Skip to main content

FCN Salient Object Detection Using Region Cropping

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11729))

Included in the following conference series:

  • 2603 Accesses

Abstract

An important issue in salient object detection is how to improve the result of saliency map for the reason that it is the basis of many subsequent operations in computer vision. In this paper, we propose a region-based salient object detection model using fully convolutional neural network (FCN) with traditional visual saliency method. We introduce the region cropping and jumping operation into FCN network for a more target-oriented feature extraction, which is a low-level cue based processing. It processes the training images into patches of various sizes and makes these patches jump to convolutional layers with corresponding depths as their input data in training. This operation can preserve the main structure of objects while decrease the background redundancy. In the meantime, it also takes into account topological property, which emphasizes the topological integrity of objects. Experimental results on four datasets show that the proposed model performs effectively on salient object detection compared with other ten approaches, including state-of-the-art ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  2. Frintrop, S., Werner, T., Garcia, G.M.: Traditional saliency reloaded: a good old model in new shape. In: 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 82–90. IEEE Press (2015)

    Google Scholar 

  3. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic saliency using background priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3

    Chapter  Google Scholar 

  4. Jiang, H., Wang, J., Yuan, Z., Liu, T., Zheng, N., Li, S.: Automatic salient object segmentation based on context and shape prior. In: 22nd British Machine Vision Conference, Dundee. BMVA Press (2011)

    Google Scholar 

  5. Guo, C., Ma, Q., Zhang, L.: Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: 21st IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, pp. 1–8. IEEE Press (2008)

    Google Scholar 

  6. Schauerte, B., Stiefelhagen, R.: Quaternion-based spectral saliency detection for eye fixation prediction. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 116–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_9

    Chapter  Google Scholar 

  7. Gu, X., Fang, Y., Wang, Y.: Attention selection using global topological properties based on pulse coupled neural network. Comput. Vis. Image Underst. 117(10), 1400–1411 (2013)

    Article  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, pp. 770–778. IEEE Press (2016)

    Google Scholar 

  9. Li, X., Zhao, L., Wei, L., Yang, M.H.: DeepSaliency: multi-task deep neural network model for salient object detection. IEEE Trans. Image Process. 25(8), 3919–3930 (2016)

    Article  MathSciNet  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 28th IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 3431–3440. IEEE Press (2015)

    Google Scholar 

  11. Liu, T., Sun, J., Zheng, N., Tang, X., Shum, H.: Learning to detect a salient object. In: 20th IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, pp. 353–367. IEEE Press (2007)

    Google Scholar 

  12. Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp. 1155–1162. IEEE Press (2013)

    Google Scholar 

  13. Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 315–327 (2012)

    Article  Google Scholar 

  14. Li, Y., Hou, X., Koch, C., Rehg, J.M., Yuille, A.L.: The secrets of salient object segmentation. In: 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 280–287. IEEE Press (2014)

    Google Scholar 

  15. Everingham, M., Van Gool, L., Williams, C.K., Winn, I.J., Zisserman, A.: The Pascal Visual Object Classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2009)

    Article  Google Scholar 

  16. Jiang, H., Wang, J., Yuan, Z., Wu, Y., Zheng, N., Li, S.: Salient object detection: a discriminative regional feature integration approach. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp. 2083–2090. IEEE Press (2013)

    Google Scholar 

  17. Li, X., Lu, H., Zhang, L., Xiang, R., Yang, M.H.: Saliency detection via dense and sparse reconstruction. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp. 2976–2983. IEEE Press (2013)

    Google Scholar 

  18. Zhu, W., Liang, S., Wei, Y., Sun, J.: Saliency optimization from robust background detection. In: 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 2814–2821. IEEE Press (2014)

    Google Scholar 

  19. Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, Portland, pp. 3166–3173. IEEE Press (2013)

    Google Scholar 

  20. Jiang, B., Zhang, L., Lu, H., Yang, C., Yang, M.H.: Saliency detection via absorbing Markov chain. In: 14th IEEE International Conference on Computer Vision, Sydney, pp. 1665–1672. IEEE Press (2013)

    Google Scholar 

  21. Cheng, M.M., Warrell, J., Lin, W.Y., Zheng, S., Vineet, V., Crook, N.: Efficient salient region detection with soft image abstraction. In: 14th IEEE International Conference on Computer Vision, Sydney, pp. 1529–1536. IEEE Press (2013)

    Google Scholar 

  22. Cheng, M.M., Zhang, G.X., Mitra, N.J., Huang, X., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 409–416 (2011)

    Google Scholar 

  23. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 22th IEEE Conference on Computer Vision and Pattern Recognition, Miami, pp. 1597–1604. IEEE Press (2009)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China under grant 61771145 and 61371148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hua, Y., Gu, X. (2019). FCN Salient Object Detection Using Region Cropping. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics