system.

There are many possible ways to describe the language of a system. For
example, it is possible to use regular expressions. For complex systems, more
flexible modeling formats, like automaton, were developed.

Automata are characterized by the typical directed graph or state transition
diagram representation. For example, consider the event set E = {a, b, g} and
the state transition diagram in Figure 1, where nodes represent system states,
labeled arcs represent transitions between states, the arrow points to the initial
state and the nodes with double circles are marked states, i.e., safe states of the
system.

x

a
zg

b

y

a,g

a

b

Fig. 1. State transitions diagram (based on Fig. 2.1 from [7]).

Formally, a deterministic automaton, denoted by G, is a tuple

G = {X,E, f, x0, Xm} (1)

where:



4 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

– X is the set of states
– E is the finite set of events
– f : X × E → X is the transition function. It defines the state transition in

the occurrence of a event from E in the state X.
– x0 is the initial state
– Xm ⊆ X is the set of marked states

For instance, the automaton G shown in Figure 1 can be defined as follows:

– X = {x, y, z}
– E = {a, b, g}
– f : (x, a) = x; (y, a) = x; (z, b) = z; (x, g) = z; (y, b) = y; (z, a) = (z, g) = y.
– x0 = x
– Xm = {x, z}

The automaton starts from the initial state x0 and moves to a new state
f(x0, e) upon the occurrence of an event e. This process continues based on the
transitions for which f is defined.

Informally, following the graph of Figure 1 it is possible to see that the
occurrence of event a, followed by event g and a will lead from the initial state
to state y. The language L(G) generated by an automaton G = {X,E, f, x0, Xm}
consists of all possible chains of events generated by the state transition diagram
starting from the initial state.

Given a set of marked states, i.e., possible final or safe states when modeling
a system, an important language generated by an automaton is the marked
language. This consists of the set of words in L(G) that lead to marked states,
and it is also called the language recognized by the automaton.

Automata theory also enables operations among automata. An important
operation is the parallel composition of two or more automata that are combined
to compose a single, augmented-state, automaton. This allows for merging two
or more automata models into one single model, constituting the standard way of
building a model of an entire system from models of its individual components [7].

2.2 Linux tracing

Linux has an advanced set of tracing methods, which are mainly applied in
the runtime analysis of kernel latencies and performance issues [27]. The most
popular tracing methods are the function tracer that enables the trace of
kernel functions [38], and the tracepoint that enables the tracing of hundreds
of events in the system, like the wakeup of a new thread or the occurrence of
an interrupt. But there are many other methods, like kprobes that enable the
creation of dynamic tracepoints in arbitrary places in the kernel code [22], and
composed arrangements like using the function tracer and tracepoints to
examine the code path from the time a task is woken up to when it is scheduled.

An essential characteristic of the Linux tracing feature is its efficiency. Nowa-
days, almost all Linux based operating systems (OSes) have these tracing meth-
ods enabled and ready to be used in production kernels. Indeed, these methods



Efficient Formal Verification for the Linux Kernel 5

sh-2038 [002] d... 16230.043339: ttwu_do_wakeup <-try_to_wake_up
sh-2038 [002] d... 16230.043339: check_preempt_curr <-ttwu_do_wakeup
sh-2038 [002] d... 16230.043340: resched_curr <-check_preempt_curr
sh-2038 [002] d... 16230.043343: sched_wakeup: comm=cat pid=2040 prio=120 target_cpu=003

Fig. 2. Ftrace Output.

have nearly zero overhead when disabled, thanks to the extensive usage of run-
time code modification techniques, that allow for a greater efficiency than using
conditional jumps when tracing is disabled. For instance, when the function
tracer is disabled, a no-operation assembly instruction is placed right at the
beginning of all traceable functions. When the function tracer is enabled, the
no-operation instruction is overwritten with an instruction that calls a function
that will trace the execution, for instance by appending information into an in-
kernel trace buffer. This is done at runtime, without any need for a reboot. A
tracepoint works similarly, but using a jump label [14]. The mentioned tracing
methods are implemented in such a way that it is possible to specify how an
event will be handled dynamically, at runtime. For example, when enabling a
tracepoint, the function responsible to handle the event is specified through a
proper in-kernel API.

Currently, there are two main interfaces by which these features can be ac-
cessed from user-space: perf and Ftrace. Both tools can hook to the trace meth-
ods, processing the events in many different ways. The most common action is to
record the occurrence of events into a trace-buffer for post-processing or human
interpretation of the events. Figure 2 shows the output of the Ftrace tracing
functions and tracepoints. The recording of events is optimized by the usage of
per-cpu lock-less trace buffers. Furthermore, it is possible to take actions based
on events. For example, it is possible to record a stacktrace.

These tracing methods can also be leveraged for other purposes. Similarly to
perf and Ftrace, other tools can also hook a function to a tracing method, non-
necessarily for the purpose of providing a trace of the system execution to the
user-space. For example, the Live Patching feature of Linux uses the function
tracer to hook and deviate the execution of a problematic function to a revised
version of the function that fixes a problem [36].

3 Related work

This section overviews major prior works related to the technique introduced
in this paper, focusing on automata-based modeling of various Linux kernel
subsystems, use of formal methods for other OS kernels, and finally the use of
other formal methods to assess the correctness of various Linux kernel functions.

3.1 Automata-based Linux modelling

A number of works exist making use of automata-based models to verify correct-
ness of Linux kernel code. The work presented in [29] uses trace and automata



6 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

to verify conditions in the kernel. The paper presents models for SYN-flood, es-
caping from a chroot jail, validation of locking and of real-time constraints. The
LTTng tracer [41] is used to compare the models to the kernel execution. The
models are very simple and presented as proof of concept. There are only five
states in the largest model, which is related to locking validation. There are only
two states in the real-time constraints model. Despite its simplicity, this paper
corroborates the idea of connecting automata to tracing as a layer of translation
from kernel to formal methods, including aspects of Linux real-time features.

State-aware/Stateful robustness testing [26] is an important area that uses
formal system definition. Robust testing is also used in the OS context as a
fault tolerance technique [37]. A case study of state-based robustness testing is
presented in [15] that includes the OS states of a real-time version of Linux. The
results show that the OS state plays a significant role in testing for corner cases
that are not covered by traditional robustness verification. Another relevant
project for Linux is SABRINE [16], an approach using tracing and automata for
state-aware robustness testing of OSes. SABRINE works as follows: It traces the
interactions among components of the OS in the first step. The software then
extracts state models from the traces automatically. The traces are processed in
this phase in order to find sequences of similar functions, to be grouped, forming
a pattern. Later, similar patterns are grouped into clusters. The last step is
the generation of the behavioral model from the clusters. A behavioral model
consists of event-connected states in the finite-state automata (FSA) format.

The ability to extract models from the operating system depends on the op-
erating system components specification and their interfaces. The paper targets
not a system component, but the set of mechanisms used to synchronize NMI,
IRQ, and thread operations. The analyzed events are present in most subsys-
tems, such as disabling interruptions and preemption, or locks.

SABRINE was later improved by the TIMEOUT approach [40] which records
the time spent in each state. The FSA is then created using timed automata.
The worst-case execution time observed during the profiling phase is used as the
Timed-FSA’s timing parameter, so timing errors can also be detected.

3.2 Formal methods and OS kernels

Verification of an operating system kernel, with its various components, is a
particularly challenging area.

Some works that addressed this issue include the BLAST tool [21], where
control flow automata were used, combining existing state-space reduction tech-
niques based on verification and counter-example-driven refinement with lazy
abstraction. This enables on-demand refinement of specification parts by select-
ing more specific predicates to add to the model while the model checker is
running, without the need to revisit parts of the state space that are not af-
fected by the refinements. Interestingly, for the Linux and Microsoft Windows
NT kernels, authors applied the technique to verify the security properties of OS
drivers. The technique required instrumentation of the original drivers, inserting



Efficient Formal Verification for the Linux Kernel 7

a conditional jump to an error handler, and a model of the surrounding kernel
behavior to enable the verification that the faulty code could ever be reached.

The SLAM [4] static code analyzer shares major goals with BLAST, enabling
C programs to be analyzed to detect violations of certain conditions. SLAM is
also used within the Static Driver Verifier (SDV) framework [3] to check Mi-
crosoft Windows device drivers against a set of rules. For example, it has been
used to detect improper use of the Windows XP kernel API in some drivers.
SATABS [5] and CBMC [24] are verification tools used within the DDVerify [43]
framework to check synchronization constructs, interrupts and deferred tasks.

MAGIC [8] is a tool for automatic verification of sequential C programs that
uses finite state machine specifications. The tool can analyze a direct acyclic
graph of C functions by extracting a finite state model from the source code and
then reducing the verification to a problem of boolean satisfiability (SAT). The
verification is performed by checking the specification against an increasingly
refined sequence of abstractions until either it is verified or a counter-example is
found. This allows the technique to be used with relatively large models, along
with its modular approach, avoiding the need to enumerate the state-space of
the entire system. MAGIC was used to verify the correctness of a number of
functions involved in system calls handling mutexes, sockets and packet han-
dling in the Linux kernel. The tool was also later extended to handle concurrent
software systems [9], although authors focused on verifying correctness and live-
ness in presence of message-passing based concurrency without variable sharing.
Authors were able to find a bug in the source code of Micro-C/OS, although the
bug had already been fixed in a new release when they notified the developers.

Other remarkable works have also been carried out evaluating the formal
correctness of a whole micro-kernel, such as seL4 [23], regarding the adherence
of the compiled code to its expected behavior stated in formal terms. seL4 also
includes precise worst-case execution time analysis [6]. These findings were pos-
sible thanks to the simplicity of the seL4 micro-kernel, e.g. semi-preemptability.

3.3 Formal methods and the Linux kernel community

The adoption of formal methods is not new to the Linux kernel community,
especially in the kernel development and debugging workflow.

Indeed, the lockdep mechanism [12] built into the Linux kernel is a remark-
able work in this area. By observing the order of execution and the calling context
of lock calls, Lockdep is able to identify errors in the use of locking primitives
that could eventually lead to deadlocks. The mechanism includes detecting er-
rors in the acquisition order of multiple (nested) locks across multiple kernel
code paths, and detecting common errors in handling spinlocks across the IRQ
handler vs process context, such as acquiring a spinlock from the process context
with enabled IRQs as well as from an IRQ handler. By applying the technique
based on locking classes instead of individual locks, the number of different lock
states that the kernel must keep is reduced.

A formal memory model is introduced in [2] to automate the verification of
the consistency of core kernel synchronization operations, across a wide range of



8 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

supported architectures and associated memory consistency models. The Linux
memory model ended up being part of the official Linux release, adding the
Linux Kernel Memory Consistency Model (LKMM) subsystem, an array of tools
that formally describe the Linux memory consistency model, and also producing
“litmus tests” in the form of kernel code that can be executed and tested directly.

The TLA+ formalism [25] has also been successfully applied to discover bugs
in the Linux kernel. Examples of problems discovered or confirmed by using
TLA+ include the correctness of memory management locking during a context
switch and fairness properties of the arm64 ticket spinlock implementation [28].

These recent results created interest in the potential of using formal meth-
ods in Linux development. Therefore, the present paper describes our proposed
technique for validation at runtime of allowed kernel events sequences, as speci-
fied through an automata-based model. As highlighted above, the technique fills
an empty spot in the related literature, focusing on efficient verification that
is achieved by: 1) tracking relevant kernel events at a proper abstraction level,
leveraging the perf and Ftrace subsystems, but 2) without any need to actually
collect a full trace of the relevant events from the kernel to user-space for fur-
ther analysis: events sequences are directly checked inside the kernel leveraging
efficient code automatically generated from the automata-based model, charac-
terized by a O(1) event processing time adding very small overheads, even lower
than those arising merely for tracing the relevant events. This will be shown
through experimental results in Section 5.

4 Efficient Formal Verification for the Linux Kernel

An overarching view of the approach being proposed in this paper is displayed
in Figure 3. It has three major phases. First, the behavior of a part of the Linux
kernel is modeled using automata, using the set of events that are available in
the tracing infrastructure4. The model is represented using the .dot Graphviz
format [20]. The .dot format is open and widely used to represent finite-state
machines and automata. For example, the Supremica modeling tool [1] supports
exporting automata models using this format.

Figure 4 presents the example of an automaton for the verification of in-
kernel scheduling-related events. The model specifies that the event sched waking
cannot take place while preemption is enabled, in order not to cause concurrency
issues with the scheduler code (see [33] for more details).

In the second step, the .dot file is translated into a C data structure, using
the dot2c tool 5. The auto-generated code follows a naming convention that
allows it to be linked with a kernel module skeleton that is already able to refer
to the generated data structures, performing the verification of occurring events

4 These can be obtained for example by running: sudo cat /sys/kernel/debug/tra-
cing/available events.

5 The tools, the verification modules, the BUG report, high-resolution figures and
FAQ are available in the companion page [32].



Efficient Formal Verification for the Linux Kernel 9

.h

.ko

vmlinux

function()

tracepoint

trace
.c

.dot Code
generation

Compile
and
load

Fig. 3. Verification approach.

non_preemptive

sched_waking

preemptive preempt_enable

preempt_disable

Fig. 4. Wake-up In Preemptive (WIP) Model.

in the kernel, according to the specified model. For example, the automaton in
Figure 4 is transformed into the code in Figure 5.

The enum states and events provide useful identifiers for states and events.
As the name suggests, the struct automaton contains the automaton struc-
ture definition. Its corresponding C version contains the same elements of the
formal definition. The most critical element of the structure is function, a ma-
trix indexed in constant time O(1) by curr state and event (as shown in the
get next state() function in Figure 6). Likewise, for debugging and reporting
reasons, it is also possible to translate the event and state indexes into strings
in constant time, using the state names and event names vectors.

Regarding scalability, although the matrix is not the most efficient solution
with respect to the memory footprint, in practice, the values are reasonable for
nowadays common computing platforms. For instance, the Linux Task Model
Automata presented in [33], with 9017 states and 20103 transitions, resulted
in a binary object of less than 800KB, a reasonable value even for nowadays
Linux-based embedded systems. The automaton structure is static, so no el-
ement changes are allowed during the verification. This simplifies greatly the
needed synchronization for accessing it. The only information that changes is
the variable that saves the current state of the automata, so it can easily be
handled with atomic operations, that can be a single variable for a model that
represents the entire system. For instance, the model in Figure 4 represents the
state of a CPU (because the preemption enabling status is a per-cpu status vari-
able in Linux), so there is a current state variable per-cpu, with the cost of (1
Byte * the number of CPUs of the system). The simplicity of automaton defini-



10 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

1 enum s t a t e s {
2 preemptive = 0 ,
3 non preemptive ,
4 state max
5 } ;
6

7 enum events {
8 preempt d i sab le = 0 ,
9 preempt enable ,

10 sched waking ,
11 event max
12 } ;
13

14 s t r u c t automaton {
15 char ∗ state names [ state max ] ;
16 char ∗ event names [ event max ] ;
17 char func t i on [ state max ] [ event max ] ;
18 char i n i t i a l s t a t e ;
19 char f i n a l s t a t e s [ state max ] ;
20 } ;
21

22 s t r u c t automaton aut = {
23 . event names = { ” preempt d i sab le ” , ” preempt enable ” ,
24 ” sched waking ” } ,
25 . s tate names = { ”preemptive ” , ” non preemptive ” } ,
26 . f unc t i on = {
27 { non preemptive , −1, −1 } ,
28 { −1, preemptive , non preemptive } ,
29 } ,
30 . i n i t i a l s t a t e = preemptive ,
31 . f i n a l s t a t e s = { 1 , 0 }
32 } ;

Fig. 5. Auto-generated code from the automaton in Figure 4.

1 char g e t n e x t s t a t e ( s t r u c t automaton ∗aut , enum s t a t e s cu r r s t a t e ,
2 enum events event ) {
3 re turn aut−>f unc t i on [ c u r r s t a t e ] [ event ] ;
4 }

Fig. 6. Helper functions to get the next state.

tion is a crucial factor for this method: all verification functions are O(1), the
definition itself does not change during the verification and the sole information
that changes has a minimal footprint.

In the last step, the auto-generated code from the automata, along with a
set of helper functions that associate each automata event to a kernel event, are
compiled into a kernel module (a .ko file). The model in Figure 4 uses only
tracepoints. The preempt disable and preempt enable automaton events are
connected to the preemptirq:preempt disable and preemptirq:preempt enable
kernel events, respectively, while the sched waking automaton event is connected
to the sched:sched waking kernel event. The Sleeping While in Atomic (SWA)
model in Figure 7 also uses tracepoints for preempt disable and enable, as well as
for local irq disable and enable. But the SWA model also uses function tracers.



Efficient Formal Verification for the Linux Kernel 11

One common source of problems in the PREEMPT RT Linux is the execution
of functions that might put the process to sleep, while in a non-preemptive
code section [34]. The event might sleep function represents these functions. At
initialization time, the SWA module hooks to a set of functions that are known
to eventually putting the thread to sleep.

Note that another noteworthy characteristic of the proposed framework is
that, by using user-space probes [18], it is also possible to perform an integrated
automata-based verification of both user and kernel-space events, without re-
quiring code modifications.

bothsingle

local_irq_enable
preempt_enable

preemptive

might_sleep_function

local_irq_disable
preempt_disable

local_irq_disable
preempt_disable

local_irq_enable
preempt_enable

Fig. 7. Sleeping While in Atomic (SWA) model.

The kernel module produced as just described can be loaded at any time dur-
ing the kernel execution. During initialization, the module connects the functions
that handle the automaton events to the kernel tracing events, and the verifica-
tion can start. The verification keeps going on until it is explicitly disabled at
runtime by unloading the module.

The verification output can be observed via the tracing file regularly produced
by Ftrace. As performance is a major concern for runtime verification, debug
messages can be disabled of course. In this case, the verification will produce
output only in case of problems.

An example of output is shown in Figure 8. In this example, in Line 1 a
debug message is printed, notifying the occurrence of the event preempt enable,
moving the automaton from the state non preemptive to preemptive. In Line 2,
sched waking is not expected in the state preemptive, causing the output of the
stack trace, to report the code path in which the problem was observed.

The problem reported in Figure 8 is the output of a real bug found in the
kernel while developing this approach. The bug was reported to the Linux kernel
mailing list, including the verification module as the test-case for reproducing
the problem 5.

5 Performance evaluation

Being efficient is a key factor for a broader adoption of a verification method.
Indeed, an efficient method has the potential to increase its usage among Linux
developers and practitioners, mainly during development, when the vast majority
of complex testing takes place. Therefore, this section focuses on the performance



12 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

1 bash−1157 [ 0 0 3 ] . . . . 2 . . 191 .199172 : p ro c e s s ev en t : non preemptive −>
preempt enable = preemptive s a f e !

2 bash−1157 [ 0 0 3 ] dN . . 5 . . 191 .199182 : p ro c e s s ev en t : event
sched waking not expected in the s t a t e preemptive

3 bash−1157 [ 0 0 3 ] dN . . 5 . . 191 .199186 : <s tack trace>
4 => proc e s s ev en t
5 => hand l e even t
6 => ttwu do wakeup
7 => t ry to wake up
8 => i r q e x i t
9 => smp ap i c t ime r i n t e r rup t

10 => ap i c t ime r i n t e r r up t
11 => r c u i r q e x i t i r q s o n
12 => t race preempt on
13 => preempt count sub
14 => r aw sp i n un l o c k i r q r e s t o r e
15 => down write common
16 => anon vma clone
17 => anon vma fork
18 => copy proce s s . part . 42
19 => do f o r k
20 => do s y s c a l l 6 4
21 => entry SYSCALL 64 after hwframe

Fig. 8. Example of output from the proposed verification module, as occurring when
a problem is found.

of the proposed technique, by presenting evaluation results on a real platform
verifying models, in terms of the two most important performance metrics for
Linux kernel (and user-space) developers: throughput and latency.

The measurements were conducted on an HP ProLiant BL460c G7 server,
with two six-cores Intel Xeon L5640 processors and 12GB of RAM, running
a Fedora 30 Linux distribution. The kernel selected for the experiments is the
Linux PREEMPT RT version 5.0.7-rt5. The real-time kernel is more sensible for
synchronization as the modeled preemption and IRQ-related operations occur
more frequently than in the mainline kernel.

5.1 Throughput evaluation

Throughput evaluation was made using the Phoronix Test Suite benchmark [35],
and its output is shown in Figure 9. The same experiments were repeated in
three different configurations. First, the benchmark was run in the system as-is,
without any tracing nor verification running. Then, it was run in the system
after enabling verification of the SWA model. Finally, a run was made with the
system being traced, only limited to the events used in the verified automaton.
It is worth mentioning that tracing in the experiments means only recording the
events. The complete verification in user-space would still require the copy of
data to user-space and the verification itself, which would add further overhead.

On the CPU bound tests (Crypto, CPU Stress and Memory Copying), both
trace and verification have a low impact on the system performance. In contrast,
the benchmarks that run mostly on kernel code highlights the overheads of both
methods. In all cases, the verification performs better than tracing. The reason



Efficient Formal Verification for the Linux Kernel 13

Bogo Ops/s, More Is Better

Crypto

as-is SWA trace

200

400

600

800

1000

903 881
842

Bogo Ops/s, More Is Better

CPU Stress

as-is SWA trace

500

1000

1500

2000

2500

2422 2431 2373

Bogo Ops/s, More Is Better

Memory Copying

as-is SWA trace

160

320

480

640

800

744 731 717

Bogo Ops/s, More Is Better

Socket Activity

as-is SWA trace

300

600

900

1200

1500
1515

980

598

Bogo Ops/s, More Is Better

Context Switching

as-is SWA trace

500000

1000000

1500000

2000000

2500000

2333154

1034207

619639

Bogo Ops/s, More Is Better

System V Message Passing

as-is SWA trace

400000

800000

1200000

1600000

2000000

1797974

1039991

673163

Fig. 9. Phoronix Stress-NG Benchmark Results: as-is is the system without tracing
nor verification; SWA is the system while verifying Sleeping While in Atomic automata
in Figure 11 and with the code in Figure 5; and the trace is the system while tracing
the same events used in the SWA verification.

is that, despite the efficiency of tracing, the amount of data that has to be ma-
nipulated costs more than the simple operations required to do the verification,
essentially the cost of looking up the next state in memory in O(1), and storing
the next state with a single memory write operation.

5.2 Latency evaluation

Latency is the main metric used when working with the PREEMPT RT kernel.
The latency of interest is defined as the delay the highest real-time priority
thread suffers from, during a new activation, due to in-kernel synchronization.
Linux practitioners use the cyclictest tool to measure this latency, along with
rteval as background workload, generating intensive kernel activation.

