Skip to main content

Quality of Prediction of Daily Relativistic Electrons Flux at Geostationary Orbit by Machine Learning Methods

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11730))

Abstract

This study presents the results of prediction 1–3 days ahead for the daily maximum of hourly average values of relativistic electrons flux (E > 2 MeV) in the outer radiation belt of the Earth. The input physical variables were geomagnetic indexes, interplanetary magnetic field, solar wind velocity and proton density, special ultra-low frequency (ULF) indexes and hourly average values of relativistic electron flux. The phase-space for each physical component was reconstructed by time delay vectors with their own different embedding dimensions, and all of these vectors were concatenated. Next, various adaptive models were trained on this multivariate dataset. The following models were used for prediction: multi-dimensional autoregressive model, ensembles of decision trees within bagging approach, artificial neural networks of multi-layer perceptron type. The obtained results are analyzed and compared to the results of similar predictions by other authors. The best prediction quality was demonstrated by ensembles of decision trees. Also it has been demonstrated that using embedding depth based on autocorrelation function significantly improves prediction quality for one day prediction horizon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kataoka, R., Miyoshi, Y.: Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit. Ann. Geophys. 26, 1335–1339 (2008). https://doi.org/10.1029/2010SW000571

    Article  Google Scholar 

  2. Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.P.: Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, 1529–1561 (2003). https://doi.org/10.1029/2002GL016513

    Article  Google Scholar 

  3. Dorman, L., Iucci, N., Belov, A.: Space weather and space-crafts anomalies. Annales Geophys. 23(9), 3009–3018 (2005). https://doi.org/10.5194/angeo-23-3009-2005

    Article  Google Scholar 

  4. Friedel, R.H., Reeves, W.G.P., Obara, T.: Relativistic electron dynamics in the inner magnetosphere – a review. J. Atmos. Sol.-Terr. Phys. 64(2), 265–283 (2002). https://doi.org/10.1016/S1364-6826(01)00088-8

    Article  Google Scholar 

  5. Iucci, N., Levitin, A., Belov, A.: Space weather conditions and spacecraft anomalies in different orbits. Space Weather 3(1), S01001 (2005). https://doi.org/10.1029/2003SW000056

    Article  Google Scholar 

  6. Baker, D.N., McPherron, R.L., Cayton, T.E., Kebesadel, R.W.: Linear prediction filter analysis of relativistic electron properties at 6.6 RE. J. Geophys. Res. 95(A9), 15133–15140 (1990)

    Article  Google Scholar 

  7. Koons, H., Gorney, D.: A neural network model of the relativistic electron flux at geosynchronous orbit. J. Geophys. Res. 96, 5549–5556 (1990). https://doi.org/10.1029/90JA02380

    Article  Google Scholar 

  8. Fukata, M., Taguchi, S., Okuzawa, T., Obara, T.: Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms. Ann. Geophys. 20(7), 947–951 (2002). https://doi.org/10.5194/angeo-20-947-2002

    Article  Google Scholar 

  9. Ling, A., Ginet, G., Hilmer, R., Perry, K.: A neural network-based geosynchronous relativistic electron flux forecasting model. Adv. Space Res. (Space Weather) 8(9), S09003 (2010). https://doi.org/10.1029/2010SW000576

    Article  Google Scholar 

  10. Myagkova, I., Dolenko, S., Shiroky, V., Sentemova, N., Persiantsev, I.: Horizon of neural network prediction of relativistic electrons flux in the outer radiation belt of the earth. In: ACM Proceedings, EANN 2015 Proceedings of the 16th International Conference on Engineering Applications of Neural Networks, article no. 9 (2015). https://doi.org/10.1145/2797143.2797169

  11. Myagkova, I., Shiroky, V., Dolenko, S.: Effect of simultaneous time series prediction with various horizons on prediction quality at the example of electron flux in the outer radiation belt of the earth. In: Villa, Alessandro E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 317–325. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_38

    Chapter  Google Scholar 

  12. Myagkova, I.N., Dolenko, S.A., Efitorov, A.O., Shiroky, V.R., Sentemova, N.S.: Prediction of relativistic electron flux in the Earth’s outer radiation belt at geostationary orbit by adaptive methods. Geomag. Aeron. 57(1), 8–15 (2017). https://doi.org/10.1134/S0016793217010108

    Article  Google Scholar 

  13. Efitorov, A., Myagkova, I., Sentemova, N., Shiroky, V., Dolenko, S.: Prediction of relativistic electrons flux in the outer radiation belt of the earth using adaptive methods. In: Samsonovich, A.V., Klimov, V.V., Rybina, G.V. (eds.) Biologically Inspired Cognitive Architectures (BICA) for Young Scientists. AISC, vol. 449, pp. 281–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32554-5_36

    Chapter  Google Scholar 

  14. ACE Project Team. Advanced Composition Explorer (ACE) Home Page. http://www.srl.caltech.edu/ACE/

  15. World Data Center for Geomagnetism. Geomagnetic Data Service in Kyoto. http://wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html

  16. GOES Space Environment Monitor - Data Access. https://www.ngdc.noaa.gov/stp/satellite/goes/dataaccess.html

  17. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. Otexts (2012). https://www.otexts.org/book/fpp

  18. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1023/A:1018054314350

    Article  MATH  Google Scholar 

  20. Haykin, S.O.: Neural Networks and Learning Machines, 3rd edn. Pearson, London (2008)

    Google Scholar 

  21. Simms, L.E., Engebretson, M.J., Pilipenko, V., Reeves, G.D., Clilverd, M.: Empirical predictive models of daily relativistic electron flux at geostationary orbit: multiple regression analysis. J. Geophys. Res. Space Phys, 121, 3181–3197 (2016). https://doi.org/10.1002/2016JA022414

    Article  Google Scholar 

  22. Efitorov, A.O., Myagkova, I.N., Dolenko, S.A.: Prediction of maximum daily relativistic electron flux at geostationary orbit by adaptive methods. In: Proceedings of 11th Intl School and Conference “Problems of Geocosmos”, St. Petersburg, Russia, pp. 206–212, 03–07 October 2016. http://geo.phys.spbu.ru/materials_of_a_conference_2016/STP/27_Efitorov.pdf

  23. Geophysical Center of Russian Academy of Sciences. ULF Data Access. http://ulf.gcras.ru/index.html

  24. Chen, Y., Reeves, G.D., Fu, X., Henderson, M.: PreMevE: new predictive model for megaelectron-volt electrons inside Earth’s outer radiation belt. Space Weather 17, 438–454 (2019). https://doi.org/10.1029/2018SW002095

    Article  Google Scholar 

Download references

Acknowledgements

This study has been conducted at the expense of Russian Science Foundation, grant no. 16-17-00098.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irina Myagkova or Sergey Dolenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myagkova, I., Efitorov, A., Shiroky, V., Dolenko, S. (2019). Quality of Prediction of Daily Relativistic Electrons Flux at Geostationary Orbit by Machine Learning Methods. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Text and Time Series. ICANN 2019. Lecture Notes in Computer Science(), vol 11730. Springer, Cham. https://doi.org/10.1007/978-3-030-30490-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30490-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30489-8

  • Online ISBN: 978-3-030-30490-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics