Skip to main content

A Survey on Deep Learning Techniques for Privacy-Preserving

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11806))

Included in the following conference series:

Abstract

There are challenges and issues when machine learning algorithm needs to access highly sensitive data for the training process. In order to address these issues, several privacy-preserving deep learning techniques, including Secure Multi-Party Computation and Homomorphic Encryption in Neural Network have been developed. There are also several methods to modify the Neural Network, so that it can be used in privacy-preserving environment. However, there is trade-off between privacy and performance among various techniques. In this paper, we discuss state-of-the-art of Privacy-Preserving Deep Learning, evaluate all methods, compare pros and cons of each approach, and address challenges and issues in the field of privacy-preserving by deep learning.

This work was partly supported by Indonesia Endowment Fund for Education (LPDP) and Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00555, Towards Provable-secure Multi-party Authenticated Key Exchange Protocol based on Lattices in a Quantum World).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lazer, D., Pentland, A.S., Adamic, L., Aral, S., Barabasi, A.L.: Life in the network: the coming age of computational social science. Science 323, 721 (2009)

    Article  Google Scholar 

  2. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16, 049901 (2007)

    Article  Google Scholar 

  3. Chen, M., Hao, Y., Hwang, K., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)

    Article  Google Scholar 

  4. Zhang, D., Chen, X., Wang, D., Shi, J.: A survey on collaborative deep learning and privacy-preserving. In: IEEE Third International Conference on Data Science in Cyberspace, pp. 652–658 (2018)

    Google Scholar 

  5. Meints, M., Moller, J.: Privacy-preserving data mining: a process centric view from a european perspective (2004)

    Google Scholar 

  6. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  7. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  8. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Annual ACM on Symposium on Theory of Computing, pp. 169–178. ACM (2009)

    Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (Standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)

    Article  MathSciNet  Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic encryption without bootstrapping. ACM Transact. Comput. Theory (TOCT) 6(3), 13 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  14. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  15. Cheon, J.H., et al.: Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_20

    Chapter  Google Scholar 

  16. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_31

    Chapter  MATH  Google Scholar 

  17. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_24

    Chapter  MATH  Google Scholar 

  18. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15

    Chapter  Google Scholar 

  19. Yao, A.C.-C.: How to generate and exchange secrets. In: Foundations of Computer Science 27th Annual Symposium, pp. 162–167. IEEE (1986)

    Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

    Google Scholar 

  21. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  22. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  23. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Kifer, D., Smith, A., Thakurta, A.: Private convex empirical risk minimization and high-dimensional regression. In: Conference on Learning Theory, pp. 1–25 (2012)

    Google Scholar 

  25. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A practical differentially private random decision tree classifier. In: IEEE International Conference on Data Mining Workshops 2009, ICDMW 2009, pp. 114–121. IEEE (2009)

    Google Scholar 

  26. LeCun, Y., Haffner, P., Bottou, L., Bengio, Y.: Object recognition with gradient-based learning. Shape, Contour and Grouping in Computer Vision. LNCS, vol. 1681, pp. 319–345. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46805-6_19

    Chapter  Google Scholar 

  27. Goodfellow, I.: Generative adversarial nets. In: Advances in neural information processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)

  29. Hesamifard, E., Takabi, H., Ghasemi, M.: CryptoDL: deep neural networks over encrypted data. arXiv:1711.05189 (2017)

  30. Liu, W., Pan, F., Wang, X.A., Cao, Y., Tang, D.: Privacy-preserving all convolutional net based on homomorphic encryption. In: International Conference on Network-Based Information Systems, pp. 752–762 (2018)

    Google Scholar 

  31. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: International Conference on Information Security and Cryptology, pp. 1–21 (2012)

    Google Scholar 

  32. Abadi, M., Erlingsson, U., Goodfellow, I.: On the protection of private information in machine learning systems: two recent approches. In: Computer Security Foundations Symposium, pp. 1–6 (2017)

    Google Scholar 

  33. Papernot, N., Abadi, M., Erlingsson, U.: Semi-supervised knowledge transfer for deep learning from private training data. arXiv:1610.05755 (2016)

  34. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)

    Google Scholar 

  35. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. IACR Cryptology ePrint Archive (2017)

    Google Scholar 

  36. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning, pp. 19–38 (2017)

    Google Scholar 

  37. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptology ePrint Archive, p. 187 (2005)

    Google Scholar 

  38. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  39. Xue, H., et al.: Distributed large scale privacy-preserving deep mining. In: IEEE Third International Conference on Data Science in Cyberspace, pp. 418–422 (2018)

    Google Scholar 

  40. Rouhani, B., Riazi, M., Koushanfar, F.: DeepSecure: scalable provably-secure deep learning. In: 55th ACM/ESDA/IEEE Design Automation Conference, pp. 1–6 (2018)

    Google Scholar 

  41. Deng, L.: The MNIST database of handwritten digit images for machine learning research. IEEE Signal Process. Mag. 29, 141–142 (2012)

    Article  Google Scholar 

  42. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)

    Google Scholar 

  43. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium, pp. 1651–1669 (2018)

    Google Scholar 

  44. Sanyal, A., Kusner, M.J., Gascón, A., Kanade, V.: TAPAS: tricks to accelerate (Encrypted) prediction as a service. arXiv preprint, arXiv:1806.03461 (2018)

  45. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_17

    Chapter  Google Scholar 

  46. Mohassel, P., Rindal, P.: ABY 3: a mixed protocol framework for machine learning. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 35–52. ACM (2018)

    Google Scholar 

  47. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1209–1222. ACM (2018)

    Google Scholar 

  48. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep learning via additively homomorphic encryption. In: IEEE Transactions on Information Forensics and Security, pp. 1333–1345. IEEE (2018)

    Google Scholar 

  49. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)

    Google Scholar 

  50. Zhang, Q., Yang, L.T., Castiglione, A., Chen, Z., Li, P.: Secure weighted possibilistic C-means algorithm on cloud for clustering big data. Inf. Sci. 479, 515–525 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangjo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanuwidjaja, H.C., Choi, R., Kim, K. (2019). A Survey on Deep Learning Techniques for Privacy-Preserving. In: Chen, X., Huang, X., Zhang, J. (eds) Machine Learning for Cyber Security. ML4CS 2019. Lecture Notes in Computer Science(), vol 11806. Springer, Cham. https://doi.org/10.1007/978-3-030-30619-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30619-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30618-2

  • Online ISBN: 978-3-030-30619-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics