
HAL Id: lirmm-02309203
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02309203

Submitted on 9 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breaking randomized mixed-radix scalar multiplication
algorithms

Jérémie Detrey, Laurent Imbert

To cite this version:
Jérémie Detrey, Laurent Imbert. Breaking randomized mixed-radix scalar multiplication algorithms.
LATINCRYPT 2019 - 6th International Conference on Cryptology and Information Security in Latin
America, Oct 2019, Santiago de Chile, Chile. pp.24-39, �10.1007/978-3-030-30530-7_2�. �lirmm-
02309203�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02309203
https://hal.archives-ouvertes.fr

Breaking randomized mixed-radix scalar
multiplication algorithms

Jérémie Detrey1 and Laurent Imbert2

1 LORIA, INRIA, CNRS, Université de Lorraine, Nancy, France
jeremie.detrey@loria.fr

2 LIRMM, CNRS, Université de Montpellier, Montpellier, France
laurent.imbert@lirmm.fr

Abstract. In this paper we present a novel, powerful attack on a re-
cently introduced randomized scalar multiplication algorithm based on
covering systems of congruences. Our attack can recover the whole key
with very few traces, even when those only provide partial information
on the sequence of operations. In an attempt to solve the issues raised by
the broken algorithm, we designed a constant-time version with no secret
dependent branching nor memory access based on the so-called mixed-
radix number system. We eventually present our conclusions regarding
the use of mixed-radix representations as a randomization setting.

1 Introduction

After more than twenty years of research on side-channel attacks, it is now very
clear that protections of cryptographic implementation are absolutely manda-
tory. The level and type of protections that need to be implemented depend on
the security model. In the software model, one usually simply considers timing
and cache attacks. In the more delicate hardware model, where the adversary
can monitor power or electromagnetic emanation, insert faults, etc., extra conter-
measures are required. This advanced model should also be seriously considered
when writing software for a micro-controller, where the user has full access to
the device and can therefore be the adversary. In this case, randomization is
considered as the number-one countermeasure.

In the context of public-key algorithms, a not so frequent randomization
strategy consists in randomizing the exponentiation or scalar multiplication al-
gorithm itself. This can be achieved by taking random decisions in the course of
the algorithm. In the elliptic curve setting, Oswald and Aigner proposed the use
of randomized addition-subtraction chains [11]. Their solution was broken using
the so-called hidden Markov Model (HMM) cryptanalysis by Karlof and Wag-
ner [9]. Another randomization approach of the same kind was proposed by Ha
and Moon [8]. Their solution based on Binary Signed Digit (BSD) recodings [4]
was broken in [5]. Méloni and Hasan generalized the fractional w-NAF method
by allowing random choices for the expansion digits [10].

The first contribution of this paper is a novel attack on a recently proposed
approach based on covering systems on congruences (CSC) [7]. The threat model

that we consider simply assumes that the attacker can distinguish point dou-
blings from point additions in an execution trace. Our attack only requires a few
traces to recover the whole key.

In a second part, we introduce a new randomized, yet constant-time algo-
rithm which eludes the weaknesses of the original CSC-based approach under
the same threat model. Our algorithm uses the so-called mixed-radix number
system.

Finally, we sketch out some potential weaknesses of MRS-based randomiza-
tion strategies in a more advanced threat model. Our conclusion is that mixed-
radix based algorithms might remain vulnerable to sophisticated attacks relying
on deep-learning and Coppersmith-like techniques.

2 Covering systems of congruences: presentation and
weakness

In [7], Guerrini et al. use covering systems of congruences to randomize the scalar
multiplication algorithm. A covering system of congruences (CSC) is defined as a
set S = {(r1,m1), . . . , (rn,mn)} ⊂ Z×N such that, for any integer x, there exists
at least one congruence (ri,mi) ∈ S such that x ≡ ri (mod mi). In other words,
S forms a covering of Z, where each pair (ri,mi) represents the congruence class
miZ + ri.

Then, given a scalar k and a point P ∈ E, the authors randomize the com-
putation of [k]P by picking a random decomposition of k in the covering system
S: starting with k0 = k, they recursively compute kj as (kj−1 − rij)/mij , for all
j > 0, where ij is taken uniformly at random among all indices i ∈ {1, . . . , n}
such that kj−1 ≡ ri (mod mi). The algorithm terminates, as the resulting se-
quence (kj)j≥0 is strictly decreasing (in absolute value) until it eventually reaches
k` = 0. The sequence of congruences R = ((ri1 ,mi1), . . . , (ri` ,mi`)) is then a
random decomposition of the scalar k in the covering system S, and computing
[k]P = [k0]P relies on the fact that, for any 0 < j ≤ `, [kj−1]P can be computed
recursively from [kj]P and P as [kj−1]P = [mij]([kj]P) + [rij]P , starting from
[k`]P = [0]P = O.

Although the algorithm does not run in constant-time and uses non-uniform
curve operations (i.e. doublings and additions reveal different patterns in an
execution trace), the authors of [7] claimed that their randomization is robust
against both simple and more advanced attacks.

In the next section we present a novel attack that can recover the secret
scalar k by observing only a few execution traces. Our threat model simply
assumes that the attacker can distinguish the pattern of a curve doubling from
that of an addition. This is a very common threat model that applies to a wide
variety of settings, from remote timing attacks to local power or EM observations.
Using this information, we are able to deduce critical data about the sequence
of congruences R, which render the CSC-based randomization strategy totally
useless.

In the sequences of curve operations proposed by the authors in [7, Table 4],
one can see that some sequences of operations are specific to only a few con-
gruence classes. Indeed, even if the function µ : S → {A,D}∗, which maps each
congruence class (ri,mi) to the corresponding sequence of curve operations is not
injective, this is not enough: as soon as µ maps a subset (and only this subset)
S ′ of S to some patterns of operations, then it becomes possible to determine
whether or not congruences in S ′ were used in a given decomposition R just by
checking if these patterns appear in the corresponding trace. Furthermore, if S ′
does not form a covering of Z, then this will reveal data on the secret scalar k,
by eliminating all integers not covered by S ′. For instance, in [7, Table 4], one
can see that kj is odd if and only if the sequence of operations leading to the
computation of [kj]P ends with an addition (A).

3 Full-key recovery algorithm

Based on this observation, we present here an algorithm which recovers the
secret scalar k by analyzing traces τ ∈ {A,D}∗ corresponding to randomized
scalar multiplications by k, for a given covering system S and a given function
µ : S → {A,D}∗ such as those described in [7].

To achieve this, the algorithm maintains, for each intercepted trace τ , a
set Dτ of partially decoded traces. Such a partially decoded trace is a triple
(π, r,m) ∈ {A,D}∗ × Z × N, such that π is a prefix of τ , and such that there
exists a sequence ((ri1 ,mi1), . . . , (rid ,mid)) of congruences of S which satisfies τ = π ‖µ(rid ,mid) ‖ . . . ‖µ(ri1 ,mi1),

r = ridmid−1 . . .mi1 + · · ·+ ri2mi1 + ri1 , and
m = mid . . .mi1 ,

where the operator ‖ denotes the concatenation in {A,D}∗. In other words,
each partially decoded trace in (π, r,m) ∈ Dτ corresponds to a congruence
class mZ + r whose elements all admit a decomposition in S starting with
((ri1 ,mi1), . . . , (rid ,mid)), thus accounting for the operations observed in the
final part of the trace τ , up to its prefix π which still remains to be decoded.

Therefore, for each trace τ , the algorithm will maintain the set Dτ in such
a way that there always exists a partially decoded trace (π, r,m) ∈ Dτ so that
k ∈ mZ + r or, equivalently, that k ∈

⋃
(π,r,m)∈Dτ (mZ + r).

When a trace τ is first acquired, Dτ initially only contains the undecoded
trace (τ, 0, 1). One can then repeatedly apply the decoding function δ to the
elements of Dτ , where δ is defined as

δ : (π, r,m) 7→ {(π′, rim+ r,mim) | (ri,mi) ∈ S and π = π′ ‖µ(ri,mi)}.

Note that fully decoding the trace τ (i.e., applying δ until the prefix π of
each decoded trace in Dτ is the empty string ε) is not directly possible, as the
number of such traces grows exponentially with the length of τ . We thus need
a way to keep this growth under control. This can be achieved by confronting

intercepted traces together: given two traces τ and τ ′, if the congruence class
mZ + r of a partially decoded trace (π, r,m) ∈ Dτ is disjoint from the union of
the congruence classes of the partially decoded traces of Dτ ′ , then k 6∈ mZ + r
and (π, r,m) can be safely discarded from Dτ .

To this effect, the algorithm also maintains a set H of congruence classes
such that for any combination of partially decoded traces

((π(1), r(1),m(1)), . . . , (π(t), r(t),m(t))) ∈ Dτ(1) × · · · × Dτ(t) ,

there exists a congruence class (r̂, m̂) ∈ H such that⋂
1≤i≤t

(m(i)Z + r(i)) ⊂ m̂Z + r̂.

In the following, let T = {τ (1), . . . , τ (t)} denote the set of intercepted traces.
The complete key recovery algorithm is described in Algorithm 1. Based on the
ideas given above, it progressively decodes the intercepted traces, keeping only
the partially decoded traces (π, r,m) which are compatible with H, that is, such
that (mZ + r) ∩

⋃
(r̂,m̂)∈H(m̂Z + r̂) 6= ∅. It then updates H by computing all

pairwise intersections between partially decoded traces and elements of H.
Note that the inclusion tests and intersections of congruence classes required

by the algorithm can be computed efficiently. Indeed, for any two congruence
classes mZ + r and m′Z + r′:

– mZ + r ⊂ m′Z + r′ if and only if m′ divides m and r ≡ r′ (mod m′);
– (mZ + r) ∩ (m′Z + r′) 6= ∅ if and only if r ≡ r′ (mod gcd(m,m′));
– if r ≡ r′ (mod gcd(m,m′)), then (mZ+ r)∩ (m′Z+ r′) = lcm(m,m′)Z+ r′′,

where r′′, computed using the Chinese remainder theorem, is the unique
integer in {0, . . . , lcm(m,m′) − 1} such that r′′ ≡ r (mod m) and r′′ ≡ r′

(mod m′).

4 Implementation and experimental results

This key recovery algorithm was implemented in C. It can be downloaded at
http://imbert.lirmm.net/cover-systems/ together with examples of cover-
ing systems of congruences from [7]. On covering systems such as u3c-48-24
presented in [7, Table 4], it retrieves a 256-bit secret scalar k in a few seconds
using between 10 and 15 traces. Using larger covering systems (such as an exact
12-cover consisting of 3315 congruences, kindly provided by the authors), the
algorithm takes only slightly longer, but requires the same amount of traces.

We have also tried our key recovery algorithm with an implementation func-
tion µ′ which leaks slightly less data in the trace about the chosen congruences
(rij ,mij) in the random decomposition of the secret scalar k: µ′ corresponds to
an implementation of the scalar multiplication algorithm which, at each step, in
order to compute Q← [mij]Q+ [rij]P , first computes [mij]Q and then adds the
precomputed point [rij]P . This way, in the observed addition/doubling traces,

http://imbert.lirmm.net/cover-systems/

Algorithm 1 Key recovery algorithm for the CSC-based scalar multiplica-
tion [7].
Input: A covering system S = {(r1,m1), . . . , (rn,mn)}, an implementation µ : S →
{A,D}∗, an oracle Ω generating multiplication traces by an unknown scalar k, and
a decoding bound N (typically, N = 256).

Output: A small set K such that k ∈ K.
1: function PartialDecode(D, H)
2: repeat
3: D′ ← {(π, r,m) ∈ D | |π| > 0 and m ≤ max(r̂,m̂)∈H m̂}

. Select only the partially decoded traces we want to decode further.
4: D ← D \ D′
5: for all (π, r,m) ∈ D′ do
6: D ← D∪{(π′, r′,m′) ∈ δ(π, r,m) | ∃(r̂, m̂) ∈ H, (m′Z+r′)∩(m̂Z+r̂) 6= ∅}
7: until |D| ≥ N or D′ = ∅
8: return D
9: end function

10: H ← {(0, 1)}; T ← {}
11: loop
12: τnew ← Ω(); T ← T ∪ {τnew}; Dτnew ← {(τnew, 0, 1)} . Intercept new trace.
13: repeat
14: done← >
15: for all τ ∈ T do
16: Dτ ← {(π, r,m) ∈ Dτ | ∃(r̂, m̂) ∈ H, (mZ + r) ∩ (m̂Z + r̂) 6= ∅}

. Remove partially decoded traces which are incompatible with H.
17: if Dτ has changed after the previous step or if Dτ = {(τ, 0, 1)} then
18: Dτ ← PartialDecode(Dτ , H) . Further decode trace τ .
19: if ∀(π, r,m) ∈ Dτ , |π| = 0 then
20: return {r | (π, r,m) ∈ Dτ}
21: H ← {(r̂′, m̂′) | ∃(π, r,m) ∈ Dτ and ∃(r̂, m̂) ∈ H,

m̂′Z + r̂′ = (mZ + r) ∩ (m̂Z + r̂)}
. Merge congruence classes from newly decoded traces into H.

22: H ← {(r̂, m̂) ∈ H |6 ∃(r̂′, m̂′) ∈ H,m 6= m′ and m̂Z + r̂ ⊂ m̂′Z + r̂′}
. Remove redundant congruence classes from H.

23: if H has changed after the two previous steps then
24: done← ⊥
25: until done
26: end loop

µ′(rij ,mij) only reveals the chosen modulus mij , but not the residue rij . How-
ever, for the covering systems mentioned in [7], the knowledge of the mij ’s only
is still enough to retrieve the key. Indeed, according to our experiments, the
program will take up to an hour and will require between 20 and 40 traces, but
will still completely recover the secret scalar k,

Of course, the less data leaked by the implementation about the chosen con-
gruences (rij ,mij) in the random decomposition of k, the harder it is for our
algorithm to recover the key. Ideally, a covering system in which all the moduli

mi of S would have the same bit-length, paired with a constant time implemen-
tation where the function µ would map all congruences (ri,mi) ∈ S to the same
sequence of operations would render our key recovery algorithm totally useless.
The question whether such an algorithm could be efficiently turned into a robust
randomized implementation is addressed in the next section.

5 A constant-time alternative

In order to fix the problems raised by our attack, we introduce an alternative
scalar multiplication algorithm based on the so-called Mixed-Radix Number Sys-
tem (MRS) – a non-standard positional number system that uses multiple radices
– that can be seen as a generalization of Guerrini et al.’s CSC-based approach.

5.1 The mixed-radix number system

In any positional system, numbers are represented using an ordered sequence
of numeral symbols, called digits. The contribution of each digit is given by
its value scaled by the weight of its position expressed in the base (or radix)
of the system. For example, in the conventional, radix-b number system, the
contribution of a digit xi at position i is equal to xibi. The total value of the
number x represented as (xk . . . x0)b is the sum of the contributions assigned to
each digit, i.e., x =

∑k
i=0 xib

i.
In the mixed-radix number system (MRS), the weight of each position is no

longer expressed as a power of a constant radix. Instead, an MRS base is given
by an ordered sequence B = (b1, b2, . . . , bn) of integer radices all greater than
1. The weight associated to position i is equal to the product of the first i − 1
elements of that sequence. Hence, the value of the number represented by the
sequence of n+ 1 digits (x1, x2, . . . , xn+1) is

x = x1 + x2b1 + x3b1b2 + · · ·+ xn+1

n∏
j=1

bj =
n+1∑
i=1

xiΠ
(i−1)
B , (1)

where Π(k)
B denotes the product of the first k elements of B. By convention, we

set Π(0)
B = 1 and for any 0 < k ≤ n, Π(k)

B = b1b2 . . . bk =
∏k
j=1 bj .

A number system is said to be complete if every integer can be represented. It
is unambiguous if each integer admits a unique representation. The usual, radix-b
number system with digits in {0, . . . , b−1} is complete and unambiguous. In the
next Lemma, we recall a known result which shows that these properties may
also hold for mixed-radix systems.

Lemma 1. Let B = (b1, . . . , bn) be a sequence of integer radices all greater than
1. Then, every integer x ∈ N can be uniquely written in the form of (1), where
the “digits” xi are integers satisfying 0 ≤ xi < bi, for 1 ≤ i ≤ n, and xn+1 ≥ 0.
We say that the (n + 1)-tuple (x1, . . . , xn+1) is a mixed-radix representation of
x in base B, and we write x = (x1, . . . , xn+1)B.

Proof. Let x ∈ N. Starting from t1 = x, one can construct the recursive sequence
defined by ti+1 = bti/bic = (ti − xi)/bi, with xi = ti mod bi, for all 1 ≤ i ≤ n,
and then terminate the process by taking xn+1 = tn+1. Using (1), one can then
easily verify that (x1, . . . , xn+1) is indeed a mixed-radix representation of x in
base B.

Suppose that there exist two distinct MRS representations (x1, . . . , xn+1)B
and (x′1, . . . , x′n+1)B of x in base B, with digits such that 0 ≤ xi, x

′
i < bi for

all 1 ≤ i ≤ n, and xn+1, x
′
n+1 ≥ 0. Let i0 be the smallest integer such that

xi0 6= x′i0 . Then, by (1), we have

0 = x−x = (xi0 −x′i0)Π(i0−1)
B + (xi0+1−x′i0+1)Π(i0)

B + · · ·+ (xn+1−x′n+1)Π(n)
B .

– If i0 = n + 1, then this gives (xn+1 − x′n+1)Π(n)
B = 0 and, consequently,

xn+1 = x′n+1, which is a contradiction.
– Otherwise, dividing the previous equation byΠ(i0−1)

B and considering it mod-
ulo bi0 , we obtain xi0 − x′i0 ≡ 0 (mod bi0). Since 0 ≤ xi0 , x

′
i0
< bi0 , then

xi0 = x′i0 , which is also a contradiction.
Therefore, x has a unique MRS representation in base B. ut

Note that, following the proof of Lemma 1, if (x1, . . . , xn+1)B is the MRS
representation of a given non-negative integer x, the most significant digit xn+1

is equal to bx/Π(n)
B c.

5.2 A deterministic MRS-based scalar multiplication
The algorithm we present here performs a scalar multiplication using an MRS
representation of the scalar: given an MRS base B, a scalar k, and a point P on
the curve, it first computes the MRS representation of k in base B then proceeds
to computing the actual scalar multiplication in order to obtain [k]P .

Recall the algorithm for computing the MRS representation of a given integer
k in base B = (b1, . . . , bn), as sketched in the proof of Lemma 1: starting from
t1 = k, one iteratively computes ti+1 = (ti − ki)/bi, where each digit ki is given
by ti mod bi, for i ranging from 1 to n. Finally, the most-significant digit kn+1
is directly given by tn+1. Then, computing [k]P from the MRS representation
(k1, . . . , kn+1)B of k is just a matter of taking this algorithm in reverse, remarking
that ti = biti+1 + ki and that, given T = [ti+1]P , one can thus compute [ti]P as
[bi]T + [ki]P .

For the sake of the exposition, Algorithm 2 presented below is purely deter-
ministic. Its randomization and the ensuing issues it raises will be addressed in
the next sections.

In this algorithm, special attention should be paid so as not to reveal any
information about the digits ki representing the scalar k, both when computing
each of them (line 3) and when evaluating [bi]T + [ki]P (line 8). The former
will be addressed in Section 5.5. For the latter, we use a regular double-scalar
multiplication algorithm such as the one proposed by Bernstein [1]. For the
same security reasons, we also use a constant-time Montgomery ladder when
computing the scalar multiplication by the most-significant digits kn+1 on line 6.

Algorithm 2 Deterministic mixed-radix scalar multiplication algorithm.
Input: An MRS base B = (b1, . . . , bn), a scalar k ∈ N, and P ∈ E.
Output: [k]P ∈ E.
1: t← k
2: for i← 1 to n do . Compute the MRS representation of k in base B.
3: ki ← t mod bi
4: t← (t− ki)/bi
5: kn+1 ← t
6: T ← [kn+1]P . Computed using a Montgomery ladder.
7: for i← n downto 1 do
8: T ← [bi]T + [ki]P . Computed using a regular double-scalar multiplication.
9: return T

5.3 Regular double-scalar multiplication:

Given two points P and Q on an elliptic curve E, and two scalars a and
b ∈ N, the double-scalar multiplication is the operation which computes the
point [a]P + [b]Q. In [12], Strauss was the first to suggest that this operation
can be computed in at most 2 max(log2(a), log2(b)) curve operations instead of
2(log2(a) + log2(b)) if [a]P and [b]Q are evaluated independently. Unfortunately,
Strauss’ algorithm cannot be used when side-channel protection is required since
the curve operations depend on the values of the scalars a and b.

In 2003, a regular double-scalar multiplication was published in a paper by
Ciet and Joye [3]. Their algorithm uses secret-dependent memory accesses and
might therefore be vulnerable to cache attacks. More problematically, the pro-
posed algorithm is incorrect.3

In a 2006 preprint [1], which was then published in [2], Bernstein proposed a
regular two-dimensional ladder, inspired by the Montgomery ladder, and com-
patible with curves where only differential additions are supported. In order to
compute [a]P + [b]Q for any two non-negative scalars a and b, Bernstein’s algo-
rithm requires knowledge of the two points P and Q, along with their difference
P −Q.

Here we present a slight modification of Bernstein’s ladder where the input
points are P , Q, and P +Q. Indeed, as can be seen in Algorithm 2, the proposed
MRS scalar multiplication performs a sequence of double-scalar multiplications
where the first point of an iteration is the result of the previous one, and where
the second point is always the same. In this context, we decided to adapt Bern-
stein’s two-dimensional ladder algorithm so as to return both R = [a]P + [b]Q
and R+Q = [a]P + [b+ 1]Q, at no extra cost, which then allows us to directly
call the next double-scalar multiplication with input points R, Q, and R+Q.

3 When ai = bi = 0, register R1 is wrongly updated. A possible workaround would
be to perform a dummy operation when both ai and bi are equal to zero (in [3,
Fig. 3], add a fourth register R4 and replace the instruction Rb←Rb + Rc with
R4b←Rb +Rc) but the resulting algorithm would then be subject to fault attacks.

The proposed variant of this two-dimensional ladder is given in Algorithm 3.
This algorithm maintains a loop invariant in which, just after iteration i (or,
equivalently, just before iteration i− 1), we have U = T + [ai]P + [bi]Q,

V = T + [ai]P + [bi]Q, and
W = T + [ai ⊕ di]P + [bi ⊕ di]Q,

with T = [ba/2ic]P + [bb/2ic]Q, and where x denotes the negation of bit x (i.e.,
x = 1−x), and x⊕ y the XOR of bits x and y (i.e., x⊕ y = (x+ y) mod 2). The
bit sequence (di)0≤i≤n, computed on lines 3 to 7, corresponds to the quantity
d defined recursively on page 9 of [1], with the initial value d0 = a mod 2 = a0
and

di+1 =


0 if (ai ⊕ ai+1, bi ⊕ bi+1) = (0, 1),
1 if (ai ⊕ ai+1, bi ⊕ bi+1) = (1, 0),
di if (ai ⊕ ai+1, bi ⊕ bi+1) = (0, 0), and
1− di if (ai ⊕ ai+1, bi ⊕ bi+1) = (1, 1).

Algorithm 3 Our variant of Bernstein’s two-dimensional ladder [1].
Input: Scalars a and b such that 0 ≤ a, b < 2n, and points P , Q, and D+ = P+Q ∈ E.
Output: R = [a]P + [b]Q and R+Q = [a]P + [b+ 1]Q ∈ E.
1: (an . . . a0)2 ← a . (n+ 1)-bit binary expansion of a, with an = 0.
2: (bn . . . b0)2 ← b . (n+ 1)-bit binary expansion of b, with bn = 0.
3: d0 ← a0
4: for i← 0 to n− 1 do
5: δai ← ai ⊕ ai+1
6: δbi ← bi ⊕ bi+1
7: di+1 ←

(
(δai ⊕ δbi) · di

)
⊕ δai . Computation of d, as in [1, p.9].

8: D− ← diffadd(P , −Q, D+) . Compute D− = P −Q.
9: U ← D+ ; V ← O ; W ← select(P , Q, dn) . Initialization.
10: for i← n− 1 downto 0 do
11: T0 ← select(W , select(U , V , δai), δai ⊕ δbi) . Select operands.
12: T1 ← select(U , V , di ⊕ di+1)
13: T2 ← select(D−, D+, ai+1 ⊕ bi+1)
14: T3 ← select(P , Q, di)
15: U ← diffadd(U , V , T2) . Update U , V , and W .
16: V ← [2]T0
17: W ← diffadd(W , T1, T3)
18: cswap(U , V , a0)
19: cswap(V , W , a0 ⊕ b0)
20: return V , W

Note that, as mentioned before, this algorithm supports curves with formulae
for differential addition. This operation is denoted by diffadd in Algorithm 3:
for any two points S and T ∈ E, diffadd(S, T , S − T) computes the point

S + T . However, if a regular addition formulae is available on E, diffadd can
be replaced by a normal point addition, and its third argument is not used. In
that case, the computation of D− on line 8, along with those of T2 and T3 on
lines 13 and 14, respectively, can be ignored.

Note also that, on the very first iteration of the ladder, when i = n− 1, the
first differential addition on line 15 is trivial, since V = O. It can then safely be
ignored as well. Consequently, putting it all together, this algorithm performs
2n differential additions (or 2n− 1 regular additions, if differential additions are
not available) and n doublings on E.

Finally, note that Algorithm 3 contains no secret-dependent conditional
branching instruction or memory access, so as to avoid branch-prediction and
cache attacks. For this purpose, the only secret-dependent conditional opera-
tions in the algorithm are selections and conditional swaps, denoted by select
and cswap, respectively:

– The former is equivalent to a conditional operator: it returns its first or its
second argument depending on whether its third one, a single bit, is 1 or
0, respectively. It can be implemented without conditional branching using
arithmetic operations or bit-masking techniques. For instance, the operation
R← select(X, Y , c) can be implemented as

R← Y ⊕ ((X ⊕ Y)× c),

where ⊕ denotes the bitwise XOR.
– Similarly, the operation cswap(X, Y , c), which swaps the values of X and
Y if and only if c is 1, can be implemented as

M ← (X ⊕ Y)× c
(X,Y) ← (X ⊕M,Y ⊕M).

5.4 Randomizing the MRS-based scalar multiplication

The MRS digits ki and radices bi processed by the deterministic MRS scalar
multiplication introduced in Algorithm 2 exclusively depend on the MRS base B
used to represent k. The basic idea of our randomized version is quite simple. We
simply represent the secret scalar k using an MRS base B chosen uniformly at
random prior to each scalar multiplication. This way, each call to the algorithm
manipulates different values ki and bi, even if the same scalar k is used as input,
hence producing different execution traces. This new algorithm can be somehow
seen as a refinement and an improvement of the CSC-based algorithm proposed
in [7].

As will be seen in the next section, some caution is required. In particular, the
base B is randomly chosen among a predefined family F of fine-tuned MRS basis.
And each base B from F should be able to represent scalars in a predetermined
interval whose bounds are denoted Xmin

F and Xmax
F . For completeness, we give

the randomized version in Algorithm 4.

Algorithm 4 Randomized mixed-radix scalar multiplication algorithm.
Input: A family F of MRS bases, a scalar k ∈ {Xmin

F , . . . , Xmax
F − 1}, and P ∈ E.

Output: [k]P ∈ E.
1: B = (b1, . . . , bn) $← F . Choose an MRS base in F uniformly at random.
2: t← k
3: for i← 1 to n do . Compute the MRS representation of k in base B.
4: ki ← t mod bi
5: t← (t− ki)/bi
6: kn+1 ← t
7: T ← [kn+1]P . Computed using a Montgomery ladder.
8: for i← n downto 1 do
9: T ← [bi]T + [ki]P . Computed using Bernstein’s regular double ladder.
10: return T

Even though the idea behind this randomization is quite simple, it raises
several additional issues, mostly because the randomized algorithm should not
reveal the randomly chosen MRS base B. Namely, we need to find suitable fam-
ilies F of MRS bases such that the following requirements are fulfilled:

1. the range {Xmin
F , . . . , Xmax

F − 1} can accommodate any scalar k of relevance
for the cryptosystem at hand;

2. F is large enough to ensure a sufficient amount of randomization;
3. one can securely pick B ∈ F at random;
4. one can securely compute the MRS representation of k in base B;
5. one can securely compute the scalar multiplication [k]P .

As already stated, is it essential that any implementation of Algorithm 4
runs in constant-time. This implies in particular that the conversion of k into
its MRS form and the subsequent MRS-based scalar multiplication both run in
constant-time.

5.5 Secure mixed-radix decomposition

The for loop on lines 3 to 5 of Algorithm 4 computes the representation of the
secret scalar k in the randomly selecter MRS basis B by iteratively computing
residues and divisions by the radices bi. Obviously, special care has to be paid
here to perform this scalar decomposition so as not to reveal any information on
k by side channels, but we should also ensure that no data is leaked about the
radices bi as well.

As will be seen in Section 5.6, our family of MRS bases consists of n-tuples
of radices taken from a predefined set of size m. The method presented in Al-
gorithm 5 computes each digit ki first by computing the quotient q and the
remainder r of the Euclidean division of t (the current scalar to decompose) by
the corresponding radix bi (lines 6 to 7).

Since all radices of B are known in advance, we can precompute the inverse
b−1
i of each radix bi so that the quotient on line 6 can be computed using a single

multiplication, as proposed by Granlund and Montgomery in [6]. Note that the
inverses have to be precomputed with enough precision in order to obtain the
exact quotient: according to [6, Theorem 4.2], if the scalar k fits into N bits,
then the inverses require N+1 bits of precision. Therefore, the product on line 6
is an N × (N + 1)-bit multiplication. On the other hand, assuming the radices
of B fit on a single w-bit machine word, then the remainder r can be computed
using only w-bit arithmetic on line 7.

Finally, in order to avoid secret-dependent memory accesses, the value of the
current radix bi and of its precomputed inverse (bi)−1 are loaded into variables b
and binv, respectively, by the for loop on lines 3 to 5: this loop goes through all
the radices bj of B, and conditionally moves the one for which j = σ(i) into b (and
similarly for binv), where σ is a selection fonction from {1, . . . , n} to {1, . . . ,m}.
These conditional moves are performed by the cmove instruction: cmove(X,
Y , c) always loads the value of Y from memory (ensuring a secret-independent
memory access pattern), but only sets X to this value if the bit c is 1. Quite
similarly to cswap, cmove also avoids any kind of conditional branch so as to
resist branch-prediction attacks as well.

Algorithm 5 Secure mixed-radix decomposition.
Input: An MRS bases B = (b1, . . . , bn), a scalar k ∈ {Xmin

B , . . . , Xmax
B − 1}.

Output: (k1, . . . , kn)B, the MRS representation of k in base B.
1: t← k
2: for i← 1 to n do
3: for j ← 1 to m do
4: cmove(b, bj , j = σ(i)) . Load bj into b if and only if j = σ(i).
5: cmove(binv, b−1

j , j = σ(i)) . Load the corresponding precomputed inverse.
6: q ← bt · binvc . Division by b using the precomputed inverse.
7: r ← (t− q · b) mod 2w . The remainder is computed on a single machine word.
8: ki ← r; t← q

9: return (k1, . . . , kn)

Note that precomputing and storing in memory the inverse of each radix of
B with N + 1 bits of precision might prove too expensive on some embedded
systems. An alternative here is to precompute the least-common multiplier of
the radices of B, m = lcm(b1, . . . , bn), along with its inverse minv = m−1 (with
N + 1 bits of precision as well), and to always compute the quotient of t divided
by m, as bt ·minvc, instead of bt · binvc. Then, as long as the LCM m itself fits on
a single machine word, the actual quotient and remainder of t divided by b can
be retrieved using simple word-level arithmetic, requiring only word-precision
precomputed inverses of the bi’s.

5.6 Randomized yet constant-time scalar multiplication

The regular double-scalar multiplication algorithm presented in Section 5.3 al-
ready embeds some necessary properties for thwarting side-channel attacks. In-
deed, its regular structure along with its absence of secret-dependent branching
and memory access patterns should prevent the scalar multiplication from re-
vealing information about the secret digits ki and MRS radices bi. However, the
running time of Algorithm 3 remains proportional to the bit-length of the input
scalars. Therefore, without further precaution in choosing the random base B,
an execution trace of Algorithm 4 will reveal the bit-length of the successive
radices bi used in the decomposition. This would then give an attacker a serious
advantage for recovering the random base B.

In order to prevent such kind of timing attack, we impose that all the radices
of B have the same bit-length s. For all 1 ≤ i ≤ n we thus have 2s−1 ≤ bi <
2s. Therefore, each double-scalar multiplication computed in line 8 do generate
strictly identical patterns in terms of issued instructions, branches, and memory
accesses, thus reducing the number of side channels available to an attacker.

As an example of adequate family of bases F , we define Fs,n,m as the set of
all n-tuples exclusively composed of s-bit radices taken from a predefined set of
size m, so that |Fs,n,m| = mn. Hence, choosing a base B uniformly at random
in F = Fs,n,m as in line 1 of Algorithm 4 provides ρ = blog2(mn)c bits of
randomization. Observe that among all possible sets of size m, those composed
of the m largest s-bit integers provide shorter MRS representations. We thus
define:

Fs,n,m = {(b1, . . . , bn) : 2s −m ≤ bi ≤ 2s − 1 for 1 ≤ i ≤ n}.

Note that the elements of any given base B ∈ Fs,n,m need not be distinct.
Yet, choosing s-bit radices is not sufficient to guarantee constant-time. We

shall further ensure that the MRS representation of k fits on exactly n + 1
digits, no matter its actual value and the chosen base B. As a consequence, the
whole loop of Algorithm 4 (line 8) will repeat exactly n times. We achieve this
property by adding to k a suitable multiple of the group order `. More precisely,
we compute k̂ = k + α` for a well-suited value α that guarantees that any such
Xmin
Fs,n,m ≤ k̂ < Xmax

Fs,n,m can be written in any base B ∈ Fs,n,m using exactly
n+ 1 digits (i.e. with xn+1 > 0.)

If a base B is poorly chosen, it is possible that for some values of k, such
an α does not exist, meaning that the base B cannot accommodate all possible
values of the scalar. Fortunately, it is not difficult (although rather technical) to
check whether a base B is legitimate and to adjust it accordingly if it is not the
case.

At this point, we intentionally skip most of the details regarding the param-
eter selection, as well as the level of randomization that can be achieved and the
efficiency of the algorithm for reasons that will become clear in the next section.

6 Discussions

Let us summarize what we have so far. We designed a randomized algorithm
which runs in constant-time, contains no secret-dependent branching and mem-
ory access, and produces a very regular pattern of elementary operations (ad-
ditions and doublings). The size and number of radices in the MRS bases can
be easily determined so as to guarantee a prescribed level of randomization. It
therefore presents many of the required characteristics of a robust randomized
algorithm. In particular, our attack on the CSC-based approach presented at the
beginning of the paper is totally ineffective.

Could it then be considered as a secure alternative to the traditional random-
ization strategies in a more advanced threat model? Unfortunately, the answer
is probably no for reasons that we explain below.

Recall the MRS representation of the secret scalar k:

k = k1 + k2b1 + k3b1b2 + · · ·+ kn+1

n∏
j=1

bj =
n+1∑
i=1

kiΠ
(i−1)
B .

Observe that the least significant digit k1 depends solely on b1 as k1 = k mod b1.
Because b1 is taken at random in a fixed set of size m, this represents log2(m)
bits of randomization. On the other hand, k1 contains between s− 1 and s bits
of information (since b1 ≥ 2s−1). Hence, if m < 2s−1 the least significant digit
is only partially masked and we could possibly recover s − 1 − log2(m) bits of
information. Depending on the parameter choice, this may be easily taken into
account, but the situation is more problematic in the advanced hardware model,
where the attacker has access to the device.

Let us assume that the attacker knows the public key, i.e. the point R = [k]P .
She can then precompute the points Rb,i = [b−1 mod `](R − [i]P) for all b in
[2s−m, 2s−1] and for all i = 0, . . . , b−1. For all b and i, the following invariant
holds: [b]Rb,i + [i]P = R.

The attacker can now reprogram the hardware so that it evaluates [b]Rb,i +
[i]P for all b and i. And she stores the m × 2s corresponding execution traces.
Although the sequences of operations are identical, the bit-flips will differ de-
pending on b and i. And it is not inconceivable at all that recent advances in
deep-learning techniques for side-channel attacks could be used to differentiate
these traces.

With this precomputed data at hand, the attacker may now ask the device
to compute [k]P many times. The last iteration of the algorithm will always
go through one of the temporary points Rb,i with i = k mod b and will even-
tually evaluate [b]Rb,i + [i]P in order to get the correct result R = [k]P . If
the attacker runs the algorithm sufficiently many times, she should be able
to distinguish m different traces which correspond to each possible b-value.
By pairing these with her set of precomputed traces, she could then recover
k mod b for all b ∈ [2s − m, 2s − 1]. And thus, thanks to the CRT, the value
k mod lcm(2s − m, . . . , 2s − 1). As an example, for s = 8 bits, m = 16, this

attack would require the precomputations of less than 16×28 traces4. The value
of lcm(240, 241, . . . , 255) is a 93-bit integer. The attacker would then recover 93
bits of information of k. She may even be able to recover the whole secret with
Coppersmith-like techniques and brute force.

7 Conclusion

We presented a very powerful attack on a recently proposed randomized al-
gorithm based on covering systems of congruences. This algorithm uses a rep-
resentation of the secret scalar which resembles and shares many similarities
with the mixed-radix number system. In an attempt to design a more robust
algorithm that would thwart our attack, we were able to build a randomized
algorithm that runs in constant-time and is free of secret-dependent branching
and memory-access. However, the intrinsic nature of the mixed-radix number
system, namely its positional property, combined with randomization, may al-
low a virtual powerful attacker to recover much more information than what was
first expected. Therefore, we do not recommend the use of mixed-radix repre-
sentations for randomization.

Acknowledgments

The authours would like to thank the anonymous referees for their careful reading
and constructive comments, as well as Victor Lomne and Thomas Roche (https:
//ninjalab.io/team) for their support and invaluable suggestions.

References

1. Bernstein, D.J.: Differential addition chains. https://cr.yp.to/ecdh/
diffchain-20060219.pdf (2006)

2. Bernstein, D.J., Lange, T.: Topics in Computational Number Theory Inspired by
Peter L. Montgomery, chap. Montgomery curves and the Montgomery ladder, pp.
82–115. Cambridge University Press (2017), https://eprint.iacr.org/2017/293

3. Ciet, M., Joye, M.: (virtually) free randomization techniques for elliptic curve cryp-
tography. In: Information and Communications Security, 5th International Confer-
ence, ICICS 2003, Proceedings. Lecture Notes in Computer Science, vol. 2836, pp.
348–359. Springer (2003)

4. Ebeid, N., Hasan, M.A.: On binary signed digit representations of integers. Designs,
Codes and Cryptography 42(1), 43–65 (2007)

5. Fouque, P.A., Muller, F., Poupard, G., Valette, F.: Defeating countermeasures
based on randomized BSD representations. In: Cryptographic hardware and Em-
bedded Systems, CHES 2004. pp. 312–327. No. 3156 in Lecture Notes in Computer
Science, Springer (2004)

4 240 + 241 + · · ·+ 255 = 3960 exactly.

https://ninjalab.io/team
https://ninjalab.io/team
https://cr.yp.to/ecdh/diffchain-20060219.pdf
https://cr.yp.to/ecdh/diffchain-20060219.pdf
https://eprint.iacr.org/2017/293

6. Granlund, T., Montgomery, P.L.: Division by invariant integers using multiplica-
tion. In: Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation (PLDI ’94). ACM SIGPLAN Notices, vol. 29,
pp. 61–72. ACM (1994)

7. Guerrini, E., Imbert, L., Winterhalter, T.: Randomized mixed-radix scalar
multiplication. IEEE Transactions on Computers 67(3), 418–431 (2017).
https://doi.org/10.1109/TC.2017.2750677

8. Ha, J., Moon, S.J.: Randomized signed-scalar multiplication of ECC to resist power
attacks. In: Cryptographic Hardware and Embedded Systems, CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers. vol. 2523, pp. 551–563 (2002)

9. Karlof, C., Wagner, D.: Hidden markov model cryptanalysis. In: Cryptographic
Hardware and Embedded Systems, CHES 2003. pp. 17–34. No. 2779 in Lecture
Notes in Computer Science, Springer (2003)

10. Méloni, N., Hasan, M.A.: Random digit representation of integers. In: Proceedings
of the 23rd IEEE Symposium on Computer Arithmetic, ARITH23. pp. 118–125.
IEEE Computer Society (2016)

11. Oswald, E., Aigner, M.: Randomized addition-subtraction chains as a countermea-
sure against power attacks. In: Cryprographic Hardware and Embedded Systems,
CHES 2001. pp. 39–50. No. 2162 in Lecture Notes in Computer Science, Springer
(2001)

12. Strauss, E.G.: Addition chains of vectors (problem 5125). American Mathematical
Monthly 70, 806–808 (1964)

https://doi.org/10.1109/TC.2017.2750677

	Breaking randomized mixed-radix scalar multiplication algorithms