Two models were used in the latency experiment. Similarly to Section 5.1,
the SWA model was evaluated against the kernel as-is, and the kernel simply



14 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

tracing the same set of events. In addition, the Need Re-Schedule (NRS ) model
in Figure 10 was evaluated. It describes the synchronization events that influence
the latency, and it is part of the model previously described in [33]6. The NRS
measurements were made on the same system but configured as a single CPU7.

any_thread_running

write_abandon
write_acquired
write_blocked

write_lock
mutex_abandon
mutex_acquired
mutex_blocked

mutex_lock
read_abandon
read_acquired
read_blocked

read_lock
preempt_disable_sched
preempt_enable_sched
hw_local_irq_disable
hw_local_irq_enable

local_irq_disable
local_irq_enable
preempt_disable
preempt_enable
schedule_entry
schedule_exit

sched_switch_in
sched_switch_in_o

p_and_i

sched_need_resched

irq_enable_sched_exit

hw_local_irq_disable
hw_local_irq_enable preempt_and_irq_enable

preempt_enable_sched

re_scheduling
schedule_entry

irq_enabled schedule_exit

local_irq_disable
hw_local_irq_disable

preempt_enable
preempt_enable_sched

schedule_entry

sched_switch_in
sched_switch_in_o

local_irq_enable
hw_local_irq_enable

preempt_enabled

preempt_enable

hw_local_irq_disable
hw_local_irq_enable

preempt_disable_sched

preempt_disable

local_irq_enable
hw_local_irq_enable

preempt_disable_sched

sched_switch_in
sched_switch_in_o

local_irq_disable
local_irq_enable

hw_local_irq_disable
hw_local_irq_enable

schedule_entry

Fig. 10. Need Re-Sched forces Scheduling (NRS model) from [33] 5.

Consistently with the results obtained in the throughput experiments, the
proposed verification mechanism is more efficient than the sole tracing of the
same events. This has the effect that the cyclictest latency obtained under the
proposed method, shown in Figure 11 (SWA/NRS curves), is more similar to
the one of the kernel as-is than what is obtained while just tracing the events.

6 Conclusions and Future work

The increasing complexity of the Linux kernel code-base, along with its increas-
ing usage in safety-critical and real-time systems, pushed towards a stronger
need for applying formal verification techniques to various kernel subsystems.
Nonetheless, two factors have been placing a barrier in this regard: 1) The need
of complex setups, even including modifications and re-compilation of the kernel;
2) The excessively poor performance exhibited by the kernel while under tracing,
for collecting data needed in the verification, typically carried out in user-space.

The solution for both problems seemed to be controversial: the usage of in-
kernel tracing along with user-space post-processing reduces the complexity of
the setup, but incurs the problem of having to collect, transfer to user-space and
process large amounts of data. On the other hand, the inclusion of verification
code “hard-coded” in the kernel requires more complex setups, with the need
for applying custom patches and recompiling the kernel, with said patches being
quite cumbersome to maintain as the kernel evolves over time.

This paper tackles these two problems by using the standard tracing infras-
tructure available in the Linux kernel to dynamically attach verification code to a
non-modified running kernel, by exploiting the mechanism of dynamically load-
able kernel modules. Furthermore, the verification code is semi-automatically

6 Note that supporting the full model in [33] is not yet possible with the tool being pre-
sented in this paper, due to additional changes needed within the kernel. Therefore,
this is still work in progress.

7 This is a restriction from [33].



Efficient Formal Verification for the Linux Kernel 15

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35 40 45 50 55

T
h

re
a

d
 a

c
ti
v
a

ti
o

n
s

Latency in microseconds

trace

SWA

as-is

0

100000

200000

300000

400000

500000

600000

700000

800000

0 10 20 30 40 50 60 70 80 90

T
h
re

a
d
 a

c
ti
v
a
ti
o
n
s

Latency in microseconds

trace

NRS

as-is

Fig. 11. Latency evaluation, using the SWA model (top) and the NRS model (bottom).

generated from standard automata description files, as can be produced with
open editors. The presented benchmark results show that the proposed tech-
nique overcomes standard tracing and user-space processing of kernel events to
be verified in terms of performance. Moreover, the proposed technique is more
efficient than merely tracking the events of interest just using tracing features
available in the kernel.

Regarding possible future work on the topic, the usage of parametric and
timed-automata would open the possibility of using more complex and complete
verification methods, not only addressing the logical and functional behavior,
but also dealing with the timing behavior. In terms of efficiency of the imple-
mentation, a hot-topic in the Linux kernel tracing community is the in-kernel
processing of data via eBPF, as established already with in-kernel packet pro-
cessing. This might be a worthwhile avenue to explore and compare with the
current method of using a dynamically loadable module, in which part of the
code has been auto-generated.



16 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

References

1. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated environ-
ment for verification, synthesis and simulation of discrete event systems. In: 2006
8th International Workshop on Discrete Event Systems. pp. 384–385 (July 2006).
https://doi.org/10.1109/WODES.2006.382401

2. Alglave, J., Maranget, L., McKenney, P.E., Parri, A., Stern, A.: Frightening Small
Children and Disconcerting Grown-ups: Concurrency in the Linux Kernel. In:
Proceedings of the Twenty-Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. pp. 405–418. ASPLOS
’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3173162.3177156,
http://doi.acm.org/10.1145/3173162.3177156

3. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Technical Report MSR-TR-2004-08
– SLAM and Static Driver Verifier: Technology Transfer of Formal Methods inside
Microsoft – Microsoft Research. https://www.microsoft.com/en-us/research/wp-
content/uploads/2016/02/tr-2004-08.pdf (January 2004)

4. Ball, T., Rajamani, S.K.: The SLAM Project: Debugging System Software via
Static Analysis. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 1–3. POPL ’02, ACM, New York,
NY, USA (2002). https://doi.org/10.1145/503272.503274

5. Basler, G., Donaldson, A., Kaiser, A., Kroening, D., Tautschnig, M., Wahl, T.:
Satabs: A bit-precise verifier for c programs. In: Flanagan, C., König, B. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems. pp. 552–555.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

6. Blackham, B., Shi, Y., Chattopadhyay, S., Roychoudhury, A., Heiser, G.: Timing
analysis of a protected operating system kernel. In: Proceedings of the 32nd IEEE
Real-Time Systems Symposium (RTSS11). pp. 339–348. Vienna, Austria (Novem-
ber 2011)

7. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer
Publishing Company, Incorporated, 2nd edn. (2010)

8. Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular verification of
software components in C. IEEE Transactions on Software Engineering 30(6),
388–402 (June 2004). https://doi.org/10.1109/TSE.2004.22

9. Chaki, S., Clarke, E., Ouaknine, J., Sharygina, N., Sinha, N.: Concurrent soft-
ware verification with states, events, and deadlocks. Formal Aspects of Com-
puting 17(4), 461–483 (Dec 2005). https://doi.org/10.1007/s00165-005-0071-z,
https://doi.org/10.1007/s00165-005-0071-z

10. Chishiro, H.: Rt-seed: Real-time middleware for semi-fixed-priority scheduling. In:
2016 IEEE 19th International Symposium on Real-Time Distributed Computing
(ISORC)

11. Condliffe, J.: U.s. military drones are going to start running on linux.
https://gizmodo.com/u-s-military-drones-are-going-to-start-running-
on-linu-1572853572 (Jul 2014)

12. Corbet, J.: The kernel lock validator. https://lwn.net/Articles/185666/ (May
2006)

13. Corbet, J.: Linux at NASDAQ OMX. https://lwn.net/Articles/411064/ (Oct
2010)

14. Corbet, J.: Jump label. https://lwn.net/Articles/412072/ (October 2010)
15. Cotroneo, D., Di Leo, D., Natella, R., Pietrantuono, R.: A case study on state-based

robustness testing of an operating system for the avionic domain. In: Flammini,



Efficient Formal Verification for the Linux Kernel 17

F., Bologna, S., Vittorini, V. (eds.) Computer Safety, Reliability, and Security. pp.
213–227. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

16. Cotroneo, D., Leo, D.D., Fucci, F., Natella, R.: Sabrine: State-based robustness
testing of operating systems. In: Proceedings of the 28th IEEE/ACM International
Conference on Automated Software Engineering. pp. 125–135. ASE’13, IEEE Press,
Piscataway, NJ, USA (2013). https://doi.org/10.1109/ASE.2013.6693073, https:
//doi.org/10.1109/ASE.2013.6693073

17. Cucinotta, T., Mancina, A., Anastasi, G.F., Lipari, G., Mangeruca, L., Chec-
cozzo, R., Rusina, F.: A real-time service-oriented architecture for industrial au-
tomation. IEEE Transactions on Industrial Informatics 5(3), 267–277 (Aug 2009).
https://doi.org/10.1109/TII.2009.2027013

18. Dronamraju, S.: Linux kernel documentation - uprobe-tracer: Uprobe-based
event tracing. https://www.kernel.org/doc/Documentation/trace/uprobetracer.
txt (May 2019)

19. Dubey, A., Karsai, G., Abdelwahed, S.: Compensating for timing jitter in comput-
ing systems with general-purpose operating systems. In: 2009 IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Com-
puting. pp. 55–62 (March 2009). https://doi.org/10.1109/ISORC.2009.28

20. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz – open
source graph drawing tools. In: International Symposium on Graph Drawing. pp.
483–484. Springer (2001)

21. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 58–70. POPL ’02, ACM, New York, NY, USA (2002).
https://doi.org/10.1145/503272.503279

22. Hiramatsu, M.: Linux tracing technologies: Kprobe-based event tracing. https:
//www.kernel.org/doc/html/latest/trace/kprobetrace.html (May 2019)

23. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal Verification of an OS Kernel. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. pp. 207–220. SOSP
’09, ACM, New York, NY, USA (2009). https://doi.org/10.1145/1629575.1629596

24. Kroening, D., Tautschnig, M.: Cbmc – c bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems. pp. 389–391. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

25. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (May 1994). https://doi.org/10.1145/177492.177726

26. Lei, B., Liu, Z., Morisset, C., Li, X.: State based robustness testing
for components. Electron. Notes Theor. Comput. Sci. 260, 173–188 (Jan
2010). https://doi.org/10.1016/j.entcs.2009.12.037, http://dx.doi.org/10.1016/
j.entcs.2009.12.037

27. Linux Kernel Documentation: Linux tracing technologies. https://www.kernel.
org/doc/html/latest/trace/index.html (May 2019)

28. Marinas, C.: Formal methods for kernel hackers.
URL: https://linuxplumbersconf.org/event/2/contributions/60/attachments/
18/42/FormalMethodsPlumbers2018.pdf (2018)

29. Matni, G., Dagenais, M.: Automata-based approach for kernel trace analysis. In:
2009 Canadian Conference on Electrical and Computer Engineering. pp. 970–973
(May 2009). https://doi.org/10.1109/CCECE.2009.5090273



18 de Oliveira, D. B. Cucinotta, T. and de Oliveira, R. S.

30. de Oliveira, D.B.: How can we catch problems that can break the preempt rt pre-
emption model? https://linuxplumbersconf.org/event/2/contributions/190/
(Nov 2018)

31. de Oliveira, D.B.: Mind the gap between real-time linux and real-time theory.
https://www.linuxplumbersconf.org/event/2/contributions/75/ (Nov 2018)

32. de Oliveira, D.B.: Companion page: Efficient formal verification for the linux ker-
nel. http://bristot.me/efficient-formal-verification-for-the-linux-kernel/
(May 2019)

33. de Oliveira, D.B., Cucinotta, T., de Oliveira, R.S.: Untangling the Intricacies of
Thread Synchronization in the PREEMPT RT Linux Kernel. In: Proceedings of
the IEEE 22nd International Symposium on Real-Time Distributed Computing
(ISORC). Valencia, Spain (May 2019)

34. de Oliveira, D.B., de Oliveira, R.S.: Timing analysis of the PRE-
EMPT RT Linux kernel. Softw., Pract. Exper. 46(6), 789–819 (2016).
https://doi.org/10.1002/spe.2333

35. Phoronix Test Suite: Open-source, automated benchmarking. www.phoronix-test-
suite.com (May 2019)

36. Poimboeuf, J.: Introducing kpatch: Dynamic kernel patching. https://www.redhat.
com/en/blog/introducing-kpatch-dynamic-kernel-patching (February 2014)

37. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech
House, Inc., Norwood, MA, USA (2001)

38. Rostedt, S.: Secrets of the Ftrace function tracer. Linux Weekly News (January
2010), available at: http://lwn.net/Articles/370423/ [last accessed 09 May 2017]

39. San Vicente Gutiérrez, C., Usategui San Juan, L., Zamalloa Ugarte, I., May-
oral Vilches, V.: Real-time linux communications: an evaluation of the linux com-
munication stack for real-time robotic applications (Aug 2018), https://arxiv.
org/pdf/1808.10821.pdf

40. Shahpasand, R., Sedaghat, Y., Paydar, S.: Improving the stateful robustness test-
ing of embedded real-time operating systems. In: 2016 6th International Confer-
ence on Computer and Knowledge Engineering (ICCKE). pp. 159–164 (Oct 2016).
https://doi.org/10.1109/ICCKE.2016.7802133

41. Spear, A., Levy, M., Desnoyers, M.: Using tracing to solve the mul-
ticore system debug problem. Computer 45(12), 60–64 (Dec 2012).
https://doi.org/10.1109/MC.2012.191

42. The Linux Foundation: Automotive grade linux. https://www.automotivelinux.
org/ (May 2019)

43. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model Checking Con-
current Linux Device Drivers. In: Proceedings of the Twenty-second IEEE/ACM
International Conference on Automated Software Engineering. pp. 501–504. ASE
’07, ACM, New York, NY, USA (2007). https://doi.org/10.1145/1321631.1321719


