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Abstract. Voice activity detection (VAD) with solely visual cues have
usually performed by detecting lip motion, which is not always feasi-
ble. On the other hand, visual activity (e.g., head, hand or whole body
motion) is also correlated with speech, and can be used for VAD. Convo-
lutional Neural Networks (CNNs) have demonstrated significantly good
results for many applications including visual activity-related tasks. It
can be possible to exploit CNN’s effectiveness to visual-VAD when whole
body visual activity is used. The way visual activity is represented (called
visual activity primitives) to be given to a CNN as input, might be impor-
tant to perform an effective VAD. Some primitives might result in better
detection and provide consistent VAD performance such that the detec-
tor works equally well for all speakers. This is investigated, for the first
time, in this paper. Regarding that, we compare visual activity primi-
tives quantitatively in terms of the overall performance and the standard
deviation of the performance, and qualitatively by visualizing the dis-
criminative image regions determined by CNN trained to identify VAD
classes. We perform a data-driven VAD with a person-invariant training
i.e., without using any labels or features of the test data. This is unlike
the state-of-the-art (SOA), which realizes a person-specific VAD with
hand-crafted features. Improved performances with much lower standard
deviation as compared to SOA are demonstrated.

Keywords: Voice activity detection · Visual activity ·
Dynamic images · Optical flow · Social interactions

1 Introduction

Voice Activity Detection (VAD) consists in automatically detecting “Who is
Speaking and When” in an audio/video recording. Automatic VAD contributes
various applications of human-human interaction analysis, human-computer
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(robot) interaction and also many industrial applications. As an example, for
analysis of human-human interactions, VAD can be used to extract speaking
turn-based nonverbal features (e.g., the length of the speech, the length of
the overlapping speech, etc.), which later on can be used to detect personality
traits (e.g. [17]), dominance (e.g., [15]) or emergent leaders (e.g., [1]). Perform-
ing an accurate VAD can allow a robot (or a computer) to reply to a specific
interlocutor when there is more than one person in a human-robot interaction
environment [5]. Video conferencing systems can utilize VAD to present the
video of the speaking person only during multi-person meetings. Additionally, an
effective VAD can improve video navigation and retrieval, speaker model adap-
tation to enhance speaker recognition, and speaker attributed speech-to-text
transcription [9].

Traditionally, VAD is performed by processing audio only, which is typi-
cally called speaker diarization [21]. On the other hand, multimodal approaches,
normally referred to as active speaker detection [6,22], have become popu-
lar, mostly adopting video and audio modalities. Multimodal approaches have
either modelled the speech and visual cues such as facial, body cues jointly
(e.g., [6]) or have performed audio speaker diarization while video has used to
track/localize/associate a person to a speech (e.g., [11]). There are relatively
few studies that have performed VAD based on video-based cues only (called
visual-VAD in this paper). In fact, VAD with solely visual cues can be very
desirable when the audio is not available due to technical or privacy related
reasons. There can also be cases that the task of distinguishing voices robustly
becomes very challenging such as in social gatherings, where much background
noise is present. In such conditions, an effective visual-VAD can compensate
audio speaker diarization.

The majority of the studies on visual-VAD have been performed based on
lip motion detection, e.g., [4,12,16,18]. Facial expressions [20], hand movement
[4,9,14], head activity [9], and visual focus of attention (VFOA) [14] are other
cues that have been utilized. On the other hand, visual activity cues extracted
from whole body (without specifically focusing on a certain body part such as
hands or head) [7,10] can result in very effective VAD. For instance, whole upper
body activity cues outperformed lip motion cues in [4].

There are diverse way to detect/represent the visual activity of a person to
perform visual-VAD. For example, in [14], a combination of motion vectors, DCT
(discrete cosine transform) coefficients and residual coding bit-rate were used. In
[10], motion history images (MHI) were utilized. Optical flow has been another
popular method to represent the visual activity as applied in [7]. Recently, in
[4,5], improved trajectory features that comprise of a concatenation of His-
togram of Oriented Gradients (HOG), Histogram of Flow (HoF) and Motion
Boundary Histogram (MBH) features were used. These examples all resulted in
hand-crafted visual activity features. On the other hand, deep learning mod-
els, such as Convolutional Neural Networks (CNN) have demonstrated state-of-
the-art results for many research problems, including activity recognition and
localization (e.g., [2,8]), which are highly related to visual activity detection and
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representation. Therefore, there is no reason not to exploit the effectiveness of
CNNs to visual-VAD. However, the way visual activity is initially represented
(called visual activity primitives, from now on in this paper) to be fed to CNNs
for training, can be critical to perform an effective VAD. In detail, some prim-
itives can result in better detection performance on average as compared to
others, or can perform more consistent VAD performance so that the detector
can work equally well for any speaker.

In this study, we compare the most popular visual activity primitives by
modeling them with CNN for video-based VAD, which has never been addressed
before. This comparative analysis is performed not only quantitatively but also
qualitatively allowing us to better show why some primitives are performing
better than others. Another contribution of this work is presenting improved
performances as compared to the state-of-the-art (SOA) visual-VAD methods.
The results obtained are also more stable such that the detection performances
are equally good for all persons. The way we perform VAD is data-driven, does
not use either labels or features belonging to the test data, thus, supports person-
invariant training, i.e., it is not requiring model re-training for each new person.
This is advantageous as compared to SOA presenting person-specific visual-VAD
methods with hand-crafted visual activity features.

The rest of this paper is organized as follows. In Sect. 2, existing video-based
VAD approaches are reviewed and the main differences between our work and
theirs are highlighted. In Sect. 3, the details of the visual activity primitives and
the way CNN fine-tuning is applied are described. The experimental setup is
illustrated in Sect. 4 with a brief description of the dataset used. Subsequently,
in Sect. 5, we compare the quantitative visual-VAD results of different visual
activity primitives with the results of SOA, while qualitative comparisons are
also performed among visual activity primitives. Finally, conclusive remarks and
future work are sketched in Sect. 6.

2 Related Work

VAD solely based on video-based cues can be categorized in terms of the body
parts investigated such as: face-based approaches that includes lip motion, head
activity, face gestures, visual focus of attention (VFOA) etc., body-based meth-
ods, which contain hand gestures, full body motion, upper body motion, etc., or
composition of these two categories.

As an earlier work on video-based VAD, in [18] the results of face detection,
skin color, skin texture and mouth motion sensors have been combined and
a Bayes Net model has been applied. In [16], facial movements corresponds
to mouth, head and entire face have been extracted by Spatiotemporal Gabor
filters, while mouth region gave the best VAD results. Haider et al. [12] analyzed
the performance of head movement vs. head and lip movements together, and lip
movement vs. lip and head movements together for speaker-dependent, speaker-
independent or hybrid human-machine multiparty interactive dialogue settings.
The results in that study [12] showed that head movement contributes to VAD
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significantly such that it outperforms lips movement except speaker-independent
setting, and in overall, the fusion of head and lips movements perform the best.
As seen, lip motion-based VAD is popular e.g.; [12,16,18] and effective. However,
existing techniques are limited as detecting lip motion is not always possible.
For instance, when speaker presents a profile view to the camera or the camera
resolution is low, or the speaker is far away from the camera or the speaker’s
lips is occluded by her hands, facial features detectors fail to detect the lips.

Hung et al. [14] analyzed the correlation between gaze and hand activities
and speaking status given the assumptions that; the speaker is the one who
moves most, and group’s gaze (detected in terms of VFOA) is more likely to be
on the speaker than on others. In that study [14], the visual activity of hands
were detected by Discrete Cosine Transform (DCT) coefficients and residual cod-
ing bit-rate, while VFOA was determined by a Bayesian approach. The output
features were tested with supervised and unsupervised learning in small group
meeting datasets, and the results approved the assumptions regarding VFOA and
hand motion. By using the same small group meeting dataset with [14], Gebre
et al. [10] proposed using motion history images (MHI) as a likelihood measure
of speaking activity, which resulted in promising performance as compared to
[14], although only one type of cue was used. Detecting VFOA, head motion,
body activity, lip motion and face is relatively less challenging in the meeting
datasets [10,14]. For instance, the detection of VFOA is drastically robust when
there are individual cameras capturing each person specifically at close distance
and in the meeting datasets [10,14], the cameras are always static, there are
more than one cameras capturing participants from their frontal view, and the
places of the cameras are known by the participants.

On the other hand, Cristani et al. [7] performed visual-VAD for surveillance
scenarios where the camera is located in a more distant place as compared to the
meeting or human-machine interactive dialogue environments. In that method
[7], a local video descriptor, which extracts the optical flow of human body, and
encodes optical flow energy and complexity using an entropy-like measure was
applied. Although, the results presented in [7] were successful, it is important to
highlight that, the dataset they used has a top-view that already diminishes the
possibility of occlusions and also the frames that the region of interests overlap
(i.e., inter-person occlusions) were discarded from their analyses.

Directional audio information was used to label improved trajectory fea-
tures extracted from upper body tracks of people as speaking or not-speaking
in [4]. These labels were used for the training of an SVM to perform visual-VAD.
Improved trajectories obtained for each 15 consecutive frames, pooled by a fisher
vector representation were represented by the spatio-temporal features i.e.; the
mean pixel location of the trajectory, and Histogram of Gradients (HoG), His-
togram of Flow (HoF) and Motion Boundary Histogram (MBH). Chakravarty
et al. [5] extended that scheme [4] to an online learning setting, starting from a
generic VAD, which gradually adapts itself to a specific person. One drawback of
that study [5] is, performing person-specific VAD, which requires training data
for each new person. Additionally, even though, [5] performed person-specific
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VAD, the results were still fluctuated, such that VAD was performed well for
some persons, while for others highly insufficient results were obtained.

More recently, deep learning-based feature extraction has become common
for visual-VAD as well. For instance, in [20], face features have been extracted
from AlexNet, then Long Short-Term Memory (LSTM) has been used to model
the temporal dependencies between face features over time, which was used to
perform VAD in real-time multiparty interactions. That study is different than
ours as focusing on face features and also limited due to requiring tightly cropped
face images.

Fig. 1. The overall illustration of the methodology. See text for details.

3 Methodology

The methodology applied to compare visual activity primitives is illustrated in
Fig. 1. During training, for each consecutive 10 RGB video frames, visual activity
primitives: (a) optical flow image (OFI) as proposed in [3], (b) OFI as presented
in [23], (c) dynamic image (DI) as proposed in [2], (d) the combination of OFI
[3] with DI and (e) the combination of OFI [23] with DI are obtained. For each
type of image, a ResNet50 model is fine-tuned with the VAD labels (speak-
ing or not-speaking). Given a test video, the same type of primitive whichever
ResNet50 model is fine-tuned with, is obtained and, softmax is used to perform
classification (end-to-end). Alternatively, the fine-tuned ResNet50 model is used
to extract features, which are given to a Support Vector Machine (SVM) trained
with the same training data ResNet50 is fine-tuned. The predicted label corre-
sponds to the test video frames, those the test optical flow images or dynamic
images (or the combinations of both) are constructed from.
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3.1 Visual Activity Primitives

A video segment having 10 frames is given as an example in Fig. 2 with the five
visual activity primitives obtained from it. This 10 frames are equal to: one RGB
dynamic image (DI), three optical flow images (OFI) obtained as in [3], three
OFI obtained as in [23] and optical flow based dynamic images i.e.; one DI image
for each optical flow method. These primitives are described as follows.

Fig. 2. Visual activity primitives: (1) RGB-dynamic image, (2) optical flow image M1;
refers to [3], (3) optical flow image M2; refers to [23], (4) dynamic image obtained
from optical flow image M1 and (5) dynamic image obtained from optical flow image
M2. This example shows a video segment composed of 10 frames while the person is
speaking.

Optical Flow Image (OFI) [3]: The main objective of the optical flow meth-
ods is to calculate a flow field by estimating the motion of pixels between two
images. In this study, for all optical flow methods, this is performed for every Fi

and Fi+3 frames, such that Fi+1 and Fi+2 are discarded from the calculation.
In other words, for every 30 frames (equals to 1 second for the dataset used),
we obtain 10 OFIs. We discard the frames Fi+1 and Fi+2 to be able to better
represent the motion because the image differencing applied to the consecutive
frames showed that, the motion between two successive frames are very small,
i.e. not creating informative flow images.

Brox et al. [3] presents a variational approach that applies a coarse-to-fine
warping strategy to combine three assumptions: the gradient constancy, the grey-
value constancy and the spatio-temporal smoothness constraint of the optical
flow estimation. The gradient constancy deals with the aperture problem while
the grey value constancy assumption makes the method robust against grey
value changes. The spatio-temporal smoothness constraint allows to estimate
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the displacement of a pixel only locally by taking the interaction between neigh-
bouring pixels into account. Given these, there are three parameters to be set:
the weight between the grey value and the gradient constancy assumption, the
smoothness parameter and the Gaussian convolution parameter to pre-process
the input images. In our experiments smoothness parameter is 80, weight is 5
and Gaussian parameter is 0.9, which are empirically found. Once the optical
flow is computed as described, we obtain the flow RGB images such that the
first two channels are obtained from x and y flow values, respectively. The x and
y flow values are centered around 128 and, then they are multiplied by a scalar
such that they fall between 0–255. The third channel is created with the flow
magnitude.

Optical Flow Image (OFI) [23]: This method is also a variational method,
uses total variation regularization with L1-norm and applies point-wise thresh-
olding strategy. Its objective is to preserve the edges and discontinuities in flow
field while being robust against to the illumination changes, occlusions and noise.
For visualization purpose, the optical flow field in x and y directions are normal-
ized in the range of [–1, 1], which is further converted into HSV color space such
that hue (H) indicates the direction, saturation (S) is represented by magnitude
of flow field and value (V) is fixed to 255. Then, the optical flow images are
obtained by converting them from HSV color space to RGB space.

Dynamic Image (DI) [2]: The objective of dynamic image [2] is to obtain
a compact representation of a video sequence summarizing the appearance and
dynamics of it. DI discards the static pixels such as background pixels and focuses
on the object in an action. Construction of a DI contains rank-pooling that
encodes the temporal evolution of the frames. The resulting DI can be used to
fine-tune any CNN model. Herein, DIs are obtained from RBG data (i.e., raw
video frames) or from OFIs extracted as described above.

3.2 ResNet50 Fine-Tuning

Training a CNN from scratch might not be effective if the size of the data
is limited. In this case, an alternative way is to fine-tune a pre-trained CNN
model. Given the better performance of ResNet50 as compared to many other
architectures [13], all the analysis regarding visual activity primitives are applied
by fine-tuning ResNet50 (pre-trained on ImageNet dataset). During fine-tuning,
a fully-connected layer having 2048 neurons is added after the final convolution
layer. Its weights are randomly initialized and are updated during training. The
weights of convolution layers are not updated. This model is trained with an
end-to-end manner while cross entropy loss function, Adam optimizer, and 10e−5

learning rate are applied for 20 epochs.
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The training data (more details are given in Sect. 4) is highly imbalanced such
that there are a lot more not-speaking segments than speaking segments, which
can mislead the classification task and result in poor performance. To overcome
this, the training data in each batch (in total 128 samples) is balanced such
that equal amount of randomly selected speaking and not-speaking samples (64
samples for each) are used. Furthermore, data augmentation is also applied such
that some randomly selected training images are horizontally flipped and/or a
64× 64 randomly selected patch is replaced with the mean value of the images,
which can be observed as a dropout in input layer.

3.3 Classifier Learning and Inference

The ResNet50 fine-tuning of all visual activity primitives are applied with Soft-
max, which are used to classify the test data as speaking or not-speaking as
well. Additionally, we apply a linear SVM for the best performing visual activ-
ity primitives to perform more fair comparisons with SOA [5]. The SVM kernel
parameter C is taken as 10k while k = {−4,−3,−2,−1, 0, 1, 2, 3, 4}.

Table 1. F1-scores (%). AVG and STD stand for average and standard deviation of
F1-scores of all speakers, respectively. W , OFI, DI mean window size, optical flow
image and dynamic image, respectively. The best results are emphasized in bold-face.

Method Bell Bollinger Lieberman Long Sick AVG STD Details

[5] 82.90 65.80 73.60 86.90 81.80 78.20 8.45 W = 10, SVM

[5] 90.30 69.00 82.40 96.00 89.30 85.40 10.36 W = 100, SVM

[6] 93.70 83.40 86.80 97.70 86.10 89.54 5.94 W = 10

OFI [3] 84.01 69.25 68.8 53.31 68.19 68.71 9.71 Softmax

OFI [23] 85.63 81.73 80.12 69.36 70.83 77.53 6.35 Softmax

RGB-DI 86.07 93.30 91.88 73.62 86.34 86.24 6.94 Softmax

RGB-DI 86.34 93.78 92.34 76.09 86.25 86.96 6.24 SVM

OFI [3]-DI 84.08 72.27 80.57 60.01 68.89 73.164 8.56 Softmax

OFI [23]-DI 89.97 86.56 85.15 82.46 85.43 85.91 2.44 Softmax

OFI [23]-DI 89.16 88.82 85.82 81.39 85.97 86.23 2.79 SVM

4 Experimental Setup

The visual activity primitives are compared using publicly available dataset,
called Columbia [5], which contains a 87 minutes-long video (frame rate: 30
frames per second) of a panel discussion. The field of the view of the camera
changes to focus on smaller groups of panelist at a time. Following SOA, we
only focus on the parts of the video where there is more than one person in
the frame and discard any person in the margins of the video. This results in
5 speakers (Bell, Bollinger, Lieberman, Long, Sick) out of 7, while 2–3 speakers
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are visible per frame. In order to compare our results with SOA [5], we use the
VAD labels (speaking/not-speaking) belonging to these 5 persons for each video
frame. As per the performed analyses, the whole upper body motion of each
speaker is used (in other words, the entire body parts that are visible). Finally,
leave-one-person-out cross validation with F1-score as the evaluation metric is
used still for comparative purposes [5].

5 Results

The best SOA results [5,6] and the best result of each visual activity primi-
tive with Softmax are given in Table 1. For the best performing visual activity
primitives, their results with SVM are also given. As seen, the average perfor-
mance of the visual activity primitives: RGB-DI, and OFI [23]-DI are the best
out of all primitives and they also perform better than visual modality based
SOA [5] method, no matter Softmax or SVM is used. Among all the SOA based
on multi-modality, the method in [6] performed best as it uses audio and lip
based visual information. The lip based visual information is not always reliable
if the subject is more expressive through body motion. As shown in Table 1 the
performance of RGB-DI for Bollinger and Lieberman is quite high as compared
to multi-modality based SOA method [6], where in case Long (subject), it is
the opposite. The performance of SOA [5] is highly dependent on the choice of
window size (W ) of temporal continuity algorithm that is based on the heuristics
that if a person is speaking it is more likely that she will continue speaking for a
while rather than stop speaking. Using temporal continuity largely corrected the
mis-classification results, but it is not clear how the window size of the temporal
continuity should be selected to obtain accurate VAD results. Given that we cre-
ate dynamic images for each 10 consecutive frames, it can be fairer to compare
the performances with SOA [5] while W is equal to 10. In this case, all visual
activity primitives except OFI [3] and OFI [3]-DI, perform better than SOA [5].

Better average visual-VAD performance is definitely very important but hav-
ing low VAD standard deviation (STD) of all speakers while still performing well
on average, is also significant. In detail, the performance of SOA [5] has fluctu-
ations such that it performs well for some persons (e.g., Long: 86.90%), while
performs highly worse for some others (e.g., Bollinger: 65.89%). This can be
observed from the high STD values, 8.45% and 10.36% as well. In other words,
this means that SOA [5] is not able to overcome domain-shift problem such that
the distributions of training data and the test data are different from each other,
which results in poorer VAD performance for some speakers. Domain-shift prob-
lem is highly possible for visual-VAD given that the way people moves while
speaking varies a lot from person to person, resulting in dissimilar visual activ-
ity representations, as also mentioned in the psychology literature. On the other
hand, the performance of any visual activity primitives is more consistent show-
ing the superiority of fc1 features of ResNet50 as compared to the features of
SOA. Especially, OFI [23]-DI is able to detect speaking and not-speaking video
segments equally well for every speaker.
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5.1 Qualitative Analysis

Given 4 video segments, each composed of 10 video frames, two of them hav-
ing the ground-truth label (GT) “speaking” and other two having GT “not-
speaking”, we visualize the class activation maps in Fig. 3 using the approach in
[19] for the ResNet50 fine-tuned for VAD using visual activity primitives sepa-
rately. Grad-CAM [19] is used to localize class-discriminative regions while they
are overlaid with the intermediate raw RBG frame of the corresponding video
segment in Fig. 3.

For the video segments having GT=speaking, it is expected that head and
hand motions are detected as the body of the person is more stable. Out of
all, OFI [3] (M1) is weaker to detect these motions, while RGB-DI and OFI [23]
(M2)-DI localize the hands and head motions the best. For video segments having
GT = not-speaking, in the first one, the person is slightly raising her hands up,
whereas in the second one, the person is drinking water. RGB-DI and especially
OFI M2-DI are still good at detecting the motions and more importantly, they
are able to differentiate these types of motions from the motions during speech,
i.e., they classify the frames correctly. However, OFI-M1 localizes other parts of
the image such as background or the area close to person’s shoulder, where the
motion is very subtle to allow the correct classification of these frames. These
results are in line with the quantitative results, showing that RGB-DI and OFI
[23] (M2)-DI are better to localize the motion correlated with speech.

Fig. 3. The visualization of the class-discriminative regions overlaid with the inter-
mediate raw RGB frame of the video segments when ResNet50 trained with visual
activity primitives separately is used. Red regions in the heat map correspond to the
high scores for the ground-truth class. M1 refers to [3] and M2 refers to [23]. (Color
figure online)
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6 Conclusions

We have addressed video-based voice activity detection (VAD) task with cues
from whole body motion with a data-driven person-invariant setting. A detailed
analysis was realized to compare the visual activity primitives representing the
body motion, which are fed into CNNs to learn an effective VAD model. Some
visual activity primitives resulted in better detection on average, while perform-
ing equally well for all speakers. Our detection results are also better on average
and more consistent than the current literature.

As future work, a novel, effective way of combining these visual activity
primitives will be investigated to perform visual-VAD in more complex scenarios
such as in crowd or multiparty egocentric video streams, after construction of
new benchmark datasets.
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