Skip to main content

Random Drop Loss for Tiny Object Segmentation: Application to Lesion Segmentation in Fundus Images

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

Abstract

Convolutional neural network (CNN), has achieved state-of-the-art performance in computer vision tasks. The segmentation of dense objects has been fully studies, but the research is insufficient on tiny objects segmentation which is very common in medical images. For instance, the proportion of lesions or tumors can be as low as 0.1%, which can easily lead to misclassification. In this paper, we propose a random drop loss function to improve the segmentation performance of tiny lesions on medical image analysis task by dropping negative samples randomly according to their classification difficulty. In addition, we designed three drop functions to map the classification difficulty to drop probability with the principle that easy negative samples are dropped with high probabilities and hard samples are retained with high probabilities. In this manner, not only can the sorting process existing in Top-k BCE loss be avoided, but CNN can also learn better discriminative features, thereby reducing misclassification. We evaluated our method on the task of segmentation of microaneurysms and hemorrhages in color fundus images. Experimental results show that our method outperforms other methods in terms of segmentation performance and computational cost. The source code of our method is available at https://github.com/guomugong/randomdrop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  2. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  3. Guo, S., Li, T., Kang, H., Li, N., Zhang, Y., Wang, K.: L-Seg: an end-to-end unified framework for multi-lesion segmentation of fundus images. Neurocomputing 349, 52–63 (2019). https://doi.org/10.1016/j.neucom.2019.04.019

    Article  Google Scholar 

  4. Guo, S., Wang, K., Kang, H., Liu, T., Gao, Y., Li, T.: Bin loss for hard exudates segmentation in fundus images. Neurocomputing (2019). https://doi.org/10.1016/j.neucom.2018.10.103

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  6. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  7. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678 (2014). https://doi.org/10.1145/2647868.2654889

  8. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 2999–3007 (2017). https://doi.org/10.1109/TPAMI.2018.2858826

  9. Mo, J., Zhang, L., Feng, Y.: Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks. Neurocomputing 290, 161–171 (2018). https://doi.org/10.1016/j.neucom.2018.02.035

    Article  Google Scholar 

  10. Porwal, P., et al.: Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3(3) (2018). https://doi.org/10.3390/data3030025

    Article  Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  12. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017). https://doi.org/10.1109/TPAMI.2016.2572683

    Article  Google Scholar 

  13. Shen, Z., Liu, Z., Li, J., Jiang, Y., Chen, Y., Xue, X.: DSOD: learning deeply supervised object detectors from scratch. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1937–1945 (2017). https://doi.org/10.1109/ICCV.2017.212

  14. Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017). https://doi.org/10.1016/j.ins.2017.08.050

    Article  Google Scholar 

  15. Wilkes, M.V.: The art of computer programming, volume 3, sorting and searching. Comput. J. 17(4), 324–324 (1998). https://doi.org/10.1093/comjnl/17.4.324

    Article  Google Scholar 

  16. Xie, S., Tu, Z.: Holistically-nested edge detection. Int. J. Comput. Vis. 125(1), 3–18 (2017). https://doi.org/10.1007/s11263-017-1004-z

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation (61872200), the National Key Research and Development Program of China (2016YFC0400709), the Science and Technology Commission of Tianjin Binhai New Area (BHXQKJXM-PT-ZJSHJ-2017005), the Natural Science Foundation of Tianjin (18YFYZCG00060) and Nankai University (91922299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, S., Li, T., Zhang, C., Li, N., Kang, H., Wang, K. (2019). Random Drop Loss for Tiny Object Segmentation: Application to Lesion Segmentation in Fundus Images. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics