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Jan P. G ö pfert1 Heiko Wersing2 Barbara Hammer1

1Bielefeld University, Germany
2Honda Research Institue Europe, Offenbach am Main, Germany

Abstract
Deep convolutional neural networks have achieved great successes over recent years, particularly in the domain
of computer vision. They are fast, convenient, and – thanks to mature frameworks – relatively easy to implement
and deploy. However, their reasoning is hidden inside a black box, in spite of a number of proposed approaches
that try to provide human-understandable explanations for the predictions of neural networks. It is still a matter
of debate which of these explainers are best suited for which situations, and how to quantitatively evaluate
and compare them [1]. In this contribution, we focus on the capabilities of explainers for convolutional deep
neural networks in an extreme situation: a setting in which humans and networks fundamentally disagree.
Deep neural networks are susceptible to adversarial attacks that deliberately modify input samples to mislead a
neural network’s classification, without affecting how a human observer interprets the input. Our goal with this
contribution is to evaluate explainers by investigating whether they can identify adversarially attacked regions of
an image. In particular, we quantitatively and qualitatively investigate the capability of three popular explainers
of classifications – classic salience, guided backpropagation, and LIME – with respect to their ability to identify
regions of attack as the explanatory regions for the (incorrect) prediction in representative examples from image
classification. We find that LIME outperforms the other explainers.

1 Introduction

In recent years, deep learning has led to astonishing achieve-
ments in several domains, including gaming, machine transla-
tion, speech processing, and computer vision [2]. The deep
neural networks involved act mostly as black boxes, and as a
result they are often met with a certain wariness, especially in
safety-critical environments, matters where fairness is impor-
tant, or when rigorous explanations of a decision are legally
required. A number of approaches have been proposed which
aim to explain the decisions of neural networks to human users.
They include methods that determine particularly relevant input
regions for a certain decision, methods that locally approximate
complex decisions via human-understandable sparse surrogates,
classifier visualization techniques, or more general methods that
supplement automated decisions by a notion of their domain of
expertise, and explicit reject options whenever their validity is
questionable [3, 4, 5, 6].

Explainers need to address two contradictory goals: they need
to preserve the explained (highly nonlinear) model’s behavior as
much as possible, but simplify it such that it becomes accessible
to humans in the form of an explanation. In practice, it is un-
clear in how far established explainers master this compromise.
One problem is that, given an input and a prediction, it is not
necessarily clear what a correct explanation for the prediction
should look like, because the ground truth of which features
truly influence the network’s prediction is unknown. It might be
tempting to judge explanatory methods on whether they succeed
in identifying features that a human observer thinks should be
relevant to the classification, but the existence of adversarial
examples shows that the reasoning of humans and neural net-
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works can differ dramatically. In this contribution, we exploit the
existence of adversarial examples, using localized adversarial
attacks to construct pairs of inputs and predictions together with
ground-truth information about which image pixels determine
the prediction of the network.

Adversarial attacks are an unsolved challenge for deep neural
networks – and more generally for black-box approaches that
aim to classify high-dimensional data as is present in computer
vision. These attacks result in adversarial examples, which are
deliberately generated to fool a classifier. Depending on the
specifics of the attack, it may or may not not be recognizable
by humans, with noticeable artifacts being produced in some
cases [7]. In any case, a proper adversarial attack modifies
a given input in such a way that the attacked neural network
estimates a different (wrong) label, while a human user would
assign the same label to the modified input as to the original
input.

In this contribution, we use adversarial examples as an extreme
setting in which we can investigate the capabilities of explain-
ers with regards to what makes an input adversarial. In other
words, we want to understand how adversarial attacks affect
explanations of predictions of deep neural networks and make
use of them to produce ground-truth explanations, which allows
a quantitative evaluation of explainers. For this we explain ad-
versarial attacks in Section 2. Then, we take a look at three
popular explainers for neural networks in Section 3, namely:

• classic salience [8] maps, which are based on gradients
propagated through a neural network

• guided backpropagation [9], which also takes into ac-
count the representations that are implicitly learned by
neural networks, and
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• LIME [4], which locally approximates the usually
highly nonlinear neural network by a sparse, linear,
human-understandable surrogate model.

In Section 4, we define the setting and evaluate the behavior of
these methods within the field of computer vision: we quantita-
tively evaluate in how far methods that explain the decision of
deep neural networks can locate where an adversarial attack has
modified an image. We finish with a conclusion in Section 5.

2 Adversarial Attacks

Given a classifier f , a sample x and a label y = f (x) that f
assigns to x, the goal of an adversarial attack is to modify x just
enough such that f assigns a different label z to the modified
sample x′, where z , y can be any other label (in which case
the attack is called untargeted) or a specific label (in which
case the attack is called targeted). In the simplest setting, f
is known to the attacker in its entirety. Black-box attacks, on
the other hand, attack deep networks without requiring access
to f itself. Instead, they use a surrogate that is inferred from
a representative training set. In this work we assume that f is
available. Commonly, an untargeted attack on a sample x is
formalized as the optimization problem

min‖x′ − x‖ such that f (x′) , f (x), x′ ∈ C(x), (1)

where C denotes additional constraints on the adversarial ex-
ample x′, such as box constraints or sparsity. Early approaches
aim for an optimization of this problem by standard solvers such
as LBFGS, while more recent approaches vary the objective
and optimization strategies; software suites available include
foolbox [10] and cleverhans [11].

For our evaluation, we need to efficiently perform targeted adver-
sarial attacks constrained to varying regions within a number of
different input images. This process yields adversarial examples
together with ground truth as to which region in an example
is responsible for its (mis-)classification. We use a targeted,
iterative variant of the Fast Gradient Sign Method (FGSM) [12],
the Basic Iterative Method (BIM) [13]. BIM, just as FGSM,
relies on the fact that adversarial attacks can be observed also
for linear mappings in high dimensional input spaces. Based on
this rationale, attacks move an input x along a linear approxima-
tion of the objective J(x, y) of the network, adding the change
ε · sign[∇xJ(x, y)].

Localized attacks

We want to investigate whether an explanation can identify the
attack as the reason for the prediction of the neural network.
For this purpose, we use a modified version of BIM, a localized
attack [7], for which a quantitative evaluation of the question,
whether an explainer identified the right region, is straightfor-
ward: we implement an additional constraint C(x) by allowing
x′ to deviate from the original input image x only in a specified
region of x. This enables us to evaluate the explanation of the
resulting adversarial example by measuring the overlap of the
pixels (i. e. features) that constitute the explanation with those
within the attack region.

3 Explaining Predict ions

There exist different methods to explain predictions as produced
by black-box mechanisms such as deep networks. Explanations
can be either local for the decision f (x) for input x, or they can be
global for the function f . They typically focus on either features
or prototypes as the basic “language” to explain the model. Here,
we are interested in explaining adversarial examples generated
by changing a limited number of features. Hence, we focus on
local explanations of f (x) where x is an adversarial example, and
use for methods that provide a set of features which best explain
this decision. Our quantitative evaluation of the results relies on
the overlap of features which we changed during generation of
an adversarial example x, and the set of features that are used
to explain the decision f (x). We compare three different local
explanation strategies with respect to their ability in identifying
the features where attacks have taken place.

Classic Salience Salience maps were proposed e. g. by Sel-
varaju et al. [8] as a visual feedback about the most relevant
regions of an image for a specific classification. Essentially, an
input feature xi is highlighted according to its relevance for the
classification as given by the gradient ∂J(x, y)/∂xi.

Guided Backpropagation One of the reasons for the success
of deep convolutional networks is attributed to their ability to
learn higher level feature representations of the object as repre-
sented within the activation of the hidden layers [14]. A plain
gradient as used for salience maps does not focus on these
features because it propagates back both positive and negative
contributions of the gradients. Guided backpropagation [9] cir-
cumvents this problem by truncating negative gradients during
backpropagation.

LIME Ribeiro et al. [4] proposed Local Interpretable Model-
agnostic Explanations (LIME) as an agnostic method that does
not use the specific form of the classifying function f that it
explains. It tries to approximate the function f locally around
x by an interpretable surrogate in the form of a sparse model
in features x̃i derived from x. For this purpose, examples are
generated around x by jittering, and labeled according to f .
The resulting training set is used to infer a sparse, explainable,
linear model, which describes f locally around x. For image
classification, the basic features x̃i are typically superpixels,
which are obtained from a perceptual grouping of the image
pixels.

4 Experimental Evaluation

We evaluate the information which is provided by these expla-
nations about adversarial attacks for the popular deep neural
network Inception v3 [15] as provided by pytorch’s torchvision
package. We are interested in two research questions:

R1 Is it possible to uncover substantial information about the
location of adversarial attacks in an image by means of
explainers?

R2 If the answer is yes, are there substantial differences with
regards to the effectiveness of different explanation
strategies as introduced above?



Preprint – Recovering Localized Adversarial Attacks 3

(a) (b) (c)

Figure 1: An adversarial attack: The original image (a) is classified flower. After a localized adversarial attack is performed the
resulting adversarial example (b) is classified wolf spider. The difference (c) between the two images is seemingly random noise.
It is confined to one of the blossoms in the image.

Generating adversarial examples To guarantee that our test
images were not part of the attacked network’s training set, we
use crops of 112 images that we took ourselves. For each attack,
we set the constraint C(x) such that only a relatively small region
within the input image is modified. We obtain those regions
by automatic segmentation using the graph-based algorithm
proposed by Felzenszwalb and Huttenlocher [16] – during this
process, semantics are not explicitly taken into account, and
regions are instead constructed based on color statistics. When
a region contains exactly one object, the attack can resemble
the replacement of said object – to illustrate this, we manually
segment a small number of input images, e. g. the one seen in
Figure 1. Out of every original input image we generate up
to 10 adversarial examples via BIM restricted to the 10 largest
regions (cf. Figure 2). The same target label wolf spider is
used for every attack. If an attack is not successful or ceases
to progress after a certain number of iterations, we discard the
attempt. In total, we produce 608 adversarial examples. With
this setup we can guarantee that there exist different regions of
the same image, which are attacked and should be uncovered,
i.e. finding the location of an attack is a non-trivial task, which
is not already determined by the image itself.

Evaluation of Explanations We explain each adversarial ex-
ample using Classic Salience, Guided Backpropagation, and
LIME. LIME segments the adversarial example into disjoint
superpixels and ranks those by their influence on the prediction.
We look at the 20 most influential superpixels S 1, . . . , S 20 and
see how well the partial union

⋃n
i=1 S i for n = 1, . . . , 20 recovers

the constraint region C. For Classic Salience and Guided Back-
propagation we sort the pixels in the adversarial example by the
`1 norm of the respective gradients, i. e. by their influence on the
prediction. In order to compare the results to those produced by
LIME, we look at the

∣∣∣⋃n
i=1 S i

∣∣∣ pixels with the highest influence
(cf. Figure 3). In total, we compare 12 160 explanations for each
of the three explainers.

To determine how well such a set of pixels P recovers the region
C we calculate the Jaccard Index of the two sets

J(P,C) =
P ∩C
P ∪C

(2)

and a likeness

H(P,C) = 1 −
Ham(P,C)

N
(3)

which we base on the Hamming distance between P and C inter-
preted as binary masks over the entire image with N pixels in
total. Both values are between zero and one, with one indicating
a perfect match.

LIME distinguishes between superpixels that strongly contribute
towards a certain prediction and those that strongly oppose it.
We only take into account the former, and in order to interpret
the salience maps accordingly, we discard negative gradients in
the input layer before we calculate the gradients’ magnitudes.

Results When we compare the explanations provided by
LIME with the ground truth, if for a certain n ∈ {1, . . . , 20}
the partial union

⋃n
i=1 S i contains all ground-truth pixels, larger

unions can only perform worse. We see this in Figure 4, where
the best Jaccard index is reached early for a relatively small
number of pixels in the explanation. Classic salience and guided
backpropagation behave comparably. To demonstrate that the
obtained values are indeed meaningful, we include a random
baseline – selecting pixels at random yields a very low Jaccard
index.

Note that the default segmentation algorithm inside LIME differs
from the one we use to automatically determine regions we
attack. Hence, it is almost impossible for LIME to achieve
perfect scores.

To compare all three explainers with regards to the entire 608 ad-
versarial examples, we rank them according to the Jaccard index
and Hamming index for each example from 1 (best) to 3 (worst).
The mean ranks are listed in Table 1. LIME outperforms the

Table 1: Mean ranks for all three explainers over all 12 160 ex-
planations with respect to the Jaccard index and the Hamming-
based likeness. 1.0 is best, 3.0 is worst.

Mean rank

Explainer Jaccard Hamming

Classic salience 2.58 2.59
Guided backprop 2.06 2.03
LIME 1.36 1.38
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Figure 2: Overview of our process of generating multiple adversarial examples via localized adversarial attacks from a single input
image. First, the image is automatically segmented. Then, the largest segments are chosen and individually used to constrain an
adversarial attack.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Partial explanations for the adversarial example from Figure 1 for classic salience (d), guided backpropagation (e), and
LIME (f). (c) is the ground truth. White indicates pixels relevant for the classification. All explanations contain the same number
of white pixels.

other two methods, even though those are based on gradients,
just as the adversarial attacks.

All explainers include pixels outside the ground-truth region in
their explanations. This is especially noticable for LIME, where
entire contiguous segments are selected. This is to be expected,
because the neural network’s prediction is reached considering
the entire input image. Our attacks only change the prediction
from one label to a different one. Pixels outside the attacked
region can still contribute to both.

5 Conclusion

The results in Section 4 allow us to answer the initial two re-
search questions:

R1 All three tested explanation techniques detect a substantial
part of the region where adversarial attacks have taken
place which is clearly better than random.

R2 Explanation methods that focus on semantics rather than
mere gradients, as offered by guided backpropagation
and LIME, perform distinctly better in the tested set-
tings.

The latter finding is particularly interesting in the sense that
saliency is essentially based on the same information, which
also guides adversarial attacks, namely gradient information.
Still, LIME or truncated gradient, both relying on simplifying
assumptions, result in a better recovering of the regions where
attacks have taken place.

We have investigated the behavior of explanatory methods for
deep learning when confronted with adversarial examples. We
found that semantics-based approaches in particular are able to
identify a substantial part of regions in which an attack has taken
place, for a representative set of samples.

In general, we desire a better understanding of adversarial at-
tacks, robustness against them, the certainty of predictions and
their explanations, and of how deep convolutional neural net-
works divide the input space into class regions. With this work,
we contribute but a small step towards a more comprehensive
grasp of these interlinked concepts. Understanding how labels
relate to each other might allow us to construct ground truth
with a clearer distinction between strongly and weakly relevant
pixels, so that pixels outside attacked regions do not contribute
to the prediction as much. Unfortunately, current state-of-the-art
classifiers ignore semantic similarities between classes.

Our findings support the idea that it is possible to recover re-
gions that are – by design – the cause for incorrect (adversarial)
classifications. In subsequent work we will investigate whether
our findings generalize to alternative classification methods and
whether explanations of adversarial examples display systematic
differences when compared to explanations of proper (correctly
classifiable) samples. Furthermore, we will produce an exten-
sion towards an interactive scenario in which a human user
is aided in understanding principles and pitfalls of automated
classification.
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Figure 4: Jaccard index and Hamming-based likeness for different explanation sizes for the adversarial example from Figure 1.
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