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Abstract. Debugging Cyber-Physical System (CPS) models can be ex-
tremely complex. Indeed, only the detection of a failure is insufficient to
know how to correct a faulty model. Faults can propagate in time and
in space producing observable misbehaviours in locations completely dif-
ferent from the location of the fault. Understanding the reason of an
observed failure is typically a challenging and laborious task left to the
experience and domain knowledge of the designer.
In this paper, we propose CPSDebug, a novel approach that by combin-
ing testing, specification mining, and failure analysis, can automatically
explain failures in Simulink/Stateflow models. We evaluate CPSDebug
on two case studies, involving two use scenarios and several classes of
faults, demonstrating the potential value of our approach.

1 Introduction

Cyber-Physical Systems (CPS) combine computational and physical entities that
interact with sophisticated and unpredictable environments via sensors and ac-
tuators. To cost-efficiently study their behavior, engineers typically apply model-
based development methodologies, which combine modeling and simulation ac-
tivities with prototyping. The successful development of CPS is thus strongly
dependent on the quality and correctness of their models.

CPS models can be extremely complex: they may include hundreds of vari-
ables, signals, look-up tables and components, combining continuous and discrete
dynamics. Verification and testing activities are thus of critical importance to
early detect problems in the models [5,7,2,14,15], before they propagate to the
actual CPS. Discovering faults is however only part of the problem. Due to their
complexity, debugging the CPS models by identifying the causes of failures can
be as challenging as identifying the problems themselves [13].

CPS functionalities are often modelled using the MathWorksTM Simulink
toolset.A well-established approach to find bugs in Simulink/Stateflow models is
using falsification-based testing [2,20,23]. This approach is based on quantifying
(by monitoring [4]) how much a simulated trace of CPS behavior is close to vi-
olate a requirement expressed in a formal specification language, such as Signal
Temporal Logic (STL) [18]. This measure enables the systematic exploration of
the input space searching for the first input sequence responsible for a violation.
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However, this method does not provide any suitable information about which
component should be inspected to resolve the violation. Trace diagnostics [8]
identifies (small) segments of the observable model behavior that are sufficient to
imply the violation of the formula, thus providing a failure explanation at the in-
put/output model interface. However, this is a black-box technique that does not
attempt to open the model and explain the failure in terms of its internal signals
and components. Other approaches are based on fault-localization [5,7,15,16,14],
a statistical technique measuring the code coverage in the failed and successful
tests. This method provides a limited explanation that does not often help the
engineers to understand if the selected code is really faulty and how the fault
has propagated across the components resulting on actual failure.

In this paper, we advance the knowledge in failure analysis of CPS models by
presenting CPSDebug, a technique that originally combines testing, specification
mining, and failure analysis. CPSDebug first exercises the CPS model under
analysis by running the available test cases, while discriminating passing and
failing executions using requirements formalized as a set of STL formulas. While
running the test cases, CPSDebug records the internal behavior of the CPS
model, that is, it records the values of all the internal system variables at every
timestamp. It then uses the values collected from passing test cases to infer
properties about the variables and components involved in the computations.
These properties capture how the model behaves when the system runs correctly.

CPSDebug checks the mined properties against the traces collected for the
failed test cases to discover the internal variables, and corresponding compo-
nents, that are responsible for the violation of the requirements. Finally, failure
evidence is analyzed using trace diagnostics [8] and clustering [10] to produce
a time-ordered sequence of snapshots that show where the anomalous variables
values originated and how they propagated within the system.

CPSDebug thus overcomes the limitation of state of the art approaches that
do not guide engineers in their analysis, but only indicate the inputs or the
code locations that might be responsible for the failure. On the contrary, the
sequence of snapshots returned by CPSDebug provides a step by step illustration
of the failure with explicit indication of the faulty behaviors. Our evaluation
involved with three classes of faults, two actual CPS models, and feedback from
industry engineers confirmed that the output produced by CPSDebug can be
indeed valuable to ease the failure analysis and debugging process.

The rest of the paper is organized as follows. We provide background infor-
mation in Section 2 and we describe the case study in Section 3. In Section 4 we
present our approach for failure explanation while in Section 5 we provide the
empirical evaluation. We discuss the related work in Section 6 and we draw our
conclusions in Section 7.



2 Background

2.1 Signals and Signal Temporal Logic

We define S = {s1, . . . , sn} to be a set of signal variables. A signal or trace w is
a function T→ Rn, where T is the time domain in the form of [0, d] ⊂ R. We can
also see a multi-dimensional signal w as a vector of real-valued uni-dimensional
signals wi : T → R associated to variables si for i = 1, . . . , n. We assume that
every signal wi is piecewise-linear. Given two signals u : T→ Rl and v : T→ Rm,
we define their parallel composition u‖v : T→ Rl+m in the expected way. Given
a signal w : T→ Rn defined over the set of variables S and a subset of variables
R ⊆ S, we denote by wR the projection of w to R, where wR = ‖si∈Rwi.

Let Θ be a set of terms of the form f(R) where R ⊆ S are subsets of variables
and f : R|R| → R are interpreted functions. The syntax of STL is defined by the
grammar:

ϕ ::= > | f(R) > 0 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2 ,

where f(R) are terms in Θ and I are real intervals with bounds in Q≥0∪{∞}. As
customary we use the shorthands ♦I ϕ ≡ >UI ϕ for eventually, �I ϕ ≡ ¬♦I ¬ϕ
for always, ↑ ϕ ≡ ϕ ∧ >S ¬ϕ for rising edge and ↑ ϕ ≡ ¬ϕ ∧ >S ϕ for falling
edge1. We interpret STL with its classical semantics defined in [17].

2.2 Daikon

Daikon is a template-based property inference technique that, starting from a
set of variables and a set of observations, can infer a set of properties that are
likely to hold for the input variables. More formally, given a set of variables V =
V1, . . . , Vn defined in the domains D1, . . . Dn, an observation for these variables
is a tuple v = (v1, . . . , vn), with vi ∈ Di.

Given a set of variables V and multiple observations v1 . . . vm for these same
variables, Daikon is a function D(V, v1 . . . vm) that returns a set of properties
{p1, . . . pk}, such that vi |= pj∀i, j, that is, all the observations satisfy the inferred
properties. For example, considering two variables x and y and considering the
observations (1, 3), (2, 2), (4, 0) for the tuple (x, y), Daikon can infer properties
such as x > 0, x+ y = 4, and y ≥ 0.

The inference of the properties is driven by a set of template operators that
Daikon instantiates over the input variables and checks against the input data.
Since template-based inference can generate redundant and implied properties,
Daikon automatically detects them and reports the relevant properties only.
Finally, to guarantee that the inferred properties are relevant, Daikon computes
the probability that the inferred property holds by chance for all the properties.
Only if the property is statistically significant with a probability higher than
0.99 the property is assumed to be reliable and it is reported in the output,
otherwise it is suppressed.

1 We omit the timing modality I when I = [0,∞).



In our approach, we use Daikon to automatically generate fine-grained prop-
erties that capture the behavior of the individual components and individual
signals in the model under analysis. These properties can be used to precisely
detect misbehaviours and their propagation.

3 Case Study

We now introduce a case study that we use as a running example to illustrate
our approach step by step. The case study is an aircraft elevator control system,
introduced in [9], to illustrate model-based development of a fault detection, iso-
lation and recovery (FDIR) application for a redundant actuator control system.
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Fig. 1. Aircraft elevator control system [9].

Figure 1 shows the architecture of the aircraft elevator control system with
redundancy, with one elevator on the left and one on the right side. Each elevator
is equipped with two hydraulic actuators. Both actuators can position the eleva-
tor, but only one shall be active at any point in time. There are three different
hydraulic circuits that drive the four actuators. The left (LIO) and right (RIO)
outer actuators are controlled by a Primary Flight Control Unit (PFCU) with a
sophisticated input/output control law. If a failure happens, a less sophisticated
Direct-Link (DL) control law with reduced functionality takes over to handle the
left (LDL) and right (RDL) inner actuators. The system uses state machines to
coordinate the redundancy and assure its continual fail-operational activity.

This model has one input variable, the input pilot command, and two output
variables, the position of the left and right actuators, as measured by the sensors.
This is a complex model that could be extremely hard to analyze in case of



failure. In fact, the model has 426 signals, from which 361 are internal variables
that are instrumented (279 real-valued, 62 Boolean and 20 enumerated - state
machine - variables) and any of them, or even a combination of them, might be
responsible for an observed failure.

The model comes with a failure injection mechanism, which allows to dy-
namically insert failures that represent hardware/ageing problems into different
components of the system during its simulation. This mechanism allows inser-
tion of (1) low pressure failures for each of the three hydraulic systems, and (2)
failures of sensor position components in each of the four actuators. Due to the
use of the redundancy in the design of the control system, a single failure is not
sufficient to alter its intended behavior. In some cases even two failures are not
sufficient to produce faulty behaviors. For instance, the control system is able
to correctly function when both a left and a right sensor position components
simultaneously fail. This challenges the understanding of failures because there
are multiple causes that must be identified to explain a single failure.

To present our approach we consider the analysis of a system failure caused
by the activation of two failures: the sensor measuring the left outer actuator
position failing at time 2 and the sensor measuring the left inner actuator position
failing at time 4. To collect evidence of how the system behaves, we executed the
Simulink model with 150 test cases with different pilot commands and collected
the input-output behavior both with and without the failures.

When the system behaves correctly, the intended position of the aircraft
required by the pilot must be achieved within a predetermined time limit and
with a certain accuracy. This can be captured with several requirements. One
of them says that whenever pilot command cmd goes above a threshold m, the
actuator position measured by the sensor must stabilize (become at most n units
away from the command signal) within T + t time units. This requirement is
formalized in STL with the following specification:

ϕ ≡ �(↑ (cmd ≥ m)→ ♦[0,T ]�[0,t](|cmd− pos| ≤ n)).

Figures 2 and 3 shows the correct and faulty behavior of the system. The control
system clearly stops following the reference signal after 4 seconds. The failure
observed on the input/output interface of the model does not give any indication
within the model on the reason leading to the property violation. In the next
section, we present how our failure explanation technique can address this case
producing a valuable output to engineers.

4 Failure Explanation

In this section we explain how CPSDebug works with help of the case study
introduced in Section 3. Figure 4 illustrates the main steps of the workflow.
Briefly, the workflow starts from a target CPS model and a test suite with some
passing and failing test cases, and produces a failure explanation for each failing
test case. The workflow consists of three sequential phases:



Fig. 2. Expected behavior of the air-
craft control system.

Fig. 3. Failure of the aircraft control
system.

(i) Testing - simulating the instrumented CPS model with available test cases
to collect information about its behavior, both for passing and failing exe-
cutions,

(ii) Mining - mining properties from the traces produced by the passing test
cases; intuitively these properties capture the expected behavior of the model,

(iii) Explaining - using the mined properties to analyze the traces produced by
failures and generate failure explanations, which include information about
the root events responsible for the failure and their propagation.

4.1 Testing

CPSDebug starts by instrumenting the CPS model. This is an important pre-
processing step that is done before testing the model and that allows to log the
internal signals in the model. The instrumentation is inductively defined on the
hierarchical structure of the Simulink/Stateflow model and is done in a bottom-
up fashion. For every signal variable having the real, Boolean or enumeration
type, CPSDebug assigns a unique name to it and makes the simulation engine to
log its values. CPSDebug also instruments the look-up tables and state machines
in the model. It associates a dedicated variable to each look-up table. The vari-
able is used to produce a simulation trace that records the unique cell index that
is exercised by the input at every point in time. Similarly, CPSDebug associates
two dedicated variables per state-machine, one recording the transitions taken
and one recording the locations visited during the simulation. We denote by V
the set of all instrumented model variables.

The first step of the testing phase, namely Model Simulation, runs the avail-
able test cases {wk

I |1 ≤ k ≤ n} against the instrumented version of the simula-
tion model under analysis. The number of available test cases may vary case by
case, for instance in our case study the test suite included n = 150 tests.

The result of the model simulation consists of one simulation trace wk for
each test case wk

I , 1 ≤ k ≤ n. The trace wk stores the sequence of (simulation
time, value) pairs wk

v for every instrumented variable v ∈ V collected during
simulation.
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Fig. 4. Overview of the failure explanation procedure.

To determine the nature of each trace, we transform the informal model
specification, which is typically provided in form of free text, into an STL formula
ϕ that can be automatically evaluated by a monitor. In fact, CPSDebug checks
every trace wk against the STL formula ϕ, 1 ≤ k ≤ n and labels the trace with
a pass verdict if wk satisfies ϕ, or a fail verdict otherwise. In our case study, we
had 149 traces labeled as passing and one failing trace.

4.2 Mining

In the mining phase, CPSDebug selects the traces labeled with a pass verdict
and exploits them for property mining.

Prior to the property inference, CPSDebug performs several intermediate
steps that facilitate the mining task. First, CPSDebug reduces the set of variables
V to its subset V̂ of significant variables by using cross-correlation. Intuitively,
the presence of two highly correlated variables implies that one variable adds



little information to the other one, and thus the analysis may actually focus
on one variable only. The approach cross-correlates all passing simulation traces
and whenever the cross-correlation between the simulation traces associated with
variables v1 and v2 in V is higher than 0.99, CPSDebug removes one of the two
variables (and its associated traces) from further analysis. In our case study,
|V | = 361 and |V̂ | = 121, resulting in a reduction of 240 variables.

In the next step, CPSDebug associates each variable v ∈ V̂ to (1) its domain
D and (2) its parent block B. We denote by VD,B ⊆ V̂ the set {v1, . . . , vm}
of variables with the domain D associated to block B. CPSDebug collects all
observations v1 . . . vn from all samples in all traces associated with variables in
VD,B and uses the Daikon function D(VD,B , v1 . . . vn) to infer a set of properties
{p1, . . . , pk} related to the block B and the domain D. The property mining per
model block and model domain allows to avoid (1) combinatorial explosion of
learned properties and (2) learning properties between incompatible domains.

Finally, CPSDebug collects all the learned properties from all the blocks and
the domains, and translates them to an STL specification, where each Daikon
property p is transformed to an STL assertion of type � p.

In our case study, Daikon returned 96 behavioral properties involving 121
variables, hence CPSDebug generated an STL property ψ with 96 temporal
assertions, i.e., ψ = [ψ1 ψ2 ... ψ96]. Table 1 shows two examples of behavioral
properties from our case study inferred by Daikon and translated to STL. The
first property states that the Mode signal is always in the state 2 (Passive) or 3
(Standby), while the second property states that the left inner position failure
is encoded the same than the left outer position failure.

ϕ1 ≡ �(mode ∈ {2, 3})
ϕ2 ≡ �(LI pos fail == LO pos fail)

Table 1. Examples of properties learned by Daikon. Variables mode, LI pos fail
and LO pos fail denote internal signals Mode, Left Inner Position Failure and
Left Outer Position Failure from the aircraft position control Simulink model.

4.3 Explaining

This phase analyzes a trace w collected from a failing execution and produces a
failure explanation. The Monitoring step analyzes the trace against the mined
properties and returns the signals that violate the properties and the time inter-
vals in which the properties are violated. CPSDebug subsequently labels with F
(fail) the internal signals involved in the violated properties and with P (pass)
the remaining signals from the trace. To each fail-annotated signal, CPSDebug
also assigns the violation time intervals of the corresponding violated properties
returned by the monitoring tool.

In our case study, the analysis of the left inner and the left outer sensor failure
resulted in the violation of 17 mined properties involving 19 internal signals.

For each internal signal there can be several fail-annotated signal instances,
each one with a different violation time interval. CPSDebug selects the instance



that occurs first in time, ignoring all other instances. This is because, to reach
the root cause of a failure, CPSDebug has to focus on the events that cause
observable misbehaviours first.

Table 2 summarizes the set of property-violating signals, the block they be-
long to, and the instant of time the signal has first violated a property for our
case study. We can observe that the 17 signals participating in the violation of at
least one mined property belong to only 5 different Simulink blocks. In addition,
we can see that all the violations naturally cluster around two time instants – 2
seconds and 4 seconds. This suggests that CPSDebug can effectively isolate in
space and time a limited number of events likely responsible for the failure.

Fig. 5. Number of clusters versus the error.

The Clustering & Mapping
step then (i) clusters the result-
ing fail-annotated signal instances
by their violation time intervals
and (ii) maps them to the corre-
sponding model blocks, i.e., to the
model blocks that have some of
the fail-annotated signal instances
as internal signals.

CPSDebug automatically de-
rives the clusters by applying
the elbow method with the k-
means clustering algorithm. CPS-
Debug groups mined properties
(and their associated signals) ac-

cording to the first time they are violated. The elbow method implements a
simple heuristic. Given a fixed error threshold, it starts by computing k-means
clustering for k = 1. The method increases the number of clusters as long as the
sum of squared errors of the current clusters with respect to observed data is
larger than the error threshold. The suspicious signals from the same time clus-
ters are then inductively associated to the Simulink blocks that contain them as
well as to all their block ancestors in the model hierarchy.

Figure 5 shows the diagram returned by the elbow method in our case study,
confirming that the violations are best clustered into 2 groups. The concrete
clusters (not shown here) returned by the elbow method precisely match the
two groups we can intuitively entail from Table 2.

Finally, CPSDebug generates failure explanations that capture how the fault
originated and propagated in space and time. In particular, the failure expla-
nation is a sequence of snapshots of the system, one for each cluster of new
property-violations. Each snapshot reports (i) the mean time as approximative
time when the violations represented in the cluster occurred, (ii) the model blocks
that originate the violations reported in the cluster, (iii) the properties violated
by the cluster, representing the reason why the cluster of anomalies exist, and
(iv) the internal signals that participate to the violations of the properties as-
sociated with the cluster. Intuitively a snapshot represents a new relevant state



Index Signal Name Block τ(s)
s252 LI pos fail:1→Switch:2 Meas. Left In. Act. Pos. 1.99
s253 Outlier/failure:1→Switch:1 Meas. Left In. Act. Pos. 1.99
s254 Measured Position3:1→Mux:3 Meas. Left In. Act. Pos. 1.99
s255 Measured Position2:1→Mux:2 Meas. Left In. Act. Pos. 1.99
s256 Measured Position1:1→Mux:1 Meas. Left In. Act. Pos. 1.99
s55 BusSelector:2→Mux1:2 Controller 2.03
s328 In2:1→Mux1:2 L pos failures 2.03
s329 In1:1→Mux1:1 L pos failures 2.03
s332 Right Outer Pos. Mon.:2→R pos failures:1 Actuator Positions 2.03
s333 Right Inner Pos. Mon.:2→R pos failures:2 Actuator Positions 2.03
s334 Left Outer Pos. Mon.:2→L pos failures:1 Actuator Positions 2.03
s335 Right Inner Pos. Mon.:3→Goto3:1 Actuator Positions 2.03
s338 Left Outer Pos. Mon.:3→Goto:1 Actuator Positions 2.03
s341 Left Inner Pos. Mon.:2→L pos failures:2 Actuator Positions 2.03
s272 LO pos fail:1→Switch:2 Meas. Left Out. Act. Pos. 3.99
s273 Outlier/failure:1→Switch:1 Meas. Left Out. Act. Pos. 3.99
s275 Measured Position1:1→Mux:1 Meas. Left Out. Act. Pos. 3.99
s276 Measured Position2:1→Mux:2 Meas. Left Out. Act. Pos. 3.99
s277 Measured Position3:1→Mux:3 Meas. Left Out. Act. Pos. 4.00

Table 2. Internal signals that violate at least one learned invariant and Simulink
blocks to which they belong. The column τ(s) denotes the first time that each
signal participates in an invariant violation.

of the system, and the sequence shows how the execution progresses from the
violation of set of properties to the final violation of the specification. The engi-
neer is supposed to exploit the sequence of snapshots to understand the failure,
and the first snapshot to localize the root cause of the problem. Figure 6 shows
the first snapshot of the failure explanation that CPSDebug generated for the
case study. We can see that the explanation of the failure at time 2 involves the
Sensors block, and propagates to Signal conditioning and failures and Controller
blocks. By opening the Sensors block, we can immediately see that something
is wrong with the sensor that measures the left inner position of the actuator.
Going one level below, we can that the signal s252 coming out of the LI pos fail
is suspicious – indeed the fault was injected exactly in that block at time 2. It is
not a surprise that the malfunctioning of the sensor measuring the left inner po-
sition of the actuator affects the Signal conditioning and failures block (the block
that detects if there is a sensor that fails) and the Controller block. However, at
time 2 the failure in one sensor does not affect yet the correctness of the overall
system, hence the STL specification is not yet violated. The second snapshot
(not shown here) generated by CPSDebug reveals that the sensor measuring the
left outer position of the actuator fails at time 4. The redundancy mechanism is
not able to cope with multiple sensor faults, hence anomalies become manifested
in the observable behavior. From this sequence of snapshots, the engineer can
conclude that the problem is in the failure of the two sensors - one measuring
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Fig. 6. Failure explanation as a sequence of snapshots - part of the first snapshot.

the left inner and the other measuring the left outer position of the actuator
that stop functioning at times 2 and 4, respectively.

5 Empirical Evaluation

We empirically evaluated our approach against three classes of faults: multiple
hardware faults in fault-tolerant systems, which is the case of multiple compo-
nents that incrementally fail in a system designed to tolerate multiple malfunc-
tioning units; incorrect lookup tables, which is the case of lookup tables con-
taining incorrect values; and erroneous guard conditions, which is the case of
imprecise conditions in the transitions that determine the state-based behavior
of the system. Note that these classes of faults are highly heterogenous. In fact,
their analysis requires a technique flexible enough to deal with multiple failure
causes, but also with the internal structure of complex data structures and finally
with state-based models.

We consider two different systems to introduce faults belonging to these three
classes. We use the fault-tolerant aircraft elevator control system [9] presented
in Section 3 to study the capability of our approach to identify failures caused
by multiple overlapping faults. In particular, we study cases obtained by (1)
injecting a low pressure fault into two out of three hydraulic components (fault
h1h2), and (2) inserting a fault in the left inner and left outer sensor position
components (fault lilo).



We use the automatic transmission control system [11] to study the other
classes of faults. Automatic transmission control system is composed of 51 vari-
ables, includes 4 lookup tables of size between 4 and 110 and two finite state
machines running in parallel with 3 and 4 states, respectively, as well as 6 tran-
sitions each. We used the 7 STL specifications defined in [11] to reveal failures
in this system. We studied cases obtained obtained by (1) modifying a transi-
tion guard in the StateFlow chart (fault guard), and (2) altering an entry in the
look-up table Engine (fault eng lt).

To study these faults, we considered two use scenarios. For the aicraft elevator
control system, we executed 100 test cases in which we systematically changed
the amplitude and the frequency of the pilot command steps. These tests were
executed on a non-faulty model. We then executed an additional test on the
model to which we dynamically injected h1h2 and lilo faults. For the automatic
transmission control system, we executed 100 tests in which we systematically
changed the step input of the throttle by varying the amplitude, the offset and
the absolute time of the step. All the tests were executed on a faulty model. In
both cases, we divided the failed tests from the passing tests. We used the data
collected for the passing tests to infer models and the data obtained from the
failing tests to generate failure explanations.

We evaluated the output produced by our approach considering three main
aspects: Scope Reduction, Cause Detection, Quality of the Analysis and Com-
putation Time. Scope Reduction measures how well our approach narrows down
the number of elements to be inspected to a small number of anomalous signals
that require the attention of the engineer, in comparison to the set of variables
involved in the failed execution. Cause detection indicates if the first cluster
of anomalous values reported by our approach includes any property violation
caused by the signal that is directly affected by the fault. Intuitively, it would
be highly desirable that the first cluster of anomalies reported by our technique
includes violations caused by the root cause of the failure. For instance, if a fault
directly affects the values of the signal Right Inner Pos., we expect these val-
ues to cause a violation of a property about this same signal. We qualitatively
discuss the set of violated properties reported for the various faults and explain
why they offer a comprehensive view about the problem that caused the failure.
Finally, we analyze the computation time of CPSDebug and its components and
compare it to the simulation time of the model.

To further confirm the effectiveness of our approach, we contacted 3 engineers
from (1) an automotive OEM with over 300.000 employees (E1), (2) a major
modeling and simulation tool vendor with more than 3.000 employees (E2) (3)
an SME that develops tools for verification and testing of CPS models (E3).
We asked them to evaluate the outcomes of our tool for a selection of faults (it
was infeasible to ask them to inspect all the results we collected). In particular,
we sent them the faulty program, an explanation of both the program and the
fault, and the output generated by our tool2, and we asked them to answer the
following questions:

2 The report submitted to the engineers can be found in the Appendix.



Q1 How helpful is the output to understand the cause(s) of the failure? (Very
useful/Somewhat useful/Useless/Misleading)

Q2 Would you consider experimenting our tool with your projects? (Yes/May
be/No)

Q3 Considering the sets of violations that have been reported, is there anything
that should be removed from the output? (open question)

Q4 Is there anything more you would like to see in the output produced by our
tool? (open question)

In the following, we report the results that we obtained for each of the ana-
lyzed aspects.

