Skip to main content

Unsharp Masking Layer: Injecting Prior Knowledge in Convolutional Networks for Image Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Abstract

Image enhancement refers to the enrichment of certain image features such as edges, boundaries, or contrast. The main objective is to process the original image so that the overall performance of visualization, classification and segmentation tasks is considerably improved. Traditional techniques require manual fine-tuning of the parameters to control enhancement behavior. To date, recent Convolutional Neural Network (CNN) approaches frequently employ the aforementioned techniques as an enriched pre-processing step. In this work, we present the first intrinsic CNN pre-processing layer based on the well-known unsharp masking algorithm. The proposed layer injects prior knowledge about how to enhance the image, by adding high frequency information to the input, to subsequently emphasize meaningful image features. The layer optimizes the unsharp masking parameters during model training, without any manual intervention. We evaluate the network performance and impact on two applications: CIFAR100 image classification, and the PlantCLEF identification challenge. Results obtained show a significant improvement over popular CNNs, yielding 9.49% and 2.42% for PlantCLEF and general-purpose CIFAR100, respectively. The design of an unsharp enhancement layer plainly boosts the accuracy with negligible performance cost on simple CNN models, as prior knowledge is directly injected to improve its robustness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/maeotaku/pytorch_usm.

References

  1. Al-Ameen, Z.: Sharpness improvement for medical images using a new nimble filter. 3D Res. 9(2), 12 (2018)

    Article  Google Scholar 

  2. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and pdes. Numer. Math. 105(1), 1–34 (2006)

    Article  MathSciNet  Google Scholar 

  4. Calderon, S., et al.: Assessing the impact of the deceived non local means filter as a preprocessing stage in a convolutional neural network based approach for age estimation using digital hand x-ray images. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 1752–1756. IEEE (2018)

    Google Scholar 

  5. Calderón, S., Moya, D., Cruz, J.C., Valverde, J.M.: A first glance on the enhancement of digital cell activity videos from glioblastoma cells with nuclear staining. In: 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI), pp. 1–6. IEEE (2016)

    Google Scholar 

  6. Chan, T.F., Shen, J.J.: Image processing and analysis: variational, PDE, wavelet, and stochastic methods, vol. 94. SIAM (2005)

    Google Scholar 

  7. da Costa, G.B.P., Contato, W.A., Nazare, T.S., Neto, J., Ponti, M.: An empirical study on the effects of different types of noise in image classification tasks. In: Iberoamerican Conference on Pattern Recognition 2017, abs/1609.02781, pp. 416–424 (2016)

    Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  9. Deserno, T.M.: Fundamentals of biomedical image processing. In: Deserno, T. (ed.) Biomedical Image Processing, pp. 1–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15816-2_1

    Chapter  MATH  Google Scholar 

  10. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6. IEEE (2016)

    Google Scholar 

  11. Gadde, R., Jampani, V., Kiefel, M., Kappler, D., Gehler, P.V.: Superpixel convolutional networks using bilateral inceptions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_36

    Chapter  Google Scholar 

  12. Goëau, H., Bonnet, P., Joly, A.: LifeCLEF plant identification task 2015. In: CLEF: Conference and Labs of the Evaluation forum. CLEF 2015 Working notes, vol. 1391, Toulouse, France. CEUR-WS, September 2015

    Google Scholar 

  13. Goeau, H., Bonnet, P., Joly, A.: Plant identification based on noisy web data: the amazing performance of deep learning (LifeCLEF 2017). In: CLEF 2017 - Conference and Labs of the Evaluation Forum, Dublin, Ireland, pp. 1–13, September 2017

    Google Scholar 

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: Squeezenet: alexnet-level accuracy with 50x fewer parameters and \(<\)1 MB model size. CoRR, abs/1602.07360 (2016)

    Google Scholar 

  17. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  18. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters: image filtering, dense CRFs and bilateral neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4452–4461 (2016)

    Google Scholar 

  19. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced Research)

    Google Scholar 

  20. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, pp. 2278–2324 (1998)

    Article  Google Scholar 

  21. Lee, H., et al.: Fully automated deep learning system for bone age assessment. J. Digit. Imaging 30, 1–15 (2017)

    Article  Google Scholar 

  22. Lee, M.S., Park, C.H., Kang, M.G.: Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging. Comput. Methods Programs Biomed. 152, 45–52 (2017)

    Article  Google Scholar 

  23. Lu, H., Wang, H., Zhang, Q., Won, D., Yoon, S.W.: A dual-tree complex wavelet transform based convolutional neural network for human thyroid medical image segmentation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI), pp. 191–198. IEEE (2018)

    Google Scholar 

  24. Mata-Montero, E., Carranza-Rojas, J.: Automated plant species identification: challenges and opportunities. In: Mata, F.J., Pont, A. (eds.) WITFOR 2016. IAICT, vol. 481, pp. 26–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44447-5_3

    Chapter  Google Scholar 

  25. Nazaré, T.S., da Costa, G.B.P., Contato, W.A., Ponti, M.: Deep convolutional neural networks and noisy images. In: Mendoza, M., Velastín, S. (eds.) CIARP 2017. LNCS, vol. 10657, pp. 416–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75193-1_50

    Chapter  Google Scholar 

  26. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  27. Polesel, A., Ramponi, G., Mathews, V.J.: Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)

    Article  Google Scholar 

  28. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  29. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  30. Serra, J., Soille, P.: Mathematical Morphology and Its Applications to Image Processing, vol. 2. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-011-1040-2

    Book  MATH  Google Scholar 

  31. Sharmila, T.S., Ramar, K., Raja, T.S.R.: Impact of applying pre-processing techniques for improving classification accuracy. SIViP 8(1), 149–157 (2014)

    Article  Google Scholar 

  32. Singh, N.K., Sunaniya, A.K.: An adaptive image sharpening scheme based on local intensity variations. SIViP 11(5), 777–784 (2017)

    Article  Google Scholar 

  33. Strobel, N., Mitra, S.K.: Quadratic filters for image contrast enhancement. In: 1994 Conference Record of the Twenty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 208–212. IEEE (1994)

    Google Scholar 

  34. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826, June 2016

    Google Scholar 

  35. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, pp. 839–846. IEEE (1998)

    Google Scholar 

  36. Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner Stuttgart (1998)

    Google Scholar 

  37. Ye, W., Ma, K.-K.: Blurriness-guided unsharp masking. IEEE Trans. Image Process. 27(9), 4465–4477 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul Calderon-Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carranza-Rojas, J., Calderon-Ramirez, S., Mora-Fallas, A., Granados-Menani, M., Torrents-Barrena, J. (2019). Unsharp Masking Layer: Injecting Prior Knowledge in Convolutional Networks for Image Classification. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics