Skip to main content

A Mixture-of-Experts Model for Vehicle Prediction Using an Online Learning Approach

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing (ICANN 2019)

Abstract

Predicting future motion of other vehicles or, more generally, the development of traffic situations, is an essential step towards secure, context-aware automated driving. On the one hand, human drivers are able to anticipate driving situations continuously based on the currently perceived behavior of other traffic participants while incorporating prior experience. On the other hand, the most successful data-driven prediction models are typically trained on large amounts of recorded data before deployment achieving remarkable results. In this paper, we present a mixture-of-experts online learning model encapsulating both ideas. Our system learns at run time to choose between several models, which have been previously trained offline, based on the current situational context. We show that our model is able to improve over the offline models already after a short ramp-up phase. We evaluate our system on real world driving data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aeberhard, M., et al.: Experience, results and lessons learned from automated driving on Germany’s Highways, 7(1), 42–57. https://doi.org/10.1109/MITS.2014.2360306

    Article  Google Scholar 

  2. Altche, F., de La Fortelle, A.: An LSTM network for highway trajectory prediction. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 353–359. IEEE (2017). https://doi.org/10.1109/itsc.2017.8317913

  3. Bahram, M., Hubmann, C., Lawitzky, A., Aeberhard, M., Wollherr, D.: A combined model- and learning-based framework for interaction-aware maneuver prediction. IEEE Trans. Intell. Transp. Syst. 17(6), 1538–1550 (2016). https://doi.org/10.1109/TITS.2015.2506642

    Article  Google Scholar 

  4. Bekolay, T., et al.: Nengo: a python tool for building large-scale functional brain models. Front. Neuroinform. 7(48) (2014). https://doi.org/10.3389/fninf.2013.00048

  5. Bonnin, S., Kummert, F., Schmüdderich, J.: A generic concept of a system for predicting driving behaviors. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems, pp. 1803–1808 (2012). https://doi.org/10.1109/ITSC.2012.6338695

  6. Colyar, J., Halkias, J.: US Highway 101 Dataset (2017). https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

  7. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory prediction. CoRR abs/1805.06771 (2018). http://arxiv.org/abs/1805.06771

  8. Deo, N., Trivedi, M.M.: Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1179–1184. IEEE (2018). https://doi.org/10.1109/ivs.2018.8500493

  9. DeWolf, T., Stewart, T.C., Slotine, J.J., Eliasmith, C.: A spiking neural model of adaptive arm control. Proc. R. Soc. B 283(48), 20162134 (2016). https://doi.org/10.1098/rspb.2016.2134

    Article  Google Scholar 

  10. Eliasmith, C.: How to Build a Brain: A Neural Architecture for Biological Cognition. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  11. Gomes, H.M., Barddal, J.P., Enembreck, F., Bifet, A.: A survey on ensemble learning for data stream classification. ACM Comput. Surv. 50(2), 1–36 (2017). https://doi.org/10.1145/3054925

    Article  Google Scholar 

  12. Graf, R., Deusch, H., Seeliger, F., Fritzsche, M., Dietmayer, K.: A learning concept for behavior prediction at intersections. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 939–945 (2014). https://doi.org/10.1109/IVS.2014.6856415

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  14. Hoi, S.C.H., Sahoo, D., Lu, J., Zhao, P.: Online learning: A comprehensive survey abs/1802.02871. http://arxiv.org/abs/1802.02871

  15. Lefèvre, S., Vasquez, D., Laugier, C.: A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J. 1(1), 1 (2014). https://doi.org/10.1186/s40648-014-0001-z

    Article  Google Scholar 

  16. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018). https://doi.org/10.1016/j.neucom.2017.06.084

    Article  Google Scholar 

  17. Losing, V., Hammer, B., Wersing, H.: Personalized maneuver prediction at intersections. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6. IEEE (2017). https://doi.org/10.1109/ITSC.2017.8317760

  18. Maye, J., Triebel, R., Spinello, L., Siegwart, R.: Bayesian on-line learning of driving behaviors. In: Proceedings of The International Conference in Robotics and Automation (ICRA) (2011). https://doi.org/10.1109/ICRA.2011.5980414

  19. Mirus, F., Blouw, P., Stewart, T.C., Conradt, J.: Predicting vehicle behaviour using LSTMs and a vector power representation for spatial positions. In: 27th European Symposium on Artificial Neural Networks, ESANN 2019, Bruges, Belgium (2019)

    Google Scholar 

  20. Polychronopoulos, A., Tsogas, M., Amditis, A., Andreone, L.: Sensor fusion for predicting vehicles’ path for collision avoidance systems, 8(3), 549–562. https://doi.org/10.1109/TITS.2007.903439

    Article  Google Scholar 

  21. Taieb, S.B., Hyndman, R.: Boosting multi-step autoregressive forecasts. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 109–117. PMLR. http://proceedings.mlr.press/v32/taieb14.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Mirus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirus, F., Stewart, T.C., Eliasmith, C., Conradt, J. (2019). A Mixture-of-Experts Model for Vehicle Prediction Using an Online Learning Approach. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. ICANN 2019. Lecture Notes in Computer Science(), vol 11729. Springer, Cham. https://doi.org/10.1007/978-3-030-30508-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30508-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30507-9

  • Online ISBN: 978-3-030-30508-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics