
This is a repository copy of Evolution of Formal Model-based Assurance Cases for 

Autonomous Robots.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148938/

Version: Accepted Version

Book Section:

Gleirscher, Mario orcid.org/0000-0002-9445-6863, Foster, Simon David orcid.org/0000-
0002-9889-9514 and Nemouchi, Yakoub (2019) Evolution of Formal Model-based 
Assurance Cases for Autonomous Robots. In: Software Engineering and Formal Methods. 
Lecture Notes in Computer Science . Springer , NOR , pp. 87-104. 

https://doi.org/10.1007/978-3-030-30446-1_5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Other licence. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Evolution of Formal Model-based

Assurance Cases for Autonomous Robots

Mario Gleirscher,
∗ [0000−0002−9445−6863] Simon Foster,[0000−0002−9889−9514] and

Yakoub Nemouchi

Department of Computer Science, University of York, United Kingdom
firstname.lastname@york.ac.uk, http://www.cs.york.ac.uk

Abstract. An assurance case should carry sufficient evidence for a com-
pelling argument that a system fulfils its guarantees under specific en-
vironmental assumptions. Assurance cases are often subject of mainte-
nance, evolution, and reuse. In this paper, we demonstrate how evidence
of an assurance case can be formalised, and how an assurance case can be
refined using this formalisation to increase argument confidence and to
react to changing operational needs. Moreover, we propose two argument
patterns for construction and extension and we implement these patterns
using the generic proof assistant Isabelle. We illustrate our approach for
an autonomous mobile ground robot. Finally, we relate our approach to
international standards (e.g. DO-178C, ISO 26262) recommending the
delivery and maintenance of assurance cases.

Keywords: Assurance case · formal verification · refinement · autonomous
robot · integrated formal methods · model-based engineering.

1 Introduction

Autonomous robots in complex multi-participant environments can engage in
risky events (e.g. because of faults or partial state knowledge) possibly lead-
ing to accidents. To reduce the opportunities for all participants to engage in
such events or their consequences, one wishes to observe only specific machine
behaviours. Assurance Cases (ACs) [20] are structured arguments, supported
by evidence, intended to demonstrate that such machines fulfil their assurance
guarantees [22], subject to certain assumptions about their environment [18,32].
Among the wide variety of assurance objectives, we will focus on safety in the
rest of this paper, with a careful eye on liveness.

Compelling ACs require models to describe the behaviour of the real-world
artefacts subjected to the assurance claims, and to provide evidence for these,
contingent on validation. In particular, formal methods (FMs) can be applied to
the rigorous analysis of a system’s state space, and to the computer-assisted ver-
ification of requirements. However, verification and validation can, in reality, fail
to deliver safe systems, for example, due to an inadequate model that abstracts

∗

Supported by the German Research Foundation (DFG grant no. 381212925).



2 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

from essential detail. Such shortcomings can be difficult to identify in advance,
and consequently, models and assurance cases have to evolve [2,7]. Particularly,
one might want to modify or extend an existing AC, for example, weaken its
assumptions, make its model more precise, or strengthen its guarantees. Several
such steps might be required to arrive at an acceptable confidence level.

In their study of assurance practice, Nair et al. [27] report that evidence
completeness and change impact is managed mostly manually using traceability
matrices. These authors observe a lack of tool support for change management
and that evidence structuring is done mostly textually rather than with model-
based ACs. Importantly, their study raises the question of how evolution and
change impact is identified, assessed, and managed at the level of ACs?

Contributions. We consider formal model-based assurance cases (FMACs) to
construct assurance arguments in a rigorous and step-wise manner. We define
an FMAC as an AC module that conveys formal verification results with respect
to a model and certain environmental assumptions. Our motivation is the assur-
ance of physical systems such as autonomous mobile robots, and so we chose to
support models and requirements in differential dynamic logic (dL) [33].

We underpin our approach by AC patterns for the incremental construction
of increasingly richer models, guarantees, and proofs that these models fulfil
the guarantees. We provide two patterns, one for AC construction and one for
AC extension, particularly, for increasing confidence in an AC by making the
formalisation successively more precise. Both patterns provide guidance to how
successive engineering steps can preserve assurance results from previous steps.
We implement these patterns in Isabelle/SACM [28] and show how they can be
instantiated and how assurance claims can be linked to verification results.

We complement recent approaches to robot verification (e.g. [26]) by a data
refinement [40] for dL that is lifted to the level of AC construction and evolution.
For a mobile ground robot, we illustrate two refinement steps from a maximally
abstract model to one describing safe path planning and emergency braking. We
indicate how one can derive safety guarantees from hazard analysis yet avoiding
too conservative solutions by adding liveness guarantees. We demonstrate our
proofs in Isabelle/HOL [29] by formalising the robot model in an implementation
of dL in Isabelle/UTP [10,11].

Related Work. Bate and Kelly [2] discuss the notion of AC modules, interfaces,
and their composition into an AC architecture via claim matching and assump-
tion/guarantee (A/G)-style reasoning (e.g. weakening of assumptions). Following
their discussion of AC change with a focus on traceability and change impact
analysis, we focus on AC extension for the verified evolution of AC modules.

Prokhorova et al. [34] propose the construction of formal model-based safety
cases based on a classification of safety requirements using Event-B. The authors
discuss argument patterns for all classes of requirements. The patterns integrate
proof and model-checking evidence1 and cover refinement steps. Complementing

1 From the Rodin tool and from LTL and timed CTL checkers.



Formal Model-based Assurance Cases 3

their Event-B application, our approach supports hybrid system modelling. We
cover their requirements classification, except for temporal and timing properties
requiring binary modalities. We focus on step safety and liveness, and path
safety. To support argument maintenance and scalability, we separate system
modelling and proof derivation from argumentation, keeping model and proof
details separate from the argument structure. This separation is facilitated in our
Isabelle-based implementation by using dL for system modelling and verification
and the FMAC concept for assurance argumentation.

Oliveira et al. [30] propose hierarchical modular safety cases to reuse common
product-line features in general safety arguments and to decompose and refine
the general argument into feature-specific argument modules. While the authors
cover hazard analysis (viz. model-based failure analysis) and product-line mod-
elling, our notion of AC extension based on data refinement can be useful for
the verified derivation of a product-specific AC from the product-line AC.

For adaptive systems, Calinescu et al. [4] elaborate on the idea of through-life
argument maintenance [7, 31], focusing on the maintenance of a parametric AC
whose parameters are subject of optimisation during the operation of a system.
We complement their approach by a notion of data refinement to accommodate
fundamental structural changes frequently desired for argument evolution.

Overview. The remainder of this article is structured as follows: We introduce
the concepts in Section 2, explain our contributions in Section 3, evaluate our
approach with a robot example in Section 4, discuss implications on formal robot
verification and certification practice in Section 5, and conclude in Section 6.

2 Background and Formal Preliminaries

We introduce assurance cases from a practical viewpoint and provide the pre-
liminaries on system specification and verification.

2.1 Assurance Cases

An AC is a compelling2 argument, supported by evidence, that a system in a
specific context fulfils (or refuses to fulfil) guarantees of interest, for example,
freedom of hazards (safety), sustained correct service (reliability), freedom of
unauthorised access (security), or productivity (performance). Intuitively, an
AC is a hierarchical structure, with claims that are broken down into subclaims
using argumentation strategies, and referencing an appropriate context, such as
system element descriptions and environmental assumptions. An AC is deemed
to be “finished” when all leaf claims are supported by adequate evidence, though
there is always the possibility of evolution.

We consider ACs as formalised in the Structured Assurance Case Metamodel
(SACM), an OMG standard.3 Wei et al. [39] summarise the work around SACM

2 Usually structured, balanced, and exhibiting many further argumentation qualities.
3 See https://www.omg.org/spec/SACM/2.0/.



4 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

and demonstrate how established frameworks like the Goal Structuring Notation
(GSN) [19] and Claims Arguments Evidence (CAE)4 can be represented using
SACM. SACM thus connects users of these techniques with rigorous model-based
AC construction. SACM can be characterised by three principal concepts:

1. arguments, that present the claims and inferential links between them;
2. artifacts, evidence to support leaf claims, and the relations between them.

Examples include outputs of hazard analysis, actors, test reports, system
data sheets, formal models, and verification results. An AC whose evidence
is based on results obtained from analysis of system models, such as formal
verification, is called a model-based assurance case [16, 39];

3. terminology, to support controlled languages for expressing claims, that
are otherwise specified using free-form natural language. Often, these are
used to refer to model elements in model-based ACs;

In AC modules, certain top-level claims and artefacts can be made public by
an A/G-style AC interface. Several modules can then be composed to produce
the overall AC. Claims can be supported by an argument within the module or
assumed to hold of the context. In the latter case, corresponding external argu-
ments have to be imported from other AC modules. This can be achieved by
A/G reasoning, as is present in the design-by-contract paradigm [25]. Addition-
ally, AC modules adhere to the standardised SACM package concept.

AC modules often need to evolve, for example, because of updates of the
system design or the hazard list. Such evolutions should be conservative, in that
existing claims should remain supported, assumptions should remain satisfiable,
and terminology should stay consistent. This need motivates our notion of AC
extension, the key contribution of this paper, fostering step-wise development
and evolution of ACs. For this, we further develop Isabelle/SACM, our imple-
mentation of SACM as an interactive DSL for AC construction in the proof as-
sistant Isabelle. Isabelle/SACM extends the document model Isabelle/DOF [3]
to accommodate AC concepts and to provide well-formedness checking for ACs.
Isabelle/SACM allows us to describe ACs with claims and evidence obtained
from various formal methods. Details on Isabelle/SACM are explained in [28].

2.2 Isabelle/UTP and Differential Dynamic Logic

The evidence for an FMAC is obtained by formal verification using an imple-
mentation of dL [33] in our verification framework, Isabelle/UTP [10, 11]. dL
specialises Dynamic Logic by combining a modelling notation for hybrid sys-
tems, called hybrid programs, with a formal property language for reasoning
about such programs. In a hybrid program, we can use operators like sequential
composition, assignment, branches and iteration, and an operator for specifying
systems of ordinary differential equations (ODEs). It can therefore be used to
represent hybrid systems that combine continuous evolution and discrete control.
The property language extends predicate calculus with two modalities: [P ]φ,

4 See https://claimsargumentsevidence.org.



Formal Model-based Assurance Cases 5

which specifies that φ holds in every state reachable from P ; and 〈P〉φ, which
specifies that there is at least one state reachable from P satisfying φ.

Isabelle/UTP implements Hoare and He’s Unifying Theories of Programming
(UTP) [17], a framework for development of semantic models for programming
and modelling languages based on heterogeneous paradigms using an alpha-
betised relational calculus. Isabelle/UTP develops this idea by allowing UTP
semantic models to be adapted into verification tools, such as Hoare calculus
deductive reasoning. Then, we can harness the array of automated proof tech-
niques in Isabelle/HOL [29], such as integrated automated theorem provers, to
discharge resulting verification conditions. We apply this approach to develop
the dL hybrid program model, and the associated proof calculus as a set of de-
rived theorems. Moreover, we have developed a tactic, wp-tac , which calculates
[P ]φ and 〈P〉φ conditions using Isabelle’s simplifier and thus automates proof.

3 Formal Model-based Assurance Cases

In this section, we develop FMACs, that is ACs that contain a formal model
from which evidence for the top-level claims is derived. The informal structure
of an FMAC is provided through Isabelle/SACM. We formalise claims using the
modalities from dL, which allows us to formulate LTL-style guarantees of the
form p ⇒ ◦q , p ⇒ ♦q , and p ⇒ ✷q . This integration of dynamic and tem-
poral logic supports the objective underlying many ACs, that is, to integrate
evidence from different provenance. We develop a formal notion of FMAC ex-
tension, which employs both A/G reasoning and data refinement [40], which
allows us to elaborate models in a style similar to Event-B refinement [34].

3.1 Assurance Case Construction

In this section, we introduce a generalised model of dL-style hybrid programs,
use these to define the notion of a Cyber-Physical Machine (CPM), and then
define FMACs, which assure properties of a CPM using formal verification.

Hybrid programs are defined with respect to an alphabet, A, of typed state
variable declarations (x : t), whose names are drawn from the set V. A induces
a state space Σ, and hybrid programs are modelled as potentially heterogeneous
alphabetised relations over state spaces, that is, subsets of Σ1×Σ2. We give the
following syntax for such relations.

Definition 1 (Generalised Hybrid Programs).

P ::=P # P | P ⊓ P | P
∗

| ?E | 〈S〉 | V := ∗ | {S | E}

S ::= id | nil | S(V 7→ E)

Here, E gives syntax for expressions over A. Hybrid programs, P, are composed
using sequential composition (P # Q), nondeterministic choice (P ⊓ Q), Kleene
star (P

∗

), conditional tests (?b), assignments (〈σ〉), nondeterministic assign-
ments (x := ∗), and ODEs ({σ | b}). Each of these operators is semantically



6 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

denoted as a relational predicate (for details see [10,11]). As usual in UTP [17],
relations are partially ordered by refinement (P ⊑ Q), which corresponds to uni-
versally closed reverse implication. Most of the operators follow the dL hybrid
program notation, the exceptions being assignments and ODEs, whose general-
isations help support data refinement.

Generalised assignment, 〈σ〉, uses a substitution, σ: a potentially heteroge-
neous total function between state spaces, Σ1 → Σ2. The basic substitution
id : Σ → Σ maps every variable to its present value. Then, 〈id 〉 is the ineffec-
tual program (skip). Moreover, nil : Σ1 → Σ2 is a heterogeneous substitution
that assigns arbitrary values to every variable, ignoring the initial state.

An existing substitution can be updated with a maplet x 7→ e, assuming x and
e have the same type. We then use the notation [x1 7→ e1, · · · , xn 7→ en ] to denote
id (x1 7→ e1, · · · , xn 7→ en), that is, the substitution that assigns n expressions to
n variables, whilst leaving all other variables in the alphabet unchanged. Then,
the usual singleton assignment x := e can be represented as 〈[x 7→ e]〉. Similarly,
the notation Lx1 7→ e1, · · ·M constructs a heterogeneous substitution where x1
and e1 are from different state spaces. Moreover, substitutions can be applied to
expressions using σ † e, which substitutes all variables in e with those specified
in σ. ODEs, {σ | b}, are modelled similarly but here σ represents the mapping
of variables to their derivatives, and b is a boundary condition, as in dL.

In our model of hybrid programs, we define the modalities 〈P〉φ and [P ]φ
from dL using the corresponding UTP definitions for weakest precondition (wp)
and weakest liberal precondition (wlp) [17], respectively:

Definition 2 (Modalities). 〈P〉φ , (∃ v ′ • P # ?φ) [P ]φ , ¬〈P〉(¬φ)

Here, v ′ refers to the final value of the state. Thus, 〈P〉φ is the relational preimage
of P under φ, and [P ]φ is its dual defined by conjugation. From these definitions
the usual laws of dL can be proved as theorems. We use hybrid programs to
represent CPMs, whose form is inspired by Parnas’ four-variable model [32]:

Definition 3. A CPM is a tuple M = (A, I, Inv, T ) where

– A is an alphabet formalising the state space, which is divided into disjoint
regions for controlled (ctrl), monitored (mon), and internal variables (st);

– I ⊆ A is an initialiser that assigns initial values to state variables;
– Inv ⊆ A is an invariant predicate over st and ctrl;
– T ⊆ A×A is the machine’s transition relation.

To reduce dependencies on the environment, we chose to not allow Inv to use
monitored variables. The transition relation specifies the steps the machine can
take, and is formulated using hybrid programs of the form

T = (?g1 # P1 ⊓ ?g2 # P2 ⊓ · · · ⊓ ?gn # Pn)

which corresponds to a set of non-deterministic guarded commands (gi → Pi).
Then, a CPM behaves like a cyclic executive that reads monitored variables (mon),
executes the transition relation (T ), and writes controlled variables (ctrl ), in the
style of Parnas [32]. We impose the following validity constraints on CPMs:



Formal Model-based Assurance Cases 7

Definition 4. A CPM is valid if the following conditions hold:

1. I ∩ Inv 6= ∅ — there is a valid initial state satisfying the invariant;
2. Inv ⇒ [T ] Inv — the invariant is maintained by all transitions;
3. Inv ⇒ 〈T 〉true — if the invariant holds, there is an enabled transition;
4. ∀ r • 〈T 〉r ⇒ (∃(ctrl, st) • r) — only controlled and state variables are

changed by the body; any predicate r, refering to mon only, is invariant.

The conditions together ensure the machine is well-formed, maintains the invari-
ant, and is free of deadlock. We can now use CPMs to define FMACs:

Definition 5. An FMAC is a tuple AC = (M,As,Gr) with

– a valid cyber-physical machine (M) describing the system behaviours;
– a set of environmental assumptions (As), specified as predicates on mon;
– a set of guarantees (Gr), specified as predicates on mon, ctrl, st.

The assumption As constrains the environment with a predicate on the moni-
tored variables. The guarantee predicates are LTL formulas corresponding to a
subset of dL formulae, namely:

– p ⇒ ◦q : if p holds currently, then q holds in the next state;
– p ⇒ ✷q : if p holds, then q holds in all subsequent states;
– p ⇒ ♦q : if p holds, then q holds in at least one subsequent state.

Below, Gr s denotes a set of (s)afety predicates of the kind p ⇒ ◦q and p ⇒ ✷q ,
and Gr l a set of (l)iveness predicates (p ⇒ ♦q). In Section 4, we use this
convention to identify corresponding predicates. Next, we define a satisfaction
relation M |= φ (spoken: “the machine M satisfies the formula φ”).

Definition 6 (Satisfaction Relation).

M |= (p ⇒ ◦q) , (As ∧ Inv ∧ p ⇒ [T ] q)

M |= (p ⇒ ✷q) , (∃ I • (I ⇒ [T ] I )∧(As∧Inv∧p ⇒ I )∧(As ∧ Inv ∧ I ⇒ q))

M |= (p ⇒ ♦q) , (As ∧ Inv ∧ p ⇒ 〈T
∗

〉q)

M satisfies p ⇒ ◦q when wlp of T under q—i.e., the set of states from which
T leads to a state satisfying q or is undefined—is implied by p. Similarly, M
satisfies p ⇒ ♦q when wp of T

∗

under q is implied by p. For universal properties,
our definition requires an invariant. M satisfies p ⇒ ✷q if there is an expression
I such that (1) I is an invariant of T ; (2) I is implied by As ∧ Inv ∧ p; and
(3) I , conjoined with As and Inv, implies q . From this definition, we obtain a
property similar to the other definitions as a theorem:

Theorem 1 (∗-Global). If M |= (p ⇒ ✷q) then As ∧ Inv ∧ p ⇒
[

T
∗
]

q.

Finally, we define a notion of validity for FMACs themselves:

Definition 7 (Validity). FMAC is valid if M is a valid CPM, and all guar-

antees are satisfied, that is, ∀ g ∈ Gr • M |= g.



8 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

Fig. 1. FMAC pattern

With a formal defi-
nition of FMACs in Is-
abelle, we can now show
how this information is
presented in an AC mod-
ule. A GSN diagram
visualising the SACM
pattern for an FMAC
is shown in Figure 1.
This pattern refers to
the CPM model (Defi-
nition 3), with its state
space, invariant, and tran-
sition relation. The AC
module has a top-level
claim of relative safety with respect to the model, M. It requires a set of haz-
ards, an assumption, and a set of guarantees that mitigate the hazards. The
main claims, C1–C4, are made public (indicated by the folder icon), so they
can be used as components in another AC. As indicated by the diamonds, the
reasoning for hazard mitigation and guarantee satisfaction is left to be developed
as part of the instantiation of the pattern.

3.2 Assurance Case Extension

FMAC extension allows us to extend an existing AC by refining the CPM model,
weakening the assumptions, and adding new guarantees. In this way, the guar-
antees of the original FMAC can be carried over from the old to the new AC.
For this, we define a notion of machine refinement.

Definition 8. A machine refinement is a triple (Ma ,Mc , ρ), for retrieve func-

tion ρ : Σc → Σa , such that the following conditions hold:

1. Invc ⇒ (ρ † Inva) — the abstract invariant is strengthened by the concrete
invariant;

2. (?Invc # 〈ρ〉 # Ta) ⊑ (?Invc # Tc # 〈ρ〉)—when the concrete invariant holds ini-
tially, each transition in the abstract machine can be matched by a transition
in the concrete machine (simulation [40]).

We write Ma ⊑s
ρ Mc when (Ma ,Mc , ρ) is a machine refinement.

Typically, ρ shows how the variables of Aa are defined in terms of the variables
of Ac , with the following form:

ρ , Lx1 7→ e1(y1, · · · , yn), x2 7→ e2(y1, · · · , yn), · · ·M, for xi ∈ Aa and yi ∈ Ac

Each abstract variable is mapped to an expression ei in terms of the concrete
variables. Definition 8 encodes a backwards functional refinement [40] between



Formal Model-based Assurance Cases 9

Ma and Mc . We require that (1) Inva is strengthened by Invc , when the retrieve
function ρ is applied; and (2) Ta is simulated by Tc modulo ρ, which is expressed
using a refinement statement of the usual form [40].

From Definition 8, we prove the following theorem about safety invariants:

Theorem 2. If Ma ⊑s
ρ Mc and (Inva ∧ φ) ⇒ [Ta ]φ, that is φ is an invariant

of Ma , then it follows that (Invc ∧ ρ †φ) ⇒ [Tc ] (ρ †φ), where ρ †φ is the retrieve

function ρ applied as a substitution to φ.

This theorem shows that any invariant of the abstract CPM is also an invari-
ant of the concrete CPM, modulo ρ. Consequently, we now have a method for
adapting safety guarantees from an abstract to a concrete assurance case via
data refinement. We now use this to define the extension operator for FMACs.

Definition 9. Given ACa and ACc according to Definition 5, then we define
ACa ⊕ρ ACc , (Mc ,Asc ,Grc ∪ {r ↑ρ | r ∈ Gr s

a}) where

(p ⇒ ◦q)↑ρ , ((ρ † p) ⇒ ◦(ρ † q)) (p ⇒ ✷q)↑ρ , ((ρ † p) ⇒ ✷(ρ † q))

In an AC extension, every abstract safety guarantee is lifted to a concrete guar-
antee through the retrieve function. By applying ρ as a substitution, we compute
the meaning of each of the safety guarantees in the refined state space. We do
not map ♦q guarantees, as these are not in general preserved by refinement.
Refinements allow one to restrict behaviours to specific trace subsets. Traces es-
tablishing liveness guarantees might get excluded while meeting invariants and
safety guarantees. Here, we leave liveness guarantees to be translated manually
from Gra to Grc . Finally, we demonstrate when an AC extension is valid:

Theorem 3. ACa ⊕ρ ACc is a valid FMAC provided that:

1. Ma and Mc are both valid CPMs;
2. ACa is a valid FMAC;
3. Ma ⊑s

ρ Mc — machine refinement holds;
4. (ρ †Asa) ⇒ Asc — the assumption is weakened modulo ρ;
5. ∀ g ∈ Grc • Mc |= g — all additional guarantees are satisfied.

This theorem shows that the existing safety guarantees can be verified with
respect to the refined model. Essentially, Definition 7 is met because (1) any
invariant can be transferred from abstract to concrete (Theorem 2); and (2)
satisfaction of ✷q properties requires an explicit invariant (Definition 6).

Figure 2 summarises the formal relationships between the artefacts of the
extension argument. We then claim that ACc extends ACa modulo ρ. The fol-
lowing steps are carried through in Isabelle/UTP for each extension of ACa :

1. We define the retrieve function ρ.
2. We prove that the concrete assumptions weaken the abstract assumptions

translated using ρ, that is, Asc ⇐ (ρ † Asa).
3. By establishing the refinement Ma ⊑s

ρ Mc , we ensure that Mc preserves
all safety guarantees in Gra modulo ρ.



10 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

ACa

ACa ⊕ρ ACc

Asa

Asc

Ma

Mc

Gra

Grc

ρ

⇐⊑
sρ

|=

|=

refers to

refers to

⇒

⇒

⇒

1 2 3
4

5

Fig. 2. Artefacts and satisfaction relationships of an extension step

4. We establish the satisfaction relationship Grc =| Mc to verify all safety and
liveness guarantees introduced by the extension ACc .

5

5. By help of ρ, the steps 2 to 4 establish the extension ACa ⊕ρ ACc repre-
senting the extended assurance case ACc .

Figure 3 summarises the extension argument pattern. The FMAC extension
readjusts or increases confidence over ACa by following three principles:

1. Regarding the existing assumptions and guarantees, and modulo ρ, the
claims C5 and C8 establish consistency of ACc with the previous ACa

and thus help to preserve argument confidence.

2. Based on RET FUN, claim C6 aims at increased precision, that is, any
strict data refinement of the existing alphabet, the guarantees (i.e., existing
hazards), and the transition relation increases argument confidence.

3. The claims C6 and C7 aim at completion, that is, any strict extension of
the set of hazards and, potentially, guarantees, while not strengthening the
assumptions, increases argument confidence.

Fig. 3. GSN version of the FMAC extension pattern

We implemented the FMAC
patterns in Isabelle/SACM,
particularly, their argument
structure and the link-
ing of claims with arte-
facts in Isabelle/UTP (Sec-
tion 2.1). Unlike GSN,
SACM allows us to struc-
ture contextual elements,
e.g. one can express infer-
ential links between For-
mal Model (Figure 1)
and its components As, Gr,
and Inv. This way, SACM
exceeds GSN’s expressiveness. Our implementation in Isabelle/SACM is de-
scribed in more detail in [13].

5 The steps 3 and 4 imply that the concrete safety guarantees strengthen the abstract
safety guarantees, that is, Grs

c ⇒ (ρ † Grs

a ).



Formal Model-based Assurance Cases 11

Table 1. Overview of the guarantees for the initial assurance case and its extensions

AC Guar. Informal Description

AC0 Grs

0
The robot shall not cause harm to anything.

Gr l

0
The robot shall be able to perform movements.

AC1 Grs

1
a) While the robot traverses a location, no other objects occupy this location. b) The
robot only traverses locations that are not occupied by other objects.

Gr l

1
If there are free locations other than the robot’s current location, the robot immediately
leaves its current location and moves to another free location.

AC2 Grs

2.1
The route planned to an intermediate location does not overlap with the detected
occupancy of the workspace by other (fixed and moving) objects.

Grs

2.2
If overlaps are detected while moving the robot intervenes by rerouting and/or by
braking.

Gr l

2
The robot eventually reaches its goal (a prespecified location) given that it is reachable
via a finite sequence of routes/path segments.

4 Application to Mobile Ground Robot

Mobile ground robots are required to achieve a variety of tasks by moving through
a workspace while manipulating and transferring objects. Such robots are used
for transport in warehouses or hospitals, for cleaning in buildings, for manufac-
turing in factories. In this paper, we focus on safety and liveness of the movement
part in such tasks. Hence, our FMAC will argue about safe steps of movement,
route planning with obstacle avoidance, and emergency braking.

We now instantiate the FMAC patterns from Section 3 to get three succes-
sively more detailed assurance cases of such a robot, called AC0, AC1, and AC2.
Table 1 summarises the guarantees for the corresponding evolution steps.

4.1 AC0: Initial Assurance Case

In M0, we only consider the propositional variable harm which is true if any
harm to any asset has occurred because of the robot’s behaviour.

I0 , [harm 7→ false]

Inv0 , Gr0 , ¬harm

T0 , Move , ?true # skip

Because we do not have any elements in the model to express bad things, Move
has to cover only and exactly the safe movements the robot can make in order to
fulfil Gr0. If harm is true then it is not because of Move. Hence, it must have been
true before but this contradicts our assumption. Although the latter technically
provides an argument for safety, clearly, this argument is not anywhere near a
compelling or meaningful one. Thus, we have to increase confidence.

4.2 AC1: First Extension

Given LOCATION as the non-empty set of locations, p : LOCATION denotes
the current position of the robot, and aim : LOCATION the current choice of the



12 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

next location to move to. The operation Move now gets the atomic assignment
p := aim. Furthermore, in M1, we include a state function occ : LOCATION ⇒
bool which is true for all locations occupied by objects other than the robot,
false otherwise. For a weak notion of liveness with respect to Move, the robot
is required to choose aim such that it keeps moving as long as occ is false

for some location in LOCATION . In M1, the choice of aim is implemented by
a type-safe and constrained non-deterministic assignment. The following listing
summarises the FMAC consisting of the model M1 and the assurance case AC1:

I1 , id

Inv1 , ¬occ(p)

T1 , Move , aim := ∗ # ?aim ∈ freeLocs ∧ aim 6= p ∧ ¬occ(aim) # p := aim

As1 , ¬occ(p) ∧ freeLocs 6= ∅

Gr1 , ?(p = aim) # ¬occ(aim)

ρ1 , Lharm 7→ occ(p)M

We assume that while the robot performs a Move to location aim, the environ-
ment will not occupy aim. Regarding the confidence of AC1, this assumption is
realistic if locations are close enough to each other and the maximum speed of
other objects is low enough. With As1, we assume that occ changes (i.e., other
objects can be randomly (re)located in LOCATION ) beyond that restriction
only after a Move of the robot is completed.6 Also, Gr1 encodes the assumption
that whenever the robot has reached aim in this state, no other object can have
reached aim in the same state. Hence, a location is deemed occupied if a moving
object is expected to touch this location during the current Move of the robot.
A more detailed model for AC1 is given in [13, Secs. 4 and 5].

Now, to argue that AC1 is an extension of AC0 as explained in Section 3.2,
we first prove that As0 is weakened by As1 modulo ρ and show that the existing
safety guarantees are preserved by establishing the refinement M0 ⊑s

ρ M1.
Finally, we show by establishing Definition 7 in Isabelle that AC1 is valid.

Regarding the confidence of AC1, the introduced location model, the condi-
tional Move, and the occupancy-based safety guarantee illustrate how we slightly
but correctly increased the precision of our argument for the claim that the robot
is safe. The extension from AC0 to AC1 is an instance of the pattern in Figure 3.
A complete pattern instance for this step is provided in [13, Fig. 6].

4.3 AC2: Second Extension

For M2, we refine the data model of M1, where each location is reachable
from everywhere, by a relation Connection ⊆ LOCATION × LOCATION . Our
model also contains a notion of distance between locations and allows to mark a
specific location as the goal. Based on Connection, we extend A2 by a variable
trj : LOCATION list to manage routes and oldDist to measure the progress

6 In the CPM model, environmental changes are encoded by mon := ∗, see [13].



Formal Model-based Assurance Cases 13

towards the final goal. The following list summarises the model M2 and the
corresponding extension AC2:

I2 , [trj 7→ [], occ 7→ occ]

Inv2 , ¬occ(p)

T2 , Plan ⊓ MicroMove ⊓ EmgBrake

As2 , minBrakingPrefix (trj ) ∈ clearPaths

Gr
s

2.1 , hazardousMove ⇒ ¬occ(p)

Gr
l

2 , clearPaths 6= ∅ ∧ p 6= goal ∧ (¬hazardousMicroMove)

⇒ oldDist > dist(p, goal)

ρ2 , Locc(p) 7→ minBrakingPrefix (trj ) 6∈ clearPaths, occ(aim) 7→ occ(aim)M

Safety in M2 relies on the assumption As2 that any update of occ by the en-
vironment will not lead to an occupancy of any prefix of the planned route trj
shorter than the minimum braking distance, that is, minBrakingPrefix (trj ) 6∈
clearPaths. Based on As2, Gr s

2.1 guarantees safe emergency braking, that is, not
actively hitting any (moving) objects beyond minimum braking distance. This
corresponds to the notion of passive safety in [26].

For liveness in M2, we use a conjunct p 6= goal in the precondition for Gr l
2

that specifies the termination of the robot’s goal seeking activity. The postcondi-
tion of Gr l

2 states that after each MicroMove, the robot should strictly get closer
to the goal. Gr l

2 is required for the desired liveness property of M2. However,
only if clearPath = ∅ cannot occur infinitely often, Gr l

2 implies termination.
The proof that AC2 actually extends AC1 works in a way similar to the

extension proof for AC1, now based on ρ2. For M2, we use further parameters
and definitions. These as well as the definitions of the three operations Plan,
MicroMove, and EmgBrake are provided in the model in [13, Sec. 6].

5 Discussion

Here, we put our FMAC patterns into the context of formal robot verification,
robotic engineering practice, and practically relevant standards. We also relate
our contribution to model validation arguments.

Formal Robot Verification. Early work by Rahimi et al. [35] models a robot con-
troller as a set of actions specified by pre/post conditions derived from hazard
analysis. The authors use real-time logic to verify whether action implemen-
tations in software comply with these conditions. Beyond their work, our robot
example demonstrates proof automation, refinement verification, and integration
of proof evidence into a maintainable AC for certification.

Based on a CSP-inspired process algebra with the operational semantics of
message-synchronous port automata, Lyons et al. [24] propose a plant model
composed of environment, machine, and controller. Their controller model cor-
responds to our Kleene-starred CPM transition relation (cf. Theorem 1). The



14 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

authors verify an elaborate plant model against performance (i.e., a generali-
sation of safety and liveness) guarantees by proving observational equivalence
with reducing the embedded SAT problem to a filtering problem on Bayesian
networks. Our approach based on Isabelle/UTP facilitates more generic abstrac-
tion and proof assistance based on relations and dL.

Mitsch et al. [26] model robots in dL and verify successively refined notions
of safety and liveness. These include static safety (i.e., no collision with static
obstacles), passive safety (i.e., no active collision), passive friendly safety (i.e.,
safe braking circle does not intersect with other moving objects’ safe braking
circle), and passive orientation safety (i.e., braking cone does not intersect with
other moving objects’ braking cones). While our robot model is less detailed, we
formalise the transition between increasingly precise notions of safety by data
refinement, assumption weakening, and guarantee strengthening. Beyond [24]
and [26], we demonstrate how robot validity and refinement proofs can be evolved
within a standardised AC framework.

Though [26] does not explicitly invoke refinement in their stepwise develop-
ment, refinement in dL was previously investigated by Loos and Platzer [23].
They extend dL with a refinement operator α ≤ β, that specifies that a hy-
brid program α is more deterministic than a program β. If a safety guarantee,
θ ⇒ [β]φ, can be proved for β, then the guarantee can automatically be de-
rived for the refinement α (Theorem 2). Their notion of refinement permits local
reasoning, such that subcomponents of a program need only demonstrate refine-
ment under the condition they are reachable. Our refinement notion is global;
however it is possible to derive their localised refinement relation in our setting.
Effectively, our work can be seen as an extension of [23] with data refinement,
which we believe can support stepwise development in the style of [26].

For a multi-robotic system, Desai et al. [8] verify safety and liveness proper-
ties of a trajectory coordination protocol based on a verified state-machine ab-
straction of almost-synchronously clocked plan execution units and asynchronous
analysis and planning units. They apply SMT and A∗-search for safe plan gener-
ation and model-checking of the coordination protocol. While their assumptions
for modelling multi-robot coordination differ strongly from the assumptions ap-
plied in our single robot example, we can see the opportunity to enhance their
fixed-model approach with data refinement to integrate multi-robot verification
evidence into an extensible FMAC.

Industrial Standards and Verification Practices. Cooper et al. [6] demonstrate
how formal methods (e.g. Z [38]) can be effectively practiced for security cer-
tification according to the Common Criteria standard [5]. However, back then,
proof automation in AC construction was less researched and developed. In-
spired by such examples, it is reasonable to aim for a transfer of our approach
to the robotics and other safety-critical domains where FMs and ACs are highly
recommended. For example, in the context of RTCA DO-178C, the FM supple-
ment DO-333 [36] recommends the creation of “formal analysis cases” providing
evidence for a variety of claims (e.g. Clauses FM 6.3.1-6.3.4), particularly, the
satisfaction of high- and low-level safety guarantees. The automotive standard



Formal Model-based Assurance Cases 15

ISO 26262 (e.g. Part 2, Clause 6.4.5.4) recommends a safety case for each system
component with a safety goal and that these safety cases are subject of configu-
ration and change management, thus, maintenance and evolution. Overall, these
standards provide many opportunities for FMACs and Isabelle/SACM.

Adequacy and Completeness of the Formalisation. For controller design and syn-
thesis, control engineers perform model validation experiments to assess how well
a model of the process, they want to control, complies with the real world [37].
Likewise, the formal model associated with an FMAC (extension) has to be ac-
companied by an argument (potentially based on experiments using simulation
and test [9]) that this model faithfully abstracts from and predicts [21] the im-
plemented controller (i.e., the potentially distributed embedded system) and the
surrounding plant. Isabelle/SACM allows us to enhance arguments accordingly.
However, a further discussion of model validity arguments is out of scope.

Safety guarantees result from accident experience, domain expertise, and haz-
ard analysis [22]. Regarding continuous hazard analysis, the pattern in Figure 3
accommodates changes of the hazard list and the corresponding guarantees as
assumed claims (C3,C4) and the corresponding hazard mitigation as an un-
developed claim (C9). The step from hazard analysis to the derivation of new
guarantees and model improvements is discussed in more detail in [12].

6 Conclusions

Assurance cases have to evolve to readjust or increase confidence [7]. Hence,
we propose a framework for formal model-based assurance case construction and
extension. Our framework is based on Isabelle/UTP whose semantic foundations
allow one to express the system model for the construction of the assurance case
in various but precisely linked formalisms, for example, relations and dL. This
linking, paramount to the engineering of many critical systems [14], enables the
step-wise refinement of the system model including data refinement and the
simultaneous extension of an existing assurance case, resulting in an evolved
assurance case readjusting or increasing the level of confidence of the argument.
In [15], we discuss how model-based engineering can accommodate the way how
innovation typically drives the evolution of requirements and designs. Extensible
FMACs further develop this idea towards continuous model-based assurance.

Beyond the State of the Art. We propose the application of verification princi-
ples as recommended by, for example, DO-178C to mobile robot controllers. Our
approach fosters scalability in two directions: first, via AC modules (i.e., A/G-
style reasoning) devoted to specific assurance aspects, second, via compositional
reasoning in Isabelle/UTP to isolate and reason about parts of large robot mod-
els. Regarding the former, we support arguments at scale by separation of the
detailed proof structure in Isabelle/UTP from the overarching argument and ev-
idence structure using Isabelle/SACM. This separation keeps the argument lean
while maintaining traceability to all proof and model details.



16 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

Next Steps. The use of A/G-style specification for FMACs paired with invari-
ants as constraints on the controlled and internal state variables improves the
preservation of properties of FMAC compositions. To deal with more complex
FMACs, we want to simplify composition and refinement at the level of FMACs
by providing a new operator, ACa ⊑arg

ρ ACc . We also want to improve the
modifiability of an existing FMAC, particularly, support the deletion or substi-
tution of guarantees on updates from hazard analysis. Furthermore, we want to
enhance the handling of liveness guarantees across an extension step via ⊕ρ.

Inspired by [1,34], we want to investigate the benefits of a further integration
of Isabelle/Isar with the argument structure in Isabelle/SACM. Particularly,
Basir [1] discusses how natural deduction program proofs (e.g. using Hoare logic)
can formally underpin an argument and how interactive theorem proving can aid
in checking the soundness of this argument.

Acknowledgements

This work is partly supported by the EPSRC projects CyPhyAssure7, grant
reference EP/S001190/1, and RoboCalc, grant reference EP/M025756/1.

References

1. Basir, N.: Safety cases for the formal verification of automatically generated code.
Ph.D. thesis, University of Southampton (2010)

2. Bate, I., Kelly, T.: Architectural considerations in the certification of modular
systems. Reliability Engineering & System Safety 81(3), 303–324 (Sep 2003).
https://doi.org/10.1016/S0951-8320(03)00094-2

3. Brucker, A.D., Aït-Sadoune, I., Crisafulli, P., Wolff, B.: Using the Isabelle ontology
framework - linking the formal with the informal. In: CICM. Lecture Notes in
Computer Science, vol. 11006, pp. 23–38. Springer (2018)

4. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.:
Engineering trustworthy self-adaptive software with dynamic assurance cases.
IEEE Transactions on Software Engineering 44(11), 1039–1069 (nov 2018).
https://doi.org/10.1109/tse.2017.2738640

5. Common Criteria Consortium: Common criteria for information technology secu-
rity evaluation – part 1: Introduction and general model. Tech. Rep. CCMB-2017-
04-001 (2017), https://www.commoncriteriaportal.org

6. Cooper, D., et al.: Tokeneer ID Station: Formal Specification. Tech. rep., Praxis
High Integrity Systems (August 2008), https://www.adacore.com/tokeneer

7. Denney, E., Pai, G., Habli, I.: Dynamic safety cases for through-life safety as-
surance. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering. IEEE (5 2015). https://doi.org/10.1109/icse.2015.199

8. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a frame-
work for safe distributed mobile robotics. In: Proceedings of the 8th Interna-
tional Conference on Cyber-Physical Systems - ICCPS’17. ACM Press (2017).
https://doi.org/10.1145/3055004.3055022

7 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/



Formal Model-based Assurance Cases 17

9. Edwards, S., Lavagno, L., Lee, E.A., Sangiovanni-Vincentelli, A.: Design of embed-
ded systems: formal models, validation, and synthesis. Proceedings of the IEEE
85(3), 366–90 (1997). https://doi.org/10.1109/5.558710

10. Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Submitted to Science
of Computer Programming (March 2019), preprint: https://arxiv.org/abs/1905.
05500

11. Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/UTP: Mecha-
nised Theory Engineering for Unifying Theories of Programming. Archive of Formal
Proofs (2019), https://www.isa-afp.org/entries/UTP.html

12. Gleirscher, M., Carlan, C.: Arguing from hazard analysis in safety cases: A modular
argument pattern. In: High Assurance Systems Engineering (HASE), 18th Int.
Symp. (1 2017). https://doi.org/10.1109/hase.2017.15

13. Gleirscher, M., Foster, S., Nemouchi, Y.: Evolution of formal model based assurance
cases for autonomous robots. Supplemental material, University of York (2019).
https://doi.org/10.5281/zenodo.3344489

14. Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for integrated formal
methods. Unpublished working paper, Department of Computer Science, Univer-
sity of York (2018)

15. Gleirscher, M., Vogelsang, A., Fuhrmann, S.: A model-based approach to in-
novation management of automotive control systems. In: 8th Int. Workshop
on Software Product Management (IWSPM). IEEE digital library (2014).
https://doi.org/10.1109/IWSPM.2014.6891062

16. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.: Weaving and assurance
case from design: A model-based approach. In: Proc. 16th Intl. Symp. on High
Assurance Systems Engineering. IEEE (2015)

17. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)

18. Jackson, M.A.: Problem Frames: Analysing & Structuring Software Development
Problems. Addison-Wesley (2001)

19. Kelly, T.: Arguing Safety – A Systematic Approach to Safety Case Management.
Ph.D. thesis, University of York (1998)

20. Kelly, T.P., McDermid, J.A.: Safety case construction and reuse using patterns.
In: Daniel, P. (ed.) SAFECOMP, 16th Int. Conf. pp. 55–69. Springer (1997).
https://doi.org/10.1007/978-1-4471-0997-6_5

21. Lee, E.A., Sirjani, M.: What good are models? In: Formal Aspects of
Component Software, pp. 3–31. Springer International Publishing (2018).
https://doi.org/10.1007/978-3-030-02146-7_1

22. Leveson, N.G.: Engineering a Safer World: Systems Thinking
Applied to Safety. Engineering Systems, MIT Press (1 2012).
https://doi.org/10.7551/mitpress/8179.001.0001

23. Loos, S.M., Platzer, A.: Differential refinement logic. In: Proc. 31st Intl. Symp. on
Logic in Computer Science (LICS). ACM (July 2016)

24. Lyons, D.M., Arkin, R.C., Jiang, S., Liu, T.M., Nirmal, P.: Performance verification
for behavior-based robot missions. IEEE Transactions on Robotics 31(3), 619–636
(jun 2015). https://doi.org/10.1109/tro.2015.2418592

25. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)

26. Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of ob-
stacle avoidance and navigation of ground robots. CoRR (2016), http://arxiv.org/
abs/1605.00604



18 Mario Gleirscher, Simon Foster, and Yakoub Nemouchi

27. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management
for compliance of critical systems with safety standards: A survey on the
state of practice. Information and Software Technology 60, 1–15 (apr 2015).
https://doi.org/10.1016/j.infsof.2014.12.002

28. Nemouchi, Y., Foster, S., Gleirscher, M., Kelly, T.: Mechanised assurance cases
with integrated formal methods in Isabelle. In: Submitted to iFM 2019 (2019),
preprint: https://arxiv.org/abs/1905.06192

29. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, Springer, Berlin, 1 edn.
(2002). https://doi.org/10.1007/3-540-45949-9

30. de Oliveira, A.L., Braga, R.T., Masiero, P.C., Papadopoulos, Y., Habli, I.,
Kelly, T.: Supporting the automated generation of modular product line safety
cases. Advances in Intelligent Systems and Computing 365, 319–330 (2015).
https://doi.org/10.1007/978-3-319-19216-1_30

31. Palin, R., Habli, I.: Assurance of automotive safety – a safety case approach. In:
Schoitsch, E. (ed.) Computer Safety, Reliability, and Security, LNCS, vol. 6351,
pp. 82–96. Springer (2010). https://doi.org/10.1007/978-3-642-15651-9_7

32. Parnas, D.L., Madley, J.: Function documents for computer systems. Science of
Computer Programming 25, 41–61 (1995)

33. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom Reasoning 41,
143–189 (June 2008)

34. Prokhorova, Y., Laibinis, L., Troubitsyna, E.: Facilitating construction of safety
cases from formal models in event-b. Information & Software Technology 60, 51–76
(2015). https://doi.org/10.1016/j.infsof.2015.01.001

35. Rahimi, M., Xiadong, X.: A framework for software safety verification of industrial
robot operations. Computers & Industrial Engineering 20(2), 279–287 (jan 1991).
https://doi.org/10.1016/0360-8352(91)90032-2

36. RTCA: DO-333: Formal Methods Supplement to DO-178C and DO-278A (2012)
37. Smith, R.S., Doyle, J.C.: Model validation: a connection between robust con-

trol and identification. IEEE Trans. Automatic Control 37(7), 942–52 (Jul 1992).
https://doi.org/10.1109/9.148346

38. Spivey, J.: The Z Notation: A Reference Manual. Prentice Hall (1992)
39. Wei, R., Kelly, T., Dai, X., Zhao, S., Hawkins, R.: Model based system assurance

using the structured assurance case metamodel. Journal of Software and Systems
154, 211–233 (August 2019)

40. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall (1996)


	Evolution of Formal Model-based  Assurance Cases for Autonomous Robots