5.1 Scope Reduction, Cause Detection and Qualitative Analysis

Table 3 shows the degree of reduction achieved for the analyzed faults. Column
system indicates the faulty application used in the evaluation. Column # vars
indicates the size of the model in terms of the number of its variables. Column
fault indicates the specific fault analyzed. Column # ψ gives the number of
learned invariants. Column # suspicious vars indicates the number of variables
involved in the violated properties. Column fault detected indicates whether the
explanation included a variable associated to the output of the block in which
the fault was injected.

system # vars fault # ψ # suspicious vars fault detected

aircraft 426
lilo

96
17 X

h1h2 44 X

transmission 51
guard 41 1
eng lt 39 4 X

Table 3. Scope reduction and cause detection.

We can see from Table 3 that CPSDebug successfully detected the exact
origin of the fault in 3 out of 4 cases. In the case of the aircraft elevator control
system, CPSDebug clearly identifies the problem with the respective sensors
(fault lilo) and hydraulic components (fault h1h2). The scope reduction amounts
to 96% and 90% of the model signals for the lilo and the h1h2 faults, respectively,
allowing the engineer to focus on a small subset of the suspicious signals.

In the case of the automatic transmission control, CPSDebug associates the
misbehavior of the model to the Engine look-up table and points to its right
entry. The scope reduction in this case is 90%. On the other hand, CPSDebug
misses the exact origin of the guard fault and fails to point to the altered tran-
sition. This happens because the faulty guard alters only the timing but not
the qualitative behavior of the state machine. Since Daikon is able to learn only
invariant properties, CPSDebug is not able to discriminate between passing and
failing tests in that case. Nevertheless, CPSDebug does associate the entire state
machine to the anomalous behavior, since the observable signal that violates the
STL specification is generated by the state machine.



5.2 Computation Time

Table 5.2 summarizes computation time of CPSDebug applied to the two case
studies. We can make two main conclusions from these experimental results: (1)
the overall computation time of CPSDebug-specific activities is comparable to
the overall simulation time and (2) property mining dominates by far the com-
putation of the explanation. We finally report in the last row the translation of
the Simulink simulation traces recorded in the Common Separated Values (csv)
format to the specific input format that is used by Daikon. In our prototype im-
plementation of CPSDebug, we use an inefficient format translation that results
in excessive times. We believe that investing an additional effort can result in
improving the translation time by several orders of magnitude.

aircraft transmission
# tests 151 100
# samples per test 1001 751

time (s)
Simulation 654 35
Instrumentation 1 0.7
Mining 501 52
Monitoring properties 0.7 0.6
Analysis 1.5 1.6
File format translation 2063 150

Table 4. CPSDebug computation time.

5.3 Evaluation by Professional Engineers

We analyze in this section the feedback provided by engineers E1 − 3 to the
questions Q1− 4.

Q1 E1 found CPSDebug potentially very useful. E2 and E3 found CPSDebug
somewhat useful.

Q2 All engineers said that they would experiment with CPSDebug.
Q3 None of the engineers found anything that should be removed from the tool

outcome.
Q4 E2 and E3 wished to see better visual highlighting of suspicious signals. E2

wished to see the actual trace for each suspicious signal. E2 and E3 could
not clearly understand the cause-effect relation from the tool outcome and
wished a clearer presentation of cause-effects.

Apart from the direct responses to Q1− 4, we received other useful informa-
tion. All engineers shared appreciation for the visual presentation of outcomes,
and especially the marking of suspicious Simulink blocks in red. E1 highlighted
that real production models typically do not only contain Simulink and State-
Flow blocks, but also SimEvent and SimScape blocks, Bus Objects, Model Ref-
erence, Variant Subsystems, etc., thus limiting the practical value of the current
tool implementation.



Overall, engineers confirmed that CPSDebug can be a useful technology.
At the same time, they offered valuable feedback to improve it, especially the
presentation of the output produced by the tool.

6 Related Work

The analysis of software failures has been addressed with two main classes of
related approaches: fault localization and failure explanation techniques.

Fault localization techniques aim at identifying the location of the faults
that caused one or more observed failures (an extensive survey can be found
in [24]). A popular example is spectrum-based fault-localization (SFL) [1], an
efficient statistical technique that, by measuring the code coverage in the failed
and successful tests, can rank the program components (e.g., the statements)
that are most likely responsible for a fault.

SFL has been recently employed to localize faults in Simulink/Stateflow CPS
models [5,7,15,16,14], showing similar accuracy as in the application to software
systems [16]. The explanatory power of this approach is however limited, because
it generates neither information that can help the engineers understanding if a
selected code location is really faulty nor information about how a fault prop-
agated across components resulting on an actual failure. Furthermore, SFL is
agnostic to the nature of the oracle requiring to know only whether the system
passes or not a specific test case. This prevents the exploitation of any additional
information concerning why and when the oracle decides that the test is not con-
formed with respect to the desired behavior. In Bartocci et al. [5] the authors try
to overcome this limitation by assuming that the oracle is a monitor generated
from an STL specification. This approach allows the use of the trace diagnostic
method proposed in Ferrère et al. [8] to obtain more information (e.g., the time
interval when the cause of violation first occurs) about the failed tests improv-
ing the fault-localization. Although this additional knowledge can improve the
confidence on the localization, still little is known about the root cause of the
problem and its impact on the runtime behavior of the CPS model.

CPSDebug complements and improves SFL techniques generating informa-
tion that helps engineers identifying the cause of failures, understanding how
faults resulted in chains of anomalous events that eventually led to the observed
failures, and producing a corpus of information well-suited to support engineers
in their debugging tasks, as confirmed by the subjects who responded to our
questionnaire.

Failure explanation techniques analyze software failures in the attempt of
producing information about failures and their causes. For instance, a few ap-
proaches combined mining and dynamic analysis in the context of component-
based and object-oriented applications to reveal [22] and explain failures [6,19,3].
These approaches are not however straightforwardly applicable to CPS models,
since they exploit the discrete nature of component-based and object-oriented
applications that is radically different from the data-flow oriented nature of CPS



models, which include mixed-analog signals, hybrid (continuous and discrete)
components, and a complex dynamics.

CPSDebug originally addresses failure explanation in the context of CPS
models. The closest work to CPSDebug is probably Hynger [12,21], which ex-
ploits invariant generation to detect specification mismatches, that is, a mis-
match between an actual and an inferred specification, in Simulink models.
Specification mismatches can indicate the presence of problems in the mod-
els. Differently from Hynger, CPSDebug does not compare specifications but
exploits inferred properties to identify anomalous behaviors in observed failures.
Moreover, CPSDebug exploits correlation and clustering techniques to maintain
the output compact, and to generate a sequence of snapshots that helps com-
prehensively defining the story of the failure. Our results show that this output
can be the basis for cost-effective debugging.

7 Future Work and Conclusions

We have presented CPSDebug, an automatic approach for explaining failures in
Simulink models. Our approach combines testing, specification mining and fail-
ure analysis to provide a concise explanation consisting of time-ordered sequence
of model snapshots that show the variable exhibiting anomalous behavior and
their propagation in the model. We evaluated the effectiveness CPSDebug on
two models, involving two use scenarios and several classes of faults.

We believe that this paper opens several research directions. In this work, we
only considered mining of invariant specifications. However, we have observed
that invariant properties are not sufficient to explain timing issues, hence we plan
to experiment in future work with mining of real-time temporal specifications.
In particular, we will study the trade-off between the finer characterization of
the model that temporal specification mining can provide and its computational
cost. We also plan to study systematic ways to explain failures in presence of het-
erogeneous components. In this paper, we consider the setting in which we have
multiple passing tests, but we only use a single fail test to explain the failure. We
will study whether the presence of multiple failing tests can be used to improve
the explanations. In this work, we have performed manual fault injection and
our focus was on studying the effectiveness of CPSDebug on providing mean-
ingful failure explanations for different use scenarios and classes of faults. We
plan in the future to develop automatic fault injection and perform systematic
experiments for evaluating how often CPSDebug is able to find the root cause.

References

1. R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-
based fault localization. In Testing: Academic and Industrial Conference Practice
and Research Techniques, pages 89–98. IEEE, 2007.

2. Yashwanth Annapureddy, Che Liu, Georgios E. Fainekos, and Sriram Sankara-
narayanan. S-TaLiRo: A tool for temporal logic falsification for hybrid systems.



In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, volume 6605 of LNCS, pages 254–257. Springer, 2011.

3. Anton Babenko, Leonardo Mariani, and Fabrizio Pastore. AVA: Automated inter-
pretation of dynamically detected anomalies. In proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 2009.

4. Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios E. Fainekos,
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