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Abstract

We study the tradeoff between computational effort and classification accuracy in
a cascade of deep neural networks. During inference, the user sets the acceptable
accuracy degradation which then automatically determines confidence thresholds
for the intermediate classifiers. As soon as the confidence threshold is met, infer-
ence terminates immediately without having to compute the output of the com-
plete network. Confidence levels are derived directly from the softmax outputs of
intermediate classifiers, as we do not train special decision functions. We show
that using a softmax output as a confidence measure in a cascade of deep neural
networks leads to a reduction of 15% − 50% in the number of MAC operations
while degrading the classification accuracy by roughly 1%. Our method can be
easily incorporated into pre-trained non-cascaded architectures, as we exemplify
on ResNet. Our main contribution is a method that dynamically adjusts the trade-
off between accuracy and computation without retraining the model.

1 Introduction

State-of-the-art Deep Neural Networks (DNNs) usually consist of hundreds of layers and millions
of trainable weights. At inference time, this translates into billions of multiply-accumulate opera-
tions (MACs) for a single input [SCYE17]. The training process of models is a computationally
intensive task that is performed once. After training is completed, the trained model is used for
inference. Inference requires fewer computations than training, however, the inference is performed
multiple times. Hence, reducing the amount of computation during the inference is an interesting
ongoing goal [HLM+16]. Moreover, modern DNNs usually apply the same number of operations
for every inputs, and the natural question that arises is whether this amount of computation is indeed
required [PSR16].

In this paper, we focus on the computational effort spent on inference in DNNs. For simplicity,
we measure the computational effort in the number of multiply-accumulate operations (MACs).
Many claim that the computational effort required for classifying images should depend on the
image [Gra16, FCZ+17, PSR16, TMK16]. We claim that the required computational effort for clas-
sification is an intrinsic yet hidden property of the inputs. Namely, some images are much easier to
classify than others, but the required computational effort needed for classification is hard to predict
before classification is completed.

The desire to spend the “right” computational effort in classification leads to the first goal in this
work.

Goal 1.1. Given a model M , design a model M ′ in which the computational effort during the
classification of an input x is proportional to the likelihood of misclassifying x using M .
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Misclassification likelihood indicates and measures the hardness of an input. The question we pose
is whether we can (almost) preserve accuracy while reducing the computational effort required to
classify "easy" instances. The two extreme cases are: (1) Consider a distribution of inputs D for
which the misclassification likelihood is very low (say 1%) in model M . We view D as a distribution
of "easy" inputs, and would like the new model M ′ to classify x ∈ D while spending a fraction of
the computational effort compared to M . (2) Consider a distribution of inputs D′ for which the
misclassification likelihood is high (say, 25%) in model M . We view D′ as a distribution of "hard"
inputs, and would like the new model M ′ to classify inputs from D′ almost as accurately as M
does. The computational effort of M ′ for inputs in D′ is only slightly higher than that of M (c.f., an
overhead of 1% in the computation). The principle behind our goal is that an efficient model should
achieve a high classification accuracy faster for "easy" instances than for "harder" ones.

A motivation to reduce the computational effort during the inference can be exemplified by systems
with non-constant power consumption or throughput. Examples of such settings are: (1) As the
battery drains in a mobile device, one would like to enter a “power saving mode” in which less
power is spent per classification. (2) If the input rate increases in a real-time system (e.g., due to
a burst of inputs), then one must spend less time per input [CZC+10]. (3) Timely processing in a
data center during spikes in query arrival rates may require reducing the computational effort per
query [Bod10].

Dynamic changes in the computational effort or the throughput lead to the second goal in this work.

Goal 1.2. Introduce the ability to dynamically control the computational effort while sacrificing
accuracy as little as possible. Such changes in the computational effort should not involve retraining
of the DNN.

1.1 Contribution

We propose an architecture that is based on a cascade of DNNs [BWDS17] depicted in Figure 1.
The cascade comprises multiple DNNs (e.g., three DNNs), called component DNNs. The cascade is
organized sequentially so that the next component DNN is fed by the previous component. Hence
previous computations are reused and further refined by the next component. Classification takes
place by invoking the component DNNs one-by-one and stopping the computation as soon as the
confidence level reaches the desired level. Our setting is applicable to general multiclass classifica-
tion in general architectures that terminate with a softmax function.

The stopping decision is based on the softmax output of each component DNN. We define a simple
confidence threshold, based on the softmax output, that allows for trading off (a small) decrease in
accuracy for (a substantial) reduction in computational effort. The resulting approach has several
advantages over the previous work [PSR16, BWDS17, SCP+18]. The main contribution of our work
is:

Dynamically change the compromise between accuracy and computational effort without re-
training the cascaded model.

In addition, we show how a cascaded architecture can be obtained from an ordinary feed-forward
DNN while requiring only small fine-tuning (see section 6). We demonstrate the performance of our
models on various image classification datasets: (i) A computation reduction of 34% that sacrifices
1.2% accuracy with respect to the CIFAR-10 test set. (ii) A computation reduction of 16% that
sacrifices 0.7% accuracy with respect to the CIFAR-100 test set. (iii) A computation reduction of
54% that sacrifices 1.4% accuracy with respect to the SVHN test set. (iv) A computation reduction
of 17% that sacrifices 1.3% accuracy with respect to the IMAGENET validation set.

Finally, our experimentation demonstrates a monotone relation between softmax values and classifi-
cation accuracy in intermediate classifiers (see section 7.3).

2 Related work

The two principle techniques that we employ are cascaded classification and confidence estimation.
We elaborate on the recent usage of these techniques hereinafter.
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2.1 Cascaded classification

Cascaded classification is suggested in the seminal work of Viola and Jones [VJ01]. As opposed to
voting or stacking ensembles in which classification is derived from the outputs of multiple experts
(e.g., majority), the decision in a cascaded architecture is based on the last expert. A cascaded neural
network architecture for computer vision is presented in [WLCS18]. In their work, as the complexity
of the input increases, the evaluation is performed with increased resolution and increased number
of component DNNs in the cascade. The works of Wang et al. [WYDG17, WSL+18] presents the
skipping approach, where each input can take a path composed of a subset of layers of the original
architecture. Skipping of layers requires training of switches that decide whether skipping of layers
takes place. The work by Lerox et al. [LBDC+17] presented the idea of early stopping in a setting
in which the cascaded DNNs are distributed among multiple devices.

Reinforcement learning is employed by Odena et al. [OLO17] in a cascade of meta-layers to train
controllers that select computational modules per meta-layer. meta-layers to train controllers that
select computational modules per meta-layer.

2.2 Confidence estimation

Uncertainty measures of classifiers are discussed in [CDTV95, DSV00]. These works address the
issue of the degree of confidence that a classifier has about its output. The confidence of an assembly
of algorithms is investigated by Fagin et al. [FLN03] in general setup. Fagin et al. define instance
optimality and suggest to terminate the execution according to a criterion based on a threshold.

Rejection refers to the event that a classifier is not confident about its outcome, and hence, the output
is rendered unreliable. Geifman and El-Yaniv [GEY17] describe a selective classification technique,
in which a classifier and a rejection-function are trained together. The goal is to obtain coverage
(i.e., at least one classifier does not reject) while controlling the risk via rejection functions. They
proposed a softmax-response mechanism for deriving the rejection function and discussed how the
true-risk of a classifier (i.e., the average loss of all the non-rejected samples) can be traded-off with
its coverage (i.e., the mass of the non-rejected region in the input space). Our work adopts the usage
of the softmax response as a confidence rate function, however, it differs in a way we apply the
confidence threshold. Namely, we propose a cascade of classifiers that terminates as soon as the
desired confidence threshold is reached.

The ability of the softmax output to reflect the true confidence of the classifier was investigated by
Gu et al. [GPSW17]. The authors propose the temperature scaling technique in order to calibrate
the softmax output, making it highly correlated with the expected accuracy.

2.3 Combined approach: cascaded inference with confidence estimation

The work of Cambazoglu et al. [CZC+10] presents an additive ensemble machine learning approach
with early exits in a context of the web document ranking. In the additive approach, the sum of the
outputs of a prefix of the classifiers provides the current output confidence.

The work of Teerapittayanon et al. [TMK16] presents the BranchyNet approach, in which a neural
network architecture has multiple branches, each branch consists of a few convolutional layers ter-
minated by a classifier and a softmax function. The approach in [TMK16] does not help to reduce
the amount of computation that takes place outside the “main path”. The confidence of an output
vector y in BranchyNet is derived from the entropy function entropy(y) = −

∑

c yc log yc. Finally,
in [TMK16], automatic setting of threshold levels is not developed, and the gains of their approach
were not examined on large datasets.

Cascaded classification with dedicated linear confidence estimations (rather than softmax) appears
in the Conditional Deep Learning (CDL) of [PSR16], however, this approach was not examined on
large datasets and did not discuss an automatic setting of confidence thresholds. Cascaded classifi-
cation with confidence estimation appears also in the SACT mechanism [FCZ+17], an extension of
the prior work by Graves [Gra16] that deals with recurrent neural networks. Confidence estimation
is based on the summation of the halting scores. Computation is terminated as soon the cumulative
halting score reaches a threshold. An interesting aspect of SACT architecture is the feature of spatial
adaptivity. Namely, different computational efforts are spent on different regions of the input image.
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Recently, Bolukbasi et al. [BWDS17] proposed an adaptive-early-exit cascaded classification archi-
tecture. The computation may terminate after each convolutional layer. For every convolutional
layer k, a special decision function γk is trained to whether an exit should be chosen. One of the
drawbacks of this approach is that the decision functions must be re-trained per value of the accept-
able accuracy degradation.

3 Cascaded Inference (CI)

Table 1 lists the parameters and notations introduced in this chapter.

Table 1: Notations and definitions used in this paper
Notation Domain Semantics

ne N Number of training epochs
D N Number of component DNNs in the cascade
C N Number of classes in the classification task
n N Number of ResNet-blocks in a ResNet-module
T Labeled training set, containing pairs of inputs and corresponding labels
M Set of component DNNs that form a cascade (|M | = D)

Mm The mth component in the cascade, m ∈ {0, ..., D − 1}
θconvm Weights and biases of the convolutional layers in component Mm

Θconv Weights and biases of the convolutional layers in the cascade
Θfc Weights and biases of the fully connected layers of the cascade
θfcm Weights and biases of the fully connected layers of component Mm

outm(x) {0, ..., C − 1} Class predicted by component Mm for input x
δm(x) [0, 1] Confidence output by component Mm for input x

δ̂m [0, 1] Confidence threshold of component m

Note: throughout the paper, we use the terms “classifier” and “component DNN” interchangeably.

3.1 Cascaded architecture

A cascade of DNNs is a chain of convolutional layers with branching between layers to a classifier
(see Figure 1). Early termination in cascaded DNN components means that intermediate feature
maps are evaluated by classifiers. These classifiers attempt to classify the feature map and output
a confidence measurement of their classification. If the confidence level is above a threshold, then
execution terminates, and the classification of the intermediate feature map is output. See Figure 1
for an example of a cascaded architecture based on three convolutional layers. Each component in
a cascaded architecture consists of convolutional layers followed by a branching that leads to (1) a
classifier, and (2) the next component.

In our experimentation, we employ ResNet block layers [HZRS16a] as component DNNs in our
cascade. Moreover, in section 6 we show how a large pre-trained model (ResNet-50-v2) can be
quickly transformed into a cascaded architecture.

CONV0 CONV1 CONV2 FC2

out2

δ2

Input

FC0

out0

δ0
FC1

out1

δ1

Figure 1: An example of a cascaded architecture of three component DNNs with early termination.
A cascade of convolutional layers (CONV0, . . . , CONV2) ends with a classifier clf 2. Early termi-
nation is enabled by introducing the classifiers clf i after convolutional layers. Each classifier outputs
a classification outi and a its confidence δi.
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It is tempting to adjust the aforementioned topology of the cascade for even higher computational
reuse. For example, the outi output of the classifier can be fed to the following component (namely
to the CONVi+1). Such an adjustment, however, is not applicable in the case when the CONV
layers are pre-trained in a non-cascaded setup, losing a major advantage of the method we propose.

3.2 Early termination based on confidence threshold

The usage of the threshold for determining early termination in the cascade is listed as Algorithm 1.
The algorithm applies the component DNNs one by one and stops as soon as the confidence measure
reaches the confidence threshold of this component. This approach differs from previous cascaded
architectures in which a combination (e.g., sum) of the confidence measures of the components is
used to control the execution [FCZ+17, CZC+10].

Instead of having D per-component thresholds, one could suggest using a single global threshold
for the whole cascade. Another alternative is to set D · C thresholds for every (component, class)
pair. We empirically compared the three aforementioned approaches and found the first one (per
component thresholds) to be the most effective, which therefore became the approach of our choice.

Algorithm 1 CI(M, δ̂, x)- Cascaded Inference. Early termination takes place as soon as the confi-
dence level reaches the confidence threshold.

1: Input: cascaded model M , thresholds δ̂, input x
2: for m = 0 to D − 1 do
3: (outm(x), δm(x))←Mm(x)

4: if δm(x) ≥ δ̂m then
5: return outm(x)
6: end if
7: end for
8: return outD−1(x)

3.3 Softmax confidence

Every component DNN is terminated by a classifier with one or more FC layers followed by a
softmax function. Let zm ∈ R

C denote the input to the softmax function in the m’th component
of the cascade. Let sm ∈ [0, 1]C denote the softmax vector in the m’th component. The softmax
vector is defined as follows.

Definition 3.1 (softmax). sm[i] = ezm[i]

∑C−1
c=0 ezm[c]

.

Definition 3.2 (confidence measure). The confidence measure δm ∈ [0, 1] is defined by δm ,

maxc{sm[c] | 0 ≤ c ≤ C − 1}.

Definition 3.3 (predicted class). The predicted class outm ∈ {0, . . . , C − 1} is defined to be the
class c such that sm[c] = δm.

4 Training procedure

In this section we present the training procedure of the component DNNs.

Consider a cascaded architecture with D components. We denote this cascade by M =
(M0, . . . ,MD−1), where Mm denotes the m’th component in the cascade. Let Θconv =
{θconv0 , . . . , θconvD−1} denote the weights and biases of the convolutional layers of the compo-
nent DNNs (M1, . . . ,MD−1). Let Θclf = {θclf0 , . . . , θclfD−1} denote the weights and biases of
the classifiers of the component DNNs (M1, . . . ,MD−1).

Let LM (outm, T ) denote a loss function of the cascade M with respect to the output of the m’th
component, averaged over the labeled dataset T . In order to train the cascade M , we propose a
backtrack-training (Algorithm 2) BT(M,T ). We emphasize that the training procedure first opti-
mizes all the convolutional weights together with the weights of the last classifier. Only then, do
we optimize the weights of the classifiers clf i, for 0 ≤ i ≤ D − 2 (i.e., classifiers of intermedi-
ate components). Our approach differs from previous training procedures [TMK16, WYDG17] in
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which the loss functions associated with all the classifiers were jointly optimized. This difference
has two following advantages: (1) the longest computational path of the cascade is trained indepen-
dently of the intermediate loss functions, hence the maximum achievable accuracy of the model is
not compromised. (2) A pre-trained, non-cascaded, architecture can be transformed into a cascade
and then trained according to lines 4-7 of the BT(M,T ) algorithm to fine-tune only the intermediate
classifiers.

Algorithm 2 BT(M,T ) - An algorithm for a backtrack training of the cascade M =
{M0, . . . ,MD−1}. The output is the trained weights of the cascade M

1: Input: cascaded model M , training set T
2: Let Θdeep = Θconv ∪ θclfD−1

3: Θdeep = argminΘdeep
{LM (outD−1, T )}.

4: for m = 0 to D − 2 do
5: θclfm = argminθclfm {LM(outm, T )}.
6: end for
7: return Θconv ∪Θclf

5 Setting of confidence thresholds

In this section, we present an automatic methodology for setting the confidence threshold δ̂m for
every componentMm given an acceptable accuracy degradation ǫ. We note that the hyper-parameter
ǫ is a single parameter for the whole cascade, and the automatic methodology we present determines
an individual confidence threshold for every component in the cascade. The important attribute of
the automatic setting of the confidence thresholds is that one can change them on the fly during the
inference stage.

Let Tm(δ) ⊆ T denote the subset of inputs for which the confidence measure of the mth component
is at least δ.

Tm(δ) , {(x, y) | δm(x) ≥ δ}.

Let γm(δ) denote the number of times the classification output by component Mm is correct for
inputs in Tm(δ).

γm(δ) ,
∑

(x,y)∈Tm(δ)

1{outm(x) = y}.

Let αm(δ) denote the accuracy of component Mm with respect to Tm(δ).

αm(δ) ,

{

γm(δ)
|Tm(δ)| if |Tm(δ)| > 0

0 otherwise

Let α∗
m denote the maximum accuracy for component Mm.

α∗
m , max

δ∈[0,1]
αm(δ).

For an acceptable accuracy degradation ǫ > 0, we define the confidence threshold δm(ǫ) by

δm(ǫ) , min {δ | αm(δ) ≥ α∗
m − ǫ}.

When a cascaded inference is performed using CI(M, δ̂, x)(Algorithm 1), the confidence threshold

vector δ̂ is set as follows. Choose an ǫ ∈ [0, 1], and set δ̂m ← δm(ǫ), for every m. We remark that
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(i) the threshold for the last component should be zero, and (ii) one could use separate datasets for
training the weights and setting the confidence threshold.

In some applications, the desired accuracy metric is “top-K”, meaning that a prediction is regarded
as correct if the top K most confident predictions of a classifier contain the ground truth class. To
choose appropriate thresholds for the top-K metric, the only change to the methodology above is to
set δm(x) to be the sum over the top K elements in the softmax vector.

6 Experimental Setup

In order to examine the usefulness of cascaded inference we performed experiments on CIFAR-10,
CIFAR-100 and SVHN datasets using ResNet-110 architecture and on IMAGENET dataset using
ResNet-50-v2 architecture. The transformation of the ResNet architecture into a cascade was done
by dividing it into three stages; the choice of the layers after which a new stage begins was based
on the structure of the architecture (i.e., between distinct layer blocks, differently color-coded in
Figure 3 of [HZRS16a]). In the resulting cascade, each component DNN consists of a stage and a
classifier, as depicted in Figure 2c. The analysis of the overhead introduced by our transformation is
depicted in Table 2. According to this analysis, the increase in the number of MACs, caused by the
transformation of the ResNet into a cascade of 3 component DNNs, is less than 0.2%.

Input
W x H x C

WxHxC

3x3 conv, C, stride 1

Batch-Normalization

ReLU activation

3x3 conv, C, stride 1

Batch-Normalization

ReLU activation

Output
WxHxC

WxHxC

padd 1 px

padd 1 px

(a) Building-Block

Input
2W x 2H x C/2

WxHxC

3x3 conv, C, stride 2

Batch-Normalization

ReLU activation

3x3 conv, C, stride 1

Batch-Normalization

ReLU activation

Output
WxHxC

Downsample
Width,Height

By 2

Pad Depth
With C/2

Zero planes

WxHxC/2

WxHxCWxHxC

padd 1 px

padd 1 px

(b) Building-Block-i

Input
32 x 32 x 3

3x3 conv, 16, stride 1

Batch-Normalization

ReLU activation

padding=1px

32x32x16

Block-layer 0
(n building-blocks)

Block-layer 1
(1 building-block-i)

(n-1 building-blocks)

Block-layer 2
(1 building-block-i)

(n-1 building blocks)

32x32x16

16x16x32

8x8x64

Global Average Pooling

Fully Connected

64x1

10x1

Softmax

10x1 Out_2

Average Pooling stride 8

Fully Connected

4x4x16 flattened to 256x1

10x1

Softmax

10x1 Out_0

Batch Normalization

ReLU activation

Fully Connected

64x1

Average Pooling stride 8

Fully Connected

2x2x32 flattened to 128x1

10x1

Softmax

10x1 Out_1

Batch Normalization

ReLU activation

Fully Connected

64x1

(c) Cascaded ResNet

Figure 2: (a) - building-block. (b) - first building-block in each block-layer performs a sub-sampling
using stride 2. (c) - the cascaded version of ResNet architecture, parameterized by n such that the
number of layers in it is 2 + 6n. For instance, setting n = 18 yields the structure denoted ResNet
110 in the literature.

Table 2: Number of MAC operations required for a single inference in ordinary ResNet models and
in their cascaded counterparts.

ResNet-110 ResNet-50-v2

non-Cascaded 253, 953, 214 4, 037, 883, 817

Cascade - total 253, 978, 670 4, 044, 633, 979
component DNN 0 86, 000, 922 1, 817, 092, 009
component DNN 1 84, 068, 170 1, 467, 571, 177
component DNN 2 83, 909, 578 759, 970, 793

Computation increase 0.01% 0.17%
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We trained the cascaded ResNet-110 from scratch with respect to algorithm 2. Simple data augmen-
tation was employed only for CIFAR models as in [HZRS16a]. The optimization of every classifier
was performed with Stochastic Gradient Descent (SGD) for 160 epochs in CIFAR datasets and for
50 epochs for SVHN dataset. Learning rate was scheduled as described in [HZRS16a]. For the
IMAGENET dataset we chose the ResNet-50-v2 [HZRS16b] architecture, which requires roughly
4 Giga-MAC operations per inference and achieves a classification accuracy of roughly 76.51%1.
Deeper models such as ResNet-152 and ResNet-200 require more computation. One could argue
that these deeper architectures contain a great deal of redundant computation without sacrificing
accuracy.

For the IMAGENET experiments, we transformed the official pre-trained Tensorflow [AAB+15]
ResNet-50-v2 model into a 3-stage cascaded architecture by introducing additional classifiers af-
ter every layer block. We then followed lines 4-7 of the BT(M,T ) algorithm (Algorithm 2) to train
the two new classifiers, each of which has 2 FC layers, while freezing all the pre-trained weights.
Source code, for reproducing our IMAGENET results, is publicly available2. This fine tuning of the
pre-trained model took less than 20 hours per classifier using 4 GPUs.

7 Results

7.1 Confidence threshold effect

We trained the cascaded versions of ResNet-110 and ResNet-50-v2 models as described in Section 6.
We evaluated the performance using various ǫ values. The tradeoff between the test-accuracy and
the number of MACs required for a single inference is shown in Figure 3. The MAC counts were
obtained analytically by summing up the linear operations in the convolutional layers and the FC
layers, excluding activations and batch normalization. Quantitative results that appear in Table 3
demonstrate the ability of the cascaded architectures to trade as little as 1.3% of accuracy for a
reduction of 16% − 53% of the computational effort. Note the reduced effect on accuracy for
IMAGENET when accuracy is measured with respect to the top-5 classifications compared to the
top-1 classification (see last two lines in Table 3).

Table 3: Accuracy-computation tradeoffs. - Column 1 lists the tested datasets. Columns 2-4 list
the accuracy of classifier clf i, for i ∈ {0, 1, 2}, with respect to the complete test set. Columns
5-10 list the accuracy of our cascaded architecture for different values of ǫ - the acceptable accuracy
degradation (see Sec. 6 for the details of which network was used for each dataset). Computational
reduction by the cascade for each ǫ is relative to the computational effort of the non-cascaded archi-

tecture M0,1,2 and is defined by 1− #MAC_Count(Cascade(ǫ))
#MAC_Count(M0,1,2)

.

Accuracy of M0,...,m−1 Accuracy(top), computation reduction(bottom)

Dataset M0 M0,1 M0,1,2 ǫ = 0% ǫ = 1% ǫ = 2% ǫ = 4% ǫ = 7% ǫ = 8%

CIFAR-10 77.50% 81.40% 93.10%
93.10% 92.70% 91.90% 91.10% 87.32% 86.35%

6% 27% 34% 42% 50% 52%

CIFAR-100 48.10% 50.00% 70.50%
70.50% 70.65% 70.50% 70.30% 69.94% 69.78%
1% 4% 7% 10% 15% 16%

SVHN 89.80% 85.20% 97.03%
97.03% 95.60% 94.00% 91.30% 89.76% 89.80%

0% 54% 59% 64% 66% 66%

ǫ = 0% ǫ = 1% ǫ = 2% ǫ = 5% ǫ = 6% ǫ = 7%

IMAGENET
46.69% 62.76% 76.51%

76.51% 76.51% 76.50% 75.90% 75.56% 75.19%
top-1 0% 3% 7% 14% 15% 17%

IMAGENET
70.22% 84.31% 93.21%

93.21% 92.84% 92.02% 88.54% 87.30% 86.13%
top-5 0% 11% 17% 28% 31% 33%

7.2 Comparison with Bolukbasi et al.

Figure 3e and Table 4 compare the top-5 accuracy-to-computation tradeoffs of our cascaded infer-
ence against adaptive cascaded inference over ResNet-50 with early exits [BWDS17]. We translated

1https://github.com/tensorflow/models/tree/master/official/resnet
2https://github.com/AnonymousConferenceCode/Cascaded_Inference .

8

https://github.com/tensorflow/models/tree/master/official/resnet
https://github.com/AnonymousConferenceCode/Cascaded_Inference


the speedups presented in [BWDS17] from time to MAC-count speedups for the purpose of compar-
ison to our work (to exclude the impact of software and hardware environments differences). Our
model demonstrates higher accuracy for any given computational effort, in addition to being able to
dynamically adjust to different accuracy-to-computation tradeoffs.
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(e) IMAGENET top-5

Figure 3: Cascaded inference with early termination test accuracy vs. average number of MAC
operations per inference. The measured points on the curves are obtained by considering variable
values of ǫ ∈ {20%, . . . , 1%, 0%}.

7.3 Softmax as a confidence measure

For the cascaded ResNet models, we analyzed the accuracy αm(δ) (see definition in Section 5) of
each classifier independently. The accuracy αm(δ) was measured for δ ∈ [0, 1] using the test-set
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Table 4: Comparison of cascaded inference to [BWDS17] on IMAGENET top-5 metric. Column 1
lists the accuracy lost relative to the original ResNet-50 model. Columns 2 and 3 list the speedups of
the work by Bolukbasi et al. and of our cascaded inference with respect to the full ResNet-50 model.

Speedup is old_MACs
new_MACs

− 1.

Accuracy reduction Bolukbasi et al. 2017 speedup Our Cascade speedup

1% 8% 20%
2% 18% 27%
5% 22% 41%

rather than to the training set. The plots in Figure 4 show how the choice of the threshold provides
control over the test accuracy. Note that the range of αm(δ) starts with the accuracy of clfm and ends
with the accuracy that corresponds to the highest confidence measure. The almost linear behavior of
αm(δ) as a function of δ justifies basing the confidence threshold on the softmax output. We note
that these results were obtained without applying softmax calibration techniques.

In addition, we examined the frequency of the different confidence levels observed at the output of
each classifier in a cascade. This observation is presented in the form of a bar-plot distribution in
Figure 4. The distribution of the first two components of the cascade is relatively uniform. Whereas
the distribution of the confidences of the last classifier has no importance since in our inference

approach the confidence threshold of the last classifier is set to δ̂D−1 = 0.

0.0 0.2 0.4 0.6 0.8
Confidence (δ)

0.0

0.2

0.4

0.6

0.8

Ba
rs
: F

re
qu

en
cy

(δ
)

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Lin
es

: A
cc
ur
ac
y′
m
(δ
)Accuracy′0(δ) of M0

Accuracy′1(δ) of M0→M1
Accuracy′2(δ) of M0→M1→M2
Frequency(δ) of M0
Frequency(δ) of M0→M1
Frequency(δ) of M0→M1→M2

(a) CIFAR-10

0.0 0.2 0.4 0.6 0.8
Confidence (δ)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ba
rs
: F
re
qu
en
cy
(δ
)

0.5

0.6

0.7

0.8

0.9

Lin
es
: A

cc
ur
ac
y′
m
(δ
)Accuracy′0(δ) of M0

Accuracy′1(δ) of M0 M1
Accuracy′2(δ) of M0 M1 M2
Frequency(δ) of M0
Frequency(δ) of M0 M1
Frequency(δ) of M0 M1 M2

(b) CIFAR-100

0.0 0.2 0.4 0.6 0.8
Confidence (δ)

0.0

0.2

0.4

0.6

0.8

1.0

Ba
rs
: F

re
qu

en
cy

(δ
)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Lin
es

: A
cc
ur
ac
y′
m
(δ
)Accuracy′0(δ) of M0

Accuracy′1(δ) of M0→M1
Accuracy′2(δ) of M0→M1→M2
Frequency(δ) of M0
Frequency(δ) of M0→M1
Frequency(δ) of M0→M1→M2

(c) SVHN

0.0 0.2 0.4 0.6 0.8
Confidence (δ)

0.0

0.1

0.2

0.3

0.4

0.5

Ba
rs
: F
re
qu
en
cy
(δ
)

0.5

0.6

0.7

0.8

0.9

Lin
es
: A

cc
ur
ac
y′
m
(δ
)Accuracy′0(δ) of M0

Accuracy′1(δ) of M0 M1
Accuracy′2(δ) of M0 M1 M2
Frequency(δ) of M0
Frequency(δ) of M0 M1
Frequency(δ) of M0 M1 M2

(d) IMAGENET

Figure 4: Softmax as a confidence measure. The line plots show the accuracy αm(δ) of each clas-
sifier in the cascade independently. The bar plot presents the frequency of the different confidence
levels sampled over the test set. All plots were obtained by separately testing the three component
DNNs of the cascaded ResNet.
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8 Discussion and future work

As further research, cascading can be applied to RNNs or alternatively, the impact of depth of feed-
forward DNNs on the confidence estimation can be investigated. A gap between the allowed accu-
racy degradation (ǫ) and the actual test accuracy degradation was especially evident in the CIFAR-
100 dataset. This gap can be bridged by performing softmax-calibration, which can serve as a
practical extension of our study.

9 Conclusions

We showed that using a softmax output as a confidence measure in a cascade of DNNs can provide
a reduction of 15% − 50% in the number of MAC operations while degrading the classification
accuracy by roughly 1%. This approach allows to dynamically change the acceptable accuracy
degradation (ǫ) without retraining because the confidence thresholds are automatically derived from
ǫ. This achieves the second goal of our work.

Secondly, our approach is easily adoptable, since the transformation of the trained non-cascaded
DNN into a cascade of component DNNs requires only training of the auxiliary classifiers, which
are small relative to the original network. In other words, non-cascaded state-of-the-art models can
be transformed into a cascade of component DNNs with very little training involved. Once the
transformation is complete, these models will benefit from less computation during inference.

Finally, we observed a monotone, almost linear, relation between the softmax function and the test
accuracy. This implies that the softmax output is a good estimate of the neural network confidence.
Our approach explicitly demands lower computational effort for inputs that indicate higher confi-
dence. This achieves the first goal of this work.
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