Skip to main content

Composite Quantile Regression Long Short-Term Memory Network

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11730))

Abstract

Based on quantile long short-term memory (Q-LSTM), we consider the comprehensive utilization of multiple quantiles, proposing a simultaneous estimation version of Q-LSTM, composite quantile regression LSTM (CQR-LSTM). The method simultaneously estimates multiple quantile functions instead of estimating them separately. It makes sense that simultaneous estimation allows multiple quantiles to share strength among them to get better predictions. Furthermore, we also propose a novel approach, noncrossing composite quantile regression LSTM (NCQR-LSTM), to solve the quantile crossing problem. This method uses an indirect way as follows. Instead of estimating multiple quantiles directly, we estimate the intervals between adjacent quantiles. Since the intervals are guaranteed to be positive by using exponential functions, this completely avoids the problem of quantile crossing. Compared with the commonly used constraint methods for solving the quantile crossing problem, this indirect method makes model optimization easier and more suitable for deep learning. Experiments on a real wind speed dataset show that our methods improve the probabilistic prediction performance and reduce the training cost. In addition, our methods are simple to implement and highly scalable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bang, S., Cho, H., Jhun, M.: Simultaneous estimation for non-crossing multiple quantile regression with right censored data. Stat. Comput. 26(1–2), 131–147 (2016). https://doi.org/10.1007/s11222-014-9482-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Bassett Jr., G., Koenker, R.: An empirical quantile function for linear models with IID errors. J. Am. Stat. Assoc. 77(378), 407–415 (1982). https://doi.org/10.1080/01621459.1982.10477826

    Article  MathSciNet  MATH  Google Scholar 

  3. Cannon, A.J.: Quantile regression neural networks: implementation in R and application to precipitation downscaling. Comput. Geosci. 37(9), 1277–1284 (2011). https://doi.org/10.1016/j.cageo.2010.07.005

    Article  Google Scholar 

  4. Cannon, A.J.: Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes. Stochast. Environ. Res. Risk Assess. 32(11), 3207–3225 (2018). https://doi.org/10.31223/osf.io/wg7sn

    Article  Google Scholar 

  5. Constante-Flores, G.E., Illindala, M.S.: Data-driven probabilistic power flow analysis for a distribution system with renewable energy sources using monte carlo simulation. IEEE Trans. Ind. Appl. 55(1), 174–181 (2019). https://doi.org/10.1109/icps.2017.7945118

    Article  Google Scholar 

  6. Gan, D., Wang, Y., Zhang, N., Zhu, W.: Enhancing short-term probabilistic residential load forecasting with quantile long-short-term memory. J. Eng. 2017(14), 2622–2627 (2017). https://doi.org/10.1049/joe.2017.0833

    Article  Google Scholar 

  7. Gers, F.A., Eck, D., Schmidhuber, J.: Applying LSTM to time series predictable through time-window approaches. In: Tagliaferri, R., Marinaro, M. (eds.) Neural Nets WIRN Vietri-01, pp. 193–200. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0219-9_20

    Chapter  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Huang, Z., Xu, W., Yu, K.: Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991 (2015)

  10. Jeong, M.C., Lee, S.J., Cha, K., Zi, G., Kong, J.S.: Probabilistic model forecasting for rail wear in seoul metro based on bayesian theory. Eng. Fail. Anal. 96, 202–210 (2019). https://doi.org/10.1016/j.engfailanal.2018.10.001

    Article  Google Scholar 

  11. Koenker, R., Hallock, K.F.: Quantile regression. J. Econ. Perspect. 15(4), 143–156 (2001). https://doi.org/10.1257/jep.15.4.143

    Article  Google Scholar 

  12. Liu, Y., Wu, Y.: Simultaneous multiple non-crossing quantile regression estimation using kernel constraints. J. Nonparametric Stat. 23(2), 415–437 (2011). https://doi.org/10.1080/10485252.2010.537336

    Article  MathSciNet  MATH  Google Scholar 

  13. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: Proceedings, p. 89. Presses universitaires de Louvain (2015)

    Google Scholar 

  14. Takeuchi, I., Le, Q.V., Sears, T.D., Smola, A.J.: Nonparametric quantile estimation. J. Mach. Learn. Res. 7(Jul), 1231–1264 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  16. Xu, Q., Deng, K., Jiang, C., Sun, F., Huang, X.: Composite quantile regression neural network with applications. Expert Syst. Appl. 76, 129–139 (2017). https://doi.org/10.1016/j.eswa.2017.01.054

    Article  Google Scholar 

  17. Zongxia, X., Yong, X., Qinghua, H.: Uncertain data classification with additive kernel support vector machine. Data Knowl. Eng. https://doi.org/10.1016/j.datak.2018.07.004

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grants 61432011, U1435212, 61105054, and Open Research Program of Key Laboratory of Solar Activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Z., Wen, H. (2019). Composite Quantile Regression Long Short-Term Memory Network. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series. ICANN 2019. Lecture Notes in Computer Science(), vol 11730. Springer, Cham. https://doi.org/10.1007/978-3-030-30490-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30490-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30489-8

  • Online ISBN: 978-3-030-30490-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics