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Abstract. We consider the problem of outsourcing computation on
data authenticated by different users. Our aim is to describe and im-
plement the simplest possible solution to provide data integrity in cloud-
based scenarios. Concretely, our multi-key linearly homomorphic signa-
ture scheme (mklhs) allows users to upload signed data on a server, and
at any later point in time any third party can query the server to com-
pute a linear combination of data authenticated by different users and
check the correctness of the returned result. Our construction generalizes
Boneh et al.’s linearly homomorphic signature scheme (PKC’09 [7]) to
the multi-key setting and relies on basic tools of pairing-based cryptog-
raphy. Compared to existing multi-key homomorphic signature schemes,
our mklhs is a conceptually simple and elegant direct construction, which
trades-off privacy for efficiency. The simplicity of our approach leads us
to a very efficient construction that enjoys significantly shorter signa-
tures and higher performance than previous proposals. Finally, we im-
plement mklhs using two different pairing-friendly curves at the 128-bit
security level, a Barreto-Lynn-Scott curve and a Barreto-Naehrig curve.
Our benchmarks illustrate interesting performance trade-offs between
these parameters, involving the cost of exponentiation and hashing in
pairing groups. We provide a discussion on such trade-offs that can be
useful to other implementers of pairing-based protocols.

Keywords: Multi-key homomorphic signatures, cryptographic pairings,
efficient software implementation.

1 Introduction

Outsourcing tasks and data is an increasing need in today’s society. A common
paradigm is to collect data, store and process it on remote servers and finally
return an aggregated result. As an example, consider a fitness program where
devices upload user data to a remote server, a service provider computes on
the outsourced data and informs users with statistics on their average heart-
beat rates, running speed and so on. The very same pattern applies also to
a wide range of data coming from medical, financial or general measurement
sources. Recent scandals have taught us that users should not blindly rely on
the cloud or trust service providers not to misbehave. Therefore, to fully enjoy



the benefits of cloud-based solutions users must be able to somehow “protect”
the tasks and data they outsource. To this end, researchers developed specific
tools for retaining privacy, ensuring correctness and other desirable properties,
such as Private Information Retrieval (PIR), Verifiable delegation of Computa-
tions (VC), (Fully) Homomorphic Encryption (FHE) and Signatures (FHS), to
mention a few.

This work focuses on a special subset of Homomorphic Signature schemes,
namely Multi-Key Homomorphic Signatures (MKHS). In a nutshell, a MKHS
scheme enables a set of multiple signers to independently authenticate their
data, upload data and signatures to a remote server, let any third party (usually
the server) carry out sensible computations and output a “combined” signature
vouching for the correctness of the outcome of the computation, even when this
was carried on data authenticated by different users. We remark that, in this
model, after uploading the authenticated data, the signers are not required to
interact with the cloud or the verifier. While MKHS do not guarantee privacy
of the outsourced data, they target integrity of the information the server pro-
vides to the verifiers. In more detail, homomorphic signatures are a valid defense
against malicious manipulation of data since they not only guarantee that the
data used in the computation was authenticated by each signer involved but also
that the output of the computation is correct. In other words, the “combined”
signature can be used to verify that what the cloud outputs to the verifier is
indeed the answer to the desired computation on the database (and not some
random authenticated record). Existing MKHS constructions are based on lattice
techniques [13], zero-knowledge succinct non-interactive arguments of knowledge
(zk-SNARK) [23], or creative yet convoluted compilers [I4I26]. In this work, we
take multi-key homomorphic signatures as a case of study and propose a new
scheme that we consider conceptually simpler than all existing proposals.

Our Contribution. We aim to provide a MKHS scheme that is simpler to under-
stand and thus can be seen as an easy way to introduce this fairly new research
area. Our scheme, mklhs, allows to authenticate data signed by independent
signers in a concise way and also to authenticate the result of a linear combina-
tion of data signed with different secret keys. While we are restricted to linear
functions only, our signatures are shorter than all existing constructions. De-
spite the lack of full-fledged properties, such as full homomorphism or context
hiding, mklhs has desirable characteristics including better succinctness and per-
formance than previous proposals and relying entirely on standard assumptions
(Random Oracle Model). Our scheme is inspired by the signature scheme by
Boneh et al. [7] for signing a vector space in linear network coding scenarios. We
remove the tools that are network-coding related and use a simple trick to ob-
tain the multi-key features. While this technique is known and implicitly used in
other works (e.g., [I3l26]), here we make a clear explanation of it and show that
a natural application of this technique already brings with a non-trivial con-
struction. Performance-wise, mklhs only requires operations in the base curve
for computing signatures or evaluating functions over authenticated data, while
signature verification requires a product of pairings. We implement mklhs using



pairings defined over elliptic curves using two sets of parameters at the current
128-bit security level: a Barreto-Lynn-Scott [5] curve with embedding degree
12 over a 381-bit prime field (BLS12-381) used in ZCash [25], and a Barreto-
Naehrig [6] curve defined over a 382-bit field (BN-382). Our implementations
illustrate trade-offs among parameters which can be useful to other instantia-
tions of pairing-based protocols. To the best of our knowledge, this constitutes
the first concrete implementation of multi-key homomorphic signature schemes.

Related Work. The notion of homomorphic signature schemes (HS) was intro-
duced by Johnson et al. in [20], together with a security model for HS and a
concrete construction for redactable signatures. Intuitively, this first example of
HS allows to erase part of the message as an homomorphic operation: given a
message m and a signature o of m, anyone can derive from o a new signature
o’ for any message m’ obtained after redacting m. Subsequent proposals ex-
tended the kind of operations supported by HS. The main bulk of work comes
with constructions of linearly homomorphic signatures for linear network cod-
ing [BU7UIT0]. More recently, Catalano et al. [I1] address the question of HS for
higher degree functions and show applications to efficient verifiable computation
of polynomial functions. The first construction of (leveled) fully homomorphic
signatures (FHS) is due to Gorbunov et al. [18]. The scheme presented in [I§] is
a lattice-based HS capable of evaluating arbitrary boolean circuits of bounded
polynomial depth over signed data. However, none of the aforementioned schemes
support computations on data signed by multiple clients.

Agrawal et al. [I] expand the horizon of applications by considering multi-
source signatures in the context of network coding. A few years later, Fiore
et al. [I3] formalize the concept of multi-key homomorphic authenticators and
provided the first constructions of a multi-key homomorphic signature scheme
(MKHS) and of a multi-key homomorphic MAC. The MKHS in [13] is designed
for boolean circuits of bounded depth and can be seen as a (non-trivial) exten-
sion of the FHS scheme in [I§]. A limitation of this work is that the proposed
MKHS scheme is not unforgeable if corrupted parties take part to the computa-
tion. Lai et al. [23] address this issue and show that MKHS unforgeable under
corruption can be constructed using zk-SNARKSs and indeed must rely on non-
falsifiable assumptions. Fiore and Pagnin [I4] put forward a generic compiler
to empower any single-key FHS with multi-key features without adding any se-
curity assumptions on top of the ones required by the base scheme. While the
intuition behind this compiler is quite simple, its formal description gets quickly
entangled. Schabhiiser et al. [26] recently proposed another generic compiler to
obtain multi-key linearly homomorphic authenticators from any signature or
MAC scheme. Their technique relies on asymmetric bilinear groups, is based
on standard assumptions only, and achieves the non-trivial property of context
hiding. In a nutshell, homomorphic signatures that are context hiding guaran-
tee the privacy of the data input to the homomorphic evaluation, as evaluated
authenticators do not leak any information about the input messages.

Our scheme provides the first direct construction of a multi-key linearly ho-
momorphic signature scheme that is not based on a compiler. Albeit lacking



context hiding, our proposal is the simplest and most intuitive HS to enjoy
multi-key features up to date. Suitable application scenarios are contexts involv-
ing public data where authenticity is preferable to confidentiality, e.g., processing
pollution values recorded by sensors scattered around the city, simple statistic on
public data such as weather forecast, among others. Moreover, compared to [26],
we achieve concretely better succinctness: while the asymptotic bound is the
same for both (O(t), for t signers involved in the computation), the constants
hidden by the big-oh notation differ considerably. In terms of performance, our
implementations show that mklhs outperforms [26] in all protocol operations (see
Section [4] for further details).

2 Preliminaries

In this section, we recall the fundamental definitions of bilinear pairings and
multi-key homomorphic signatures. In what follows, we use choosing at random
or randomly choosing to refer to sampling from the given set according to the
uniform distribution. In addition, we write poly(\) to denote a polynomial func-
tion in the variable A, and e a negligible function (i.e., e(A) < 1/poly(}), for any
function poly and large enough values of \).

2.1 Bilinear Pairings and Security Assumptions

An admissible bilinear pairing is a non-degenerate efficiently-computable map
e : G1 x Gy — G defined over groups of prime order g. For efficiency, we assume
here an asymmetric pairing constructed over an ordinary pairing-friendly curve
with embedding degree k. In practice, groups G; and Gg are then chosen as
subgroups of points in elliptic curves E and d-degree twist E’ defined over a
finite field I, and its extension x4, respectively, and Gr is a subgroup of the
multiplicative group of the related finite field F;k.

The core property of the map e is linearity in both arguments, allowing
the construction of novel cryptographic schemes with security relying on the
hardness of the Discrete Logarithm Problem (DLP) in G1, Gy and Gr. Security
of pairing-based protocols typically relies directly or indirectly on the hardness
of solving the Bilinear Diffie-Hellman problem (BDHP) of computing e(g, h)*¢
given g, g%, g%, g%, h, h*,h® h¢ for g € Gy, h € Gy and a,b, c € Zy. The security of
our particular scheme depends on the hardness of the co-Computational Diffie-
Hellman problem (co-CDH) in the bilinear setting:

Definition 1 (co-CDH). Given g € Gy and h,h* € Ga, compute g* € G.

2.2 Multi-Key Homomorphic Signatures

The seminal notions of homomorphic signatures consider only authenticated
data and a function to be evaluated on the data and the signatures. While
this is a direct approach, more recent work on homomorphic authenticators and



especially on multi-key variations thereof points out the need to authenticate
data “in a context”. Intuitively, we are not interested in verifying that a certain
value m is the output of function f on some authenticated data, but rather
that m is the output of f on precisely the data asked to be computed on. This
linkability property allows us to put the values into a well-defined context. The
cryptographic artifact that is used to formalize the intuition above is called a
labeled program.

Definition 2 (Labeled Programs [17]). A labeled program P is a tuple of
form (f,q,...,¢,) where f is a function f : M™ — M that takes as input n
messages and returns a single value, while ¢y, ..., £, € {0,1}* are the n labels
that identify each input of f.

In this work, we follow the mainstream approach to include the identity of users
in the labels. A meaningful definition of multi-key HS requires the signatures to
be verified with respect to the set of keys used to sign the inputs to the compu-
tation. Our labels are of the form ¢ = (id, 7) where id is a user’s identifier (we
often refer to it as identity) and 7 is a tag, a string used to uniquely identify a
data item from user id. As a general rule, n denotes the number of inputs to the
labeled program (essentially the number of messages involved in the computa-
tion), while ¢ denotes the number of distinct entities contributing with data to
the computation. Therefore it holds that n > t. For further details we refer the
reader to [I3IT4UTT].

Next, we present the definition of multi-key homomorphic signatures. For
completeness, we include dataset identifiers A in the general definitions, even
though these will be dropped in our construction (where they can trivially be
included into the tags as shown in [I3]). Intuitively, dataset identifiers enable
users to authenticate data on different databases, or to sign a new message
under the same label (but for a different A).

Definition 3 (Multi-Key Homomorphic Signatures [13]). A multi-key
homomorphic signature scheme MKHS is a tuple of five PPT algorithms MKHS =
(Setup, KeyGen, Sign, Eval, Verify) defined as follows.

Setup(1*): The setup algorithm takes as input the security parameter and
outputs some public parameters pp including a description of an identity space
ID, a tag space T a message space M and a set of admissible functions F.

KeyGen(pp): The key generation algorithm takes as input the public parame-
ters and outputs a pair of keys (sk,pk) to which is associated an identity id.

Sign(sk, A, £, m): The sign algorithm takes as input a secret key sk, a dataset
identifier A, a label ¢ = (id, T) for the message m, and it outputs a signature o.

Eval(P, {pki4 }ideP, 01, ..., 0n): The evaluation algorithm takes as input a la-
beled program P = (f, {1, ...,£,) a set of public-keys and signatures, and outputs
an homomorphic signature o.

Verify (P, A, {pkiq }idep, m, ) : The verification algorithm takes as input a la-
beled program P, a dataset identifier A, the set of public keys defined by the
labels in P, a message m and an homomorphic signature o. It outputs 0 (reject)
or 1 (accept).



In this work, we consider a special family of MKHS, namely schemes that sup-
port evaluation of solely linear functions. When referring to MKHS schemes we
give for granted that the construction satisfies the properties of authentication
correctness, evaluation correctness and compactness described below.

Authentication Correctness. Intuitively, this property states that every signa-
ture output by the Sign algorithm for a message m and label ¢ verifies suc-
cessfully, with overwhelming probability, against m, ¢ and labeled program 7
corresponding to the identity function for label ¢. Formally, a multi-key homo-
morphic signature satisfies authentication correctness if for all public param-
eters pp < Setup(1}), any database identifier A, any key pair (skig, pkiy) <
KeyGen(pp), any label ¢ = (id,7) € ID x T, any message m € M and any
signature o < Sign(sk, A, ¢, m), it holds that

Pr [Verify(Zy, A, pk,m,0) =1]>1—¢.

Evaluation Correctness. Intuitively, this property states that if the signatures
input to the Eval algorithm satisfy authentication correctness, then Eval out-
puts signatures that, with overwhelming probability, verify successfully for the
appropriate value m and labeled program P’ (seen as the composition of mul-
tiple labeled programs). Formally, a multi-key homomorphic signature satisfies
evaluation correctness if

Pr [MKHS.Verify(P’, A, {pki4 tiazepr,m',0') =1] > 1 —¢,

where the equality holds for a fixed description of the public parameters pp «+
Setup(1?), an arbitrary set of honestly generated keys (skiq, pky) < KeyGen(pp),
a function f : M"™ — M, any dataset A, and any set of program/message/
signature triples {(P;, mi, 0;) }ic[n) such that Verify(P;, A, {pkig tigep,, mi, 05) = 1
for all ¢ € [n], and m' = g(mq,...,my), P' = g(P1,..., Pn), and o’ « Eval(P,
{Pkiq tider:: {oitiem)-

Succinctness. This is a crucial property for MKHS as it rules out trivial construc-
tions. One could define a MKHS scheme by using a standard (non-homomorphic)
signature scheme, and set the Eval procedure to simply append the input signa-
tures (and corresponding messages). Now, all the workload drops on the Verify
algorithm, that checks the authentication correctness of each individual signa-
ture and its message, and afterwards performs the desired computation on the
authenticated messages. What makes such a solution unattractive is that (i) the
verifier needs to check the validity of n signatures (where n is the number of
inputs to the function it wishes to evaluate) and (ii) the verifier essentially needs
to compute the function itself. The succinctness property guarantees that the
verifier only needs to perform one signature verification. Intuitively, this means
that the size of the signature output by Eval for a labeled program P should be
significantly smaller than n, the input size of P, concretely, it should depend at
most logarithmically in n, and linearly in the number of signers involved in the



computation. More formally, a multi-key homomorphic signature is succinct if
the signature o < Eval(P, {pk }idep,;, {0i }ien)) has size |o| = poly(A,t,logn)
where A denotes the security parameter of the scheme, ¢ = [id € P| denotes
the number of distinct identities involved in the computation and n is the total
number of inputs to P.

Security. Finally, we present the security notion for multi-key homomorphic
signatures. Our definition is equivalent to the one provided by Fiore et al. [13],
however, we split the authentication query phase into two phases: a identity
query one and a sign phase to improve readability and avoid long listing sub-
cases.

Definition 4 (Homomorphic Unforgeability under Chosen Message At-
tack security experiment — HUFCMA).

Setup. The challenger € runs pp < Setup(1*) and returns pp to the adversary
. In addition, € initiates three empty lists, the first one to keep track of
already generated identities Lip < &, the second one for bookkeeping the
dataset/labels/messages that will sign during the game L, < &, and the
third one for corrupted identities Leoy — O .

Identity Queries. The adversary can adaptively submit identity queries of the
form id € ID. Whenever id ¢ Ljp, it means that this is the first query
with identity id, and € generates mew keys for this identity by running
(sk,pk) < KeyGen(pp). Then it numbers the identity as idg, where d =
|Lip| + 1, and adds idgq to the list of already generated identities Lip
L;p U{(id,d, sk, pk)}. Finally, the challenger returns to o the public key
pk. Whenever id € L;p the challenger interprets the query as a corruption
query, so it updates the list of corrupted parties Leow < Leorr Uid and re-
trieves the handle of information containing id from Lip, i.e., (id, d, sk, pk).
Finally, the challenger returns to o/ the secret key sk corresponding to the
queried identity.

Sign Queries. The adversary can adaptively submit queries of the form (A, ¢, m),
where A is a database identifier, £ = (id, 7) is a label in ID x T and m € M
is a message. The challenger ignores the query whenever (A,¢,-) € Ly, i.c.,
the adversary has already asked a signature for label £ in the dataset A; or
(id,-+-) € Lip, i.e., the identity specified in ¢ = (id, T) has not yet been gen-
erated. Otherwise, the challenger computes o < Sign(skiq, A, ¢, m), updates
the list L, < Ly U (A, ¢, m) and returns o to the adversary.

Forgery. At the end of the game, the adversary & outputs a tuple

(P*a A*7 {Pkitj}idep* 3 m*) U*)'
The experiment outputs 1 if the tuple returned by <7 is a forgery (defined
below), and 0 otherwise.

Definition 5. A MKHS scheme is said to be unforgeable if, for every PPT
adversary <, its advantage in winning the security game (HUFCMA) described
before is negligible in the security parameter of the scheme, formally:

Advmkhs, o [A] = Pr[«7 wins the HUFCMA game for MKHS(A) = 1] <e.



Definition 6 (Forgery). We consider an execution of HUFCMA where (P*,
A* {pkiy haepr, m*, o) is the tuple returned by <7 at the end of the experiment.
Let P* = (f*,43,...,£%). The adversary outputs a successful forgery if

Verify(P*, A*, {pkig tidep=, m*,0%) =1
and at least one of the following conditions hold:

Type-1 forgery: the database A* was never initialized during the game, i.e.,
(A*v R ) ¢ L.

Type-2 forgery: for all id € P*, id ¢ Leor and (A*,€f,m;) € L, for all
i € [n], but m* # f*(mq,...,myp).

Type-3 forgery: there exists (at least) one index i € [n] such that €f was
never queried, i.e., (A*,05,) ¢ L, and id; ¢ Leon 18 a non-corrupted identity.

Vg

In all forgery types, the adversary tampers with the result of the computation
by creating a signature o* that verifies an incorrect or un-initialized value m*.
More precisely, type-1 forgeries model cross-database attacks and are relevant
only to constructions that consider multiple datasets. Type-2 forgeries model
attack scenarios where the adversary intents to authenticate a value m* that is
not the correct output of P* when executed over previously signed data. It is
important to notice that all label-message pairs have been queried during the
game. In contrast, type-3 forgeries model attack scenarios where at least one of
the inputs to the labeled program P* has never been initializated during the
security game. In such cases, the adversary has no access to the signature of a
message for a certain label £;. Thus, &/ has the freedom to choose a value m}
for the i-th input to the computation, conditioned to forging a valid signature
for (€5, m7).

In this work we want to provide a construction of a multi-key linearly ho-
momorphic signature scheme that is as simple and intuitive as possible. To this
end, we do not consider multiple datasets, and thus ignore database identifiers
and type-1 forgeries.

3 Our Construction

We propose mklhs, a linearly homomorphic signature scheme that supports com-
putations on data authenticated by different secret keys. Compared to existing
constructions [26], our proposal is conceptually simpler and more direct.

Our scheme is inspired by the linearly homomorphic signature scheme by
Boneh et al. [7] for signing vector spaces in the context of linear network coding.
Concretely, we remove all of the network-coding related machinery from [7] and
modify the resulting scheme to accommodate for homomorphic computations
on signatures generated using different secret keys. The joint signature results
unforgeable under the co-CDH assumption and achieves better succinctness (in
terms of number of entries) than [26] and [13]. Similarly to [7], we work with
Type-2 pairings for clarity and convenience. This gives us a homomorphism ¢



from Gs to G that plays a central role in our security proof. However, standard
tools from the literature can be used to adapt the security proof to the more
efficient Type-3 pairing setting by tweaking the hardness assumption [I2]. A hash
function H : {0,1}* — Gy will also be needed to embed labels in the signatures.

3.1 Intuition

The main algorithms of our construction are detailed in Figure [I} In what fol-
lows, we provide an intuitive description. Our signatures are obtained by hashing
the label corresponding to the desired message to a group element in G;. Sub-
sequently, we multiply this group element by the generator of the elliptic curve
group to the power of the message. Finally, we wrap the result by exponenti-
ating to the secret key. For security, we also need to append the message to
the signatures. While this approach precludes us from achieving context hiding
features, it does not go against the basic requirements of a signature scheme,
namely guaranteeing data integrity and not confidentiality. The homomorphic
evaluation of signatures follows the same aggregation style as [7], with an addi-
tional routine to take care of the second component of the input signatures. In
detail, for every distinct identity that contributed to the computation with a sig-
nature, we identify all of the partial inputs of this identity and homomorphically
combine them into one single component. Finally, for verification, we perform
two consistency checks: first we make sure that the contribution provided by
each signer actually adds up to all the target message (line 3); then we check
that each signer’s contribution verifies, in a batch manner (lines 5 and 6).

The Organize subroutine used by the
evaluation and verification algorithms is
formalized in the pseudocode to the right. 1: OrdID+ @,j« 0,t+0
Given as input a set of elements each con- 9
taining an identity identifier (e.g., the sig-

natures or the labels), it identifies what ’ o

are the different identities, re-labels them 4 if id; ¢ OrdID
according to the order of appearance, and 5 Jj < |0rdID| +1
outputs the ordered set of identities as 6: id; « id;

well as sets of indexes corresponding to - OrdID < OrdID U {id; }
the element connected to each identity. !
Essentially, it translates statements like 8: t+« |OrdID|

Organize(ai, ..., an)

for i € [n]

parse a; = (id;, *)

“without loss of generality, we assume 9: forj € [n]
that the input signatures are grouped per- 10 : lj &
user and that the identities involved have 11 : if id; == id,

indexes from 1 to ¢”. 12 - l « 1, U {4}

return (¢,0rdID, 14, ..., I;).

3.2 Security Analysis

The security of our scheme is supported by the main theorem below.



Eval(f,o1,...,04)

1: parse f=(f1,...,fn) € Zy
2: parse o; = (ids,vi, i) € ID X G1 X Zq

Setup(1*)

1: G <« BilinGroup(X)

2: define S.ets.:lC 3: 4= H’ll ,yifi
ID,7 C {0,1} ~
s: Mcz, 4: out + Organize(o1,...,0,)

5: parse out = (t,0rdID, I, ..., 1¢)
6: forjelt]

Hj = Zielj fi- pi.
KeyGen(pp) return o = (v, fi1, ..., it )-

return pp + (G,ID, M, T).

1: id<ID
Verify (P, {pkyy}, m, o)

2 skig (iZ;

31 pky = g5 € Gy 1: parse P=(f01,..,0,) € Zy x (IDx T)"
return (skig, pk;y, id). 2: parse o = (7, 1,...,jut) € G1 x Z,
t
3: wer; < Boolean [m == Zk—l uk}
) 4: out + Organize({1,...,4n)
Sign(skis, £, m) 5: parse out = (t,0rdID, |4, ..., I;)
. _ L skig + .
1: y=(H()- g1") 6: c= H 6(gi‘J . ‘ H(fz)f’ , pkia')
2 = gj=1 i€l J
Cou=m
return o = (id, 7, 4). 7: wery < Boolean [e(7, g2) == ]

return Boolean [ver; A vers]

Fig. 1. Our mklhs construction.

Theorem 1. The mklhs scheme is secure in the random oracle model assuming
that the co-CDH problem is computationally infeasible. In detail, let </ be a
probabilistic polynomial-time adversary in the security experiment (HUFCMA)
described in Section[2.9, then its advantage is bounded by

1
AdVmkihs, o7 [A] < 3 [RH + Qiq 'AdV}:»CDH[A]} )
where B is a polynomial-time algorithm that solves a co-CDH instance with
probability Adv%CDH[)\], Ry = m is determined by the prime number q cor-
responding to the order of the group Gy (the range of the hash function) and
Qid = poly(\) is the total number of identities generated during the game.

The proof flow works as follows. We begin by ruling out corruption queries
using the generic result by Fiore et al. on the equivalence between multi-key
homomorphic authenticators secure against adversaries that make no corrup-
tion queries and secure against adversaries that make non-adaptive corruption
queries (Proposition 1 in [13]). Next, we consider an adversary that outputs

10



type-3 forgeries and show that it can only succeed with a negligible probability
of Ry = % = m corresponding to randomly guessing H (¢*), the output of
the hash function on the un-queried label. Finally, we exhibit a reduction from
type-2 forgeries to the co-CDH problem that combines techniques for multi-key
settings with a clever embedding of the co-CDH challenge into our signature
scheme. In particular, modulo the multi-key factor, our reduction is conceptu-
ally simpler and more efficient (less probability to abort) than the one used in [7].
This improvement is mainly due to a technical choice: separating hash queries
from sign queries, namely our adversary can perform hash queries only after the
sign-query phase is over. In this way, we avoid to abort every time the reduction
could not program the hash function (as it happens in [7]).

In light of the generic equivalence stated by Fiore et al. in Proposition 1 [I3],
we ignore corruption queries during the security game. Therefore, our initial
game is the security game between the adversary < the challenger € described
at the end of Section [2.2] where no corruptions are allowed, hash queries happen
after the signing query phase and forgeries follow the Definition [f] We prove the
security of our scheme in 2 steps:

(1) we bound the success probability of any PPT adversary that outputs
type-3 forgeries to %;

(2) for any PPT adversary that outputs type-2 forgeries we show a reduction
to a co-CDH instance with factor é where Qiq is the total number of identities
generated during the game (this loss is common to all multi-key homomorphic
signatures schemes to date [I320]).

Type-3 forgeries. Let o be a type-3 forger. By definition, the adversarial output
(P*,m*,0*) contains a label £* € P* for which no signature or hash query has
been performed. This means that in order to verify (P*,m*,o*) the challenger
needs to generate a value for H(£*) on-the-fly. Since € acts as a Random Oracle
on hash queries, the probability that the adversary outputs a valid type-3 forgery
is at most equal to the probability of randomly guessing the value H(¢*) € Gy,
i.e., Rg. Thus

1
Prob[«/ outputs a valid type-3 forgery | < Ry = 7

Given that |G1| = ¢ is a poly())-bit prime, we can make the above probability
arbitrarily small.

Type-2 forgeries. Now consider the case of &/ be a type-2 forger. We define
a reduction # that turns any type-2 forger (against a specific identity) into
solutions of an instance of the co-CDH problem. We recall that we require .« to
perform all sign queries before any hash query. In particular, after the first hash
query &7 is no longer allowed to request new signatures.

Concretely, & takes as input a bilinear group G = (G1, G2, Gr,q, €, ¢), two
generators g1 € Gi, g2 € G2 and a point h = g5 € G. The goal of the reduction
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is to output an element w € Gy such that w = g{. Algorithm % simulates Setup,
KeyGen, Sign and the hash function H of mklhs as follows.

Setup: % utilizes the group homomorphism ¢ to identify the image of g,
in Gy, i.e., (g2) € Gy. Then, B sets 1 = g;p(g2)* for randomly chosen 3,7 <&
Zg4, and outputs the bilinear group G and the generators g, g2. In addition, %
chooses an index j <& [Qid] as a guess that &7 will make a type-2 forgery against
the j-th identity in the system. We will refer to this special identity as the target
identity. Finally, £ initializes three empty lists L;p, Ly and L, to track <7’s
identity, hash and signature queries respectively.

Identity query: on input a query of the form id € ID, # checks if id € L;p
in which case it ignores the query. Otherwise, this is the first query with identity
id. Let ¢ — 1 be the number of identities already present in Lyp, if i € [Qid] ~J
the reduction produces a fresh pair of keys, when i = j the reduction embeds
h as the challenge public key. In detail, for i # j the reduction creates a new
user by choosing a random sk; <& Zg, adding (id, 4, sk;, pk; = g;ki) to Lyp and
returning pk,y. For i = j the reduction stores (id, 7, -, pk; = h) in Lrp and returns
its co-CDH challenge piece h € Gs.

Sign query: on input a query of the form (¢,m), & checks whether &
already queried the label (possibly on a different message), i.e., (¢,-) € L,, or
the identity in £ = (id, 7) has not yet been generated, i.e., (id,-,-,-) ¢ L;p. The
reduction ignores the query if any of the two conditions above is met. Otherwise,
there are three possible scenarios: .

(a) this is the first sign query for the identity id and id # id,

(b) identity id # id was already queried in combination to another label ¢/,

(c) the queried identity is the target identity, i.e., id = id.

So long i # j, the reduction can retrieve (id, i, sk;, pk;) from Lyp and sign in a
perfect manner using sk;. Concretely, in case (a) this is the first sign query for
the identity id, 2 chooses two random values sig,t <> Zq and sets

H(0) = g7 ™™ - o(g2)’ (1)
v = (H(0) - gy (2)
- (3)

In case (b), £ retrieves the identity’s s,q value from an existing record in Ly
with ¢’ = (id,7") and computes , , for a random ¢ <% Zg. In case (c),
i.e., when i = j, the reduction can perfectly simulate the signature thanks to the
special generator g, created in the setup phase. In detail, # chooses a random
t & Zq, uses 5 as the target identity’s “random” sz value and computes

H(l) =g;"™ plg2)’ (4)
v = @(h)Htm (5)
[=m. (6)

where we recall that h = pk; € Go was given to Z by the co-CDH challenger.
In all cases, Z does some bookkeeping by storing (¢, si4,t) in Ly and (£, m, o)
in L,. Finally, 2 returns o = (v, 1) as the answer to &/’s sign query.
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Hash query: let (¢) denote </’s input to the hash oracle with ¢ = (id, 7).
There are three possible scenarios:

(a) this is the first hash query for the identity id and id # id,

(b) identity id # id was already queried in combination to another label ¢/,

(c) the queried identity is the target identity, i.e., id = id.
In the first case, (a), our reduction chooses two random values siq, ¢ i Zq and
sets H({) = g7 "™ ¢(g2)t. To ensure consistency, in case (b), our reduction
retrieves siq from any of the previous hash queries on id present in Ly and
computes H () = g; "™ ¢(go)! for a random ¢ <% Z,. In the last case, (c), our
reduction uses the randomness generated during the setup phase and sets s = 3,
t <2 Z, and computes H(£) = g; "™ p(ga)".

In all cases, & stores (£, si4,t) in Ly and returns H({) € Gy.

It is easy to see that % simulates the security game in a perfect way, as we
show at the end of this section. Assuming for now that the simulation works
fine, we demonstrate how to extract a solution to the co-CDH problem from a
type-2 forgery. Let (P*,m*,c*) be the output of the algorithm 7 at the end of
its interaction with %. Since we are dealing with a type-2 forger it must be the
case that the labeled program P* = (f*,¢1,...,¢,) is well-defined and

{Verify(P*, {pk; }iep+,m*,0%) =1

m* £ f*(mq,...,my)

where m; is the message queried by o7 for the label ¢; during the interaction
with Z. Without loss of generality, we assume the identities involved in P*
be idy,ids, ..., id; and the messages be ordered per-party. In particular, the first
k1 > 0 messages belong to id;, the subsequent k3 > 0 messages belong to ids
and so on, so that 22:1 k; = n (the number of inputs to f). Define f; to be
the labeled program P* restricted to the inputs (labels) of identity id;, so that

k-
= fi+f+.+ffand k=3,77"k; to be the last index before the messages
by id; are input. Our reduction % looks for type-2 forgeries against the user id;,
i.e, forgeries that satisfy

id; e pP*
W # f;(karla-nykark;)

The above conditions ensure that the identity j used to embed the co-CDH
challenge is present in the labeled program and that the corresponding entry in
o*is a type-2 forgery. The reduction aborts every time at least one condition is
not satisfied (this happens with probability % corresponding to the event %

made the wrong guess for the target identity). btherwise, A extracts its output
to the co-CDH challenger from the type-2 forgery against id; as follows. First,
P removes from o* = (v*, u¥, ..., ur) the contributions by all other parties and
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the parts of the forgery that depend ¢(h):
ol 1

Ky = .
k; v sk ~u;vsk,- k= o t'ﬂf
[y (H H(gi)ff') g iy e(R)b - o(R)

i:k‘]’71+1

Note that the left most denominator removes from ~* all contributions by the
identities id; # id>. The right most denominator is constructed with the ran-
domness values present in Ly for the labels related to idj and the messages m;
that were queried together with those labels and stored in L, (note that the m;
exist since this is a type-2 forgery). Let y = 5 - (5 — f;‘(mkH, <oy My k;)) then
2 output to its co-CDH challenger is

1
K =K.

It is straightforward to check that Ky = g{. The way we extract the co-CDH
solution is indeed a generalization of Boneh et al.’s technique [7] to multi-key
signatures. Thus, our reduction transforms type-2 forgeries into a solution to the
co-CDH problem unless it aborts, which leads us to

Advg PR > - Prob[<7 outputs a valid type-2 forgery |.

L
Qid
Combining the bounds we proved on type-3 and type-2 forgeries we obtain:
1 _
AdVmiihs, o (A) < 3 Ry + Qiq - Advy CDH(A)] ;

that proves the security of our mklhs scheme.

Correctness of the simulation. In what follows we argue that our reduction
simulates the answers to signatures and hash queries in a perfect way.

First, we observe that the element g; constructed by &£ is a generator of G
with overwhelming probability and that pk; = h is distributed identically to the
public key produced by the real KeyGen algorithm.

Second, the responses to all hash queries are uniformly random in Gy, thus
simulate the behavior of any cryptographic hash function. Indeed it is possible
to rewrite H(¥) as

H(l) =g, ™™ p(ga)' = gy ™™

where r is a fixed, unknown, value that depends on the homomorphism .
Clearly, the (¢t - r) component in the exponent ensures that the hash values
fall back to the uniform distribution.

Third, on all identities other than the target id; our reduction behaves as in
the real scheme.

Finally, we prove that the signatures output by 4 for the target identity id>
are identical to the signatures that would be output by the real Sign algorithm
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given the public key pki = h, the public parameters output by % and the answers
to hash queries produced by our reduction. In detail, it suffices to show that,
for every pair of label and message the simulated signature output by the %
algorithm equals the real signature on ¢ and m, i.e., the output of Sign(sk;, l,m)
as in Figure [l We show the equality only for the v part of the signature, as the
1 part is trivial. By construction, the output of Sign on the given inputs is:

sk;

(H(0) - 57 = (97" 0(92)" - [oe(92)7] )

_ k=
t+t-m)s i

= (gf FMEST L 5(g2)

= p(R)" T

where the left-hand-side is the real signature and the final right-hand-side term
is the simulated one.

4 Performance Evaluation

Our proposed scheme is well-tailored to asymmetric pairings, as most opera-
tions happen in G;. Key generation is the only important operation involving
arithmetic in G, but it is assumed to happen offline and only once per user. In
detail, it requires just one fixed-base exponentiation in Gy involving the genera-
tor go and the private key. Computing a signature involves hashing the label to
G1, performing a fixed-based exponentiation of a generator g1 € Gy to compute
g, a point addition to compute H () - g7, and a variable-base exponentiation
using the private key to finally compute (H(¢) - g7*)**. Hence, hashing to G,
and variable-base exponentiations dominate the execution time for generating
signatures. The performance-critical operation in the homomorphic evaluation
of mklhs is the multi-exponentiation in Gy that corresponds to the computa-
tion of v =[]}, ’yif ‘. Finally, verifying a multi-key homomorphic signature for
computations involving t signers involves mostly hashing to G, fixed-base ex-
ponentiations in G; and a product of ¢ pairings.

4.1 Implementation

We implemented mklhs within the RELIC library [2] using two sets of supported
parameters at the 128-bit security level. The first choice is the curve BLS12-
381 with embedding degree k = 12 and 255-bit prime-order subgroup used in
the ZCash cryptocurrency [25]. The second choice is a prime-order BN curve
defined over a 382-bit field (BN-382). These choices are motivated by the recent
attacks against the DLP over Gr [22] and are supported by the analysis in [24].
Although recent analysis has point out that even larger parameters may be
needed for 128-bit security [4], our main performance observations should still
hold. The two curves are defined over a prime field F), such that p = 3 (mod 4),
providing an efficient towering for representing IF,» and efficient extraction of
square roots. RELIC provides Assembly acceleration for Intel 64-bit platforms for
both curves using a shared codebase, which means that finite field arithmetic is
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implemented using essentially the same techniques, allowing for fair comparisons
across different curves and protocols. The resulting code is publicly available in
the library repository.

The top two blocks of Table [] list the curves parametrization, while the
bottom block displays the concrete instantiation of zg used in our evaluation.
Both curves have the same format E : y2 = 22 4+ b when represented in short
Weierstrafl equation, therefore the same arithmetic optimizations apply to both
curves. A significant difference comes with the length of parameters, such as
the group size ¢ and cofactor h = #FE/q, which offer interesting performance
trade-offs: hashing and membership testing in G; are faster on the BN curve
due to the prime order (no need to clear cofactors); while exponentiations are
more efficient on the BLS12 curve due to shorter exponents. We could consider
using the short exponent optimization for the BN curve, but these would violate
security assumptions about the distribution of exponents.

Table 1. Parametrization and concrete parameters for the BN and BLS12 pairing-
friendly curves used in our implementation.

BN curves: k=12, p~1
p(2)[3627 +362° 42427 + 62 + 1
q(2)[362* + 362° 4+ 1822 + 62 + 1
t

)

(2) 622 + 1
BLS12 curves: k = 12

p(2)[(z— 1) (" =22+ 1)/3+2

qz)|z* =22 +1

t(z)|z+1

E b 20 [log, p]|[log, q]| [log, A |
BN-382 [2] —(297 427 + 257 1251 1 2T 1 1) [ 382 382 1
BLS12-381|4|— (263 4 262 4 260 4. 257 4 948 4 216)] 381 255 126

We also took side-channel resistance into consideration. The most critical pro-
cedure in our protocol from the point of view of implementation security is the
signature generation. This is due to the fact that all other recurrent procedures
are publicly evaluated and do not involve secret or sensitive information. In the
signature generation, the fixed-base exponentiation does not need counter mea-
sures because messages are assumed to be public. Therefore, the variable-base
exponentiation involving sk is the only operation requiring protection from side-
channel leakage. Our pairing-friendly curves support efficient endomorphisms
that we exploit to speed up the exponentiation [I6]. Moreover, we combine the
GLV scalar decomposition method for the private key [16] with the constant-time
exponentiation based on regular recoding of exponents [21] to implement a side-
channel resistant signing procedure. The GLV decomposition process was imple-
mented in variable time and is assumed to be executed during key generation,
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after which only the subscalars are needed. The constant-time implementation
of exponentiation has the typical constant-time countermeasures, with lookup
in precomputed tables performed by linear scanning across the entire table and
branchless programming to replace all branches with logical operations.

Hashing to pairing groups is commonly implemented using a heuristic try-
and-increment approach, where the string is hashed to the z-coordinate of a point
and incremented until a suitable y-coordinate is found after extracting a square
root using the curve equation. The point (z,y) is then multiplied by the curve
cofactor to guarantee that the resulting point is in the right g-order subgroup. A
problem with this approach is that it lacks any proper guarantees about the out-
put distribution. In particular, it does not satisfy the requirements of a random
oracle assumed in our scheme. We instead employ a Shallue—van de Woestijne
(SW) [27] encoding of strings that is indifferentiable from a random oracle. Con-
cretely, we employ versions of the approach customized to pairing-friendly curves
belonging to the BN [15] and BLS12 families [28]. For BLS12 curves, we imple-
mented the simpler version recently proposed in [28] with the optimization of
replacing the cofactor multiplication inside hashing by the value (1—zg) with low
Hamming weight. Homomorphic evaluation of linear functions over signatures
was implemented with standard binary multi-exponentiation techniques, because
the coefficients are assumed to be small. We implemented products of pairings
using the conventional interleaving techniques to eliminate point doublings in
the pairing computation and share the final exponentiation [19].

For comparison to the related work by Schabhiiser et al. [26], we also im-
plemented their scheme under similar constraints. This protocol requires an un-
derlying conventional signature algorithm, for which we chose the pairing-based
Boneh-Lynn-Schacham (BLS) [9] short signature scheme to rely on the same set
of parameters. Computation of BLS signatures was implemented in constant-
time in the same way as mklhs, because it depends on the secrecy of a long-term
key. All other operations were implemented in variable-time for better perfor-
mance, since they rely only on public or ephemeral data.

4.2 Experimental results and discussion

We benchmarked our implementation on a high-end Intel Core i7-6700K Skylake
processor running at 4.0GHz. We turned off HyperThreading and TurboBoost to
reduce noise in the benchmarks. The benchmarking dataset was created by gen-
erating 10 different users, who sign 16 individual messages each using 16 different
labels. These signatures are collected by a third party, which homomorphically
evaluates a linear function f composed of 16 random 32-bit integer coefficients
across all signatures. The resulting multi-key signature is then verified. Each
procedure is executed 10* times and the timings for mklhs and Schabhiiser et al.
instantiated both with curves BN-382 and BLS12-381 are presented in Table 2
The figures are amortized per user, so similar performance improvements are
expected for datasets of different size.

Our scheme is clearly more efficient than Schabhiiser et al. and trades off
advanced security properties (such as context hiding) in favor of performance
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Table 2. Efficiency comparison of our mklhs with Schabhiiser et al.’s scheme. We
display execution times in clock cycles (cc) for each of the main algorithms in the pro-
tocols. The dataset includes homomorphic evaluation and verification of 16 signatures
computed by 10 users each. Figures represent the average of 10* executions, and fastest
timings are typeset in bold. Timings for signature computation refer to individual sig-
natures, and timings for homomorphic evaluation and verification are amortized per
user. Individual and combined signature sizes are also displayed for reference, assuming
point compression of G; and G2 elements.

Protocol
Schabhiiser et al. [20] mklhs
Operation BN-382 |BLS12-381| BN-382 | BLS12-381
Key Generation (cc) 42,071,481| 28,575,291 879,258 592,454
Signature computation (cc) 5,643,798 4,137,016| 1,552,369 1,257,424
Homomorphic Evalulation (cc) 3,346,135| 3,349,471 666,542 661,664
Verification (cc) 14,702,224] 12,770,063|10,814,364| 10,710,053
Individual signature (bytes) 384 384 96 80
Combined sigs for ¢ signers (bytes)|144 + 240¢| 144 + 240t| 48(1 +¢) 48 + 32t

and compactness. Computing an individual signature in mklhs is more than 3
times faster than in [26]. The homomorphic evaluation of mklhs is also much more
efficient (around 5 times faster), since it does not require exponentiations in Go
to preserve the homomorphism. Verification is up to 26% faster in our proposal,
depending on curve choice. Comparing the two curves in mklhs, we have the
following observations. Key generation and signing are faster on BLS12-381 due
to shorter exponents. BN-382 becomes competitive for homomorphic evaluation
with same-length coefficients, and verification due to faster hashing but slower
exponentiations. Protocols relying heavier on hashing are expected to further
benefit from choosing BN-382 as the underlying pairing-friendly curve.

5 Conclusion

We presented mklhs, a novel multi-key linearly homomorphic signature scheme
that addresses the problem of outsourcing computation on data authenticated by
independent users. Our construction relies solely on standard assumptions (co-
CDH and ROM), is conceptually simpler than existing proposals, and enjoys the
most succinct signatures up to date with just 1 element in G; and t elements
in Zg (t is the number of distinct signers). In addition, mklhs is the first direct
construction of a multi-key linearly homomorphic signature scheme not based
on a compiler. We use standard tools of pairing-based cryptography and design
extremely efficient algorithms for signing, combining and verifying.

Compared to existing schemes, our mklhs scheme substantially improves exe-
cution times for most relevant operations in a multi-key homomorphic signature
scheme, outperforming existing proposals by several times. Valuable pointers to
further improvement include designing a context hiding version of mklhs and
extending homomorphic computations to a wider and more expressive set of
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functions. From the implementation point of view, instantiating the scheme with
other parameters would also allow a better view of performance trade-offs across
different curves.
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