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Abstract. We propose a CNN regression method to generate high-level,
view-invariant features from RGB images which are suitable for human
pose estimation and movement quality analysis. The inputs to our net-
work are body joint heatmaps and limb-maps to help our network ex-
ploit geometric relationships between different body parts to estimate
the features more accurately. A new multiview and multimodal human
movement dataset is also introduced part of which is used to evaluate the
results of the proposed method. We present comparative experimental
results on pose estimation using a manifold-based pose representation
built from motion-captured data. We show that the new RGB derived
features provide pose estimates of similar or better accuracy than those
produced from depth data, even from single views only.
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1 Introduction

Assessing the quality of human movement is of paramount importance in many
areas of human activity, such as sports, health, and surveillance, exemplified by
recent works such as [15, 12, 7, 14, 13, 11]. For example, amongst many clinic and
home-based tests for patient monitoring in Parkinsons disease [19], a patient’s
quality of walking or steadiness while standing must be observed, e.g. both soon
after prescribing medication and longitudinally across weeks and months as the
progression of the disease is assessed. Using computer vision to automate such
rehabilitation assessments would eliminate the costs and subjective variability
associated with clinicians, and allow the generation of clinical scores that are
more consistently and autonomously applied, e.g. [9].

Our motivation is therefore to design a system that allows us to measure both
frame-by-frame and the overall abnormality in human movement when perform-
ing certain actions – with the aim of eventual development of corresponding
scores to reflect a measure of (ab)normality. These requirements call for the de-
sign of a robust pose estimation method that provides accurate frame-by-frame
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estimates. Our specific application area is for patient rehabilitation actions, such
as walking, sitting-to-standing, and so on [6, 8, 2]. Thus, the pose estimation must
be based on robust features obtained from realistic sensor settings for home en-
vironments, such as affordable single, or just a small few, RGB cameras.

There is a significant body of work on vision-based human body motion
analysis, which for our purposes may be categorised into: (i) traditional meth-
ods using high level human pose features [12, 18, 15, 1], and (ii) deep learning
approaches [14, 10, 13, 20] that extract features directly from images using CNN
networks. The latter may then score a movement’s quality directly from such
features, or they may use them to provide a body pose estimate, to be used
for movement analysis in a later stage. We consider works that rely on wearable
technology, such as [8, 16], as out of scope, since we wish to focus on both remote
sensing for patient comfort and design methods that may have potential use in
other applications, such as sports and surveillance.

Pirsiavash et al. [15] proposed a regression-based method to score sport ac-
tions in an Olympic sports dataset, that they also released. They trained an
SVM classifier on both low-level edge and velocity features and high-level pose
features represented in the frequency domain by the discrete cosine transform.
While their method was able to narrow down which segments included higher
scoring movements, the performance of their features dropped particularly when
encountering self-occlusions. Their method predicts action scores better than
human non-experts, but it is far from human expert judgment.

Using 3D joints data to analyse human movements, often generated by RGBD
cameras and VICON systems, has picked up pace in recent years, for example in
[12, 18, 4, 17]. Not surprisingly, the pose features derived from 3D data are richer
and can be leveraged to assess a wider range of movements. However, then the
curse of dimensionailty can strike and the application of dimensionality reduc-
tion methods, such as PCA or manifold learning, becomes necessary to reduce
the redundancy presented in the 3D joints space. In [12], Paiement et al. used
skeleton data to model pose information in a reduced dimension manifold for a
stairs-climbing rehabilitation analysis application. They then trained a custom-
designed statistical model on the pose information gathered from the action
video to score the movement’s quality on a frame-by-frame basis. Chaaraoui et
al. [4] generated a body-joints motion history volume from 3D spatio-temporal
skeleton joint features, and reduced the dimension of their volume based on axis
projections. They then classified abnormal gait in their own frontal-view dataset
using BagOfKeyPoses on their skeletal joints volume.

Deep learning based methods have also been increasingly applied to assess
the quality of movement, for example [7, 14, 10, 13]. Crabbe et al. [7] modified
the work by Paiement et al. [12] by proposing a CNN regression approach to
estimate the high dimensional body pose from depth silhouettes in the same
low-dimensional manifold space that was developed for their SPHERE Stairs
dataset [12]. AlexNet was applied to perform their pose estimation by mapping
depth silhouettes onto the manifold space. The authors discussed that the use of
depth silhouettes allowed simplifying the learning task for their deep CNN in the
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Fig. 1. The overall schema of the proposed approach (including training and testing
phases) for normal/abnormal pose estimation.

absence of a large training dataset. However, the extraction of good, accurate-
enough silhouettes for movement quality assessment can be a difficult process.
Parmar et al. [13] divided a video into 16-frame video clips and averaged the
spatiotemporal features from all clips, obtained by applying 3D CNNs [20], to
classify sports actions and estimate their score. Li et al. [10] also divided each
video into several parts, and extracted their features using 3D CNNs [20]. Then,
all features were concatenated and fed into a two-layer convolutional network
to predict the action scores. Since such methods extract spatiotemporal features
for a whole video, they are better suited to providing a global score rather than
analysing human movement in each frame.

In a similar fashion to Paiement et al. [12], Liao et al. [11] verified that
dimensionality reduction, implemented through an autoencoder in their case,
combined with statistical modelling of a movement’s kinematics may provide
discriminating pose estimates and movement quality scores for an instance of
a movement. They then trained three different types of NNs (CNN, RNN, and
HNN) to perform a (whole) movement quality score prediction from sequences
of raw VICON skeleton data. Although they effectively used multiview data to
generate their model, the data for their testing must also be obtained by their
mocap system which makes their method somewhat impractical for participants,
especially in more everyday applications, and requires the presence of experts to
set up the system. In addition, their fully integrated NN approach extracts spa-
tiotemporal features that do not allow disentangling the pose from the kinematic
problems and cannot finely analyze movement on a frame-by-frame basis.

In this paper, we propose a ResNet-based regression method that extracts
high-level pose features from body joint heatmaps and body limb-maps from
single RGB images of arbitrary viewpoint. A view-invariant manifold obtained
from motion-captured 3D joint positions serves as the target pose estimate space
for our CNN. A customised statistical model, from [12, 18] is then used to detect
and score movement abnormalities on a frame-by-frame basis using our pose es-
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Fig. 2. Sample frames from the proposed dataset from four different viewing directions
for turn-walk (top row), and limp action (bottom row).

timate. The overall approach is illustrated in Figure 1. The major contributions
of our method are its ability to determine and score movement abnormality (in
a healthcare setting) from any reasonable viewpoint given an RGB video and
without relying on explicit 3D (skeleton or depth) information. Further, we in-
troduce a new fully annotated multiview and multimodal dataset that will be
available to the community for the development of health-related or rehabili-
tation methods. To the best of our knowledge, it is the first time that features
extracted from single RGB images are demonstrated to be suitable for movement
quality analysis in a healthcare application.

Next, in Section 2, a new multiview and multimodal dataset is introduced,
followed by our proposed method in Section 3. Experiments and comparative
results are presented in Section 4. Conclusions are in Section 5.

2 SMAD: Sphere Multiview and Multimodal Movement
Assessment Dataset

There is increasingly more datasets becoming available for human movement
analysis, but there is simply no ‘one size fits all’ that would be of use across
different applications and outcomes. For example, the Olympics sports dataset
introduced by Pirsiavash et al. [15], which includes diving and skating actions ex-
tracted from Youtube videos, is useful for assessment of overall human movement
performance, but would not be of use in rehabilitation movement analysis. Par-
mar et. al [13] also collected a multiview dataset for the diving action. Paiement
et al. [12, 18] captured three single (frontal) view datasets of walking, walking
up stairs, and sitting to standing movements, to evaluate their movement qual-
ity assessment method for health-related applications. The skeleton, depth, and
colour data was captured by a Primesense camera [18], and a physiotherapist
manually annotated all frames into normal and abnormal. Vakanski et al. [21]
developed a skeletal movement dataset using a VICON system and a Kinect
camera for physical rehabilitation exercises involving 10 healthy subjects who
performed their exercises in both correct and incorrect fashion. This dataset
was then used in [11] as described briefly in the previous section.
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We have captured a new multiview human movement dataset that combines,
for the first time, motion capture 1, and skeletons, depth and RGB images from
one Microsoft Kinect and three Primesense cameras. While the dataset includes
different types of actions, here we focus on only the ‘turn and walk’ action, per-
formed both normally and with 3 types of abnormalities by 19 healthy subjects:
turn and walk action (turn-walk), turn and walk with stroke (stroke), turn and
walk with short limp (short limp), turn and walk with Parkinson (Parkinson).
For the last three actions, the participants were trained by a specialist Physio-
therapist. The turn-walk action was repeated five times, while the other actions
were performed only once. The actions were videoed from four camera viewing
directions for the entirety of each walk – towards one camera and back to the op-
posite camera, one side view, and one downward view of the scene. Two samples
from the dataset are displayed in Figure 2.

3 Proposed Method

To use 3D human body joints to generate a pose space and assess the quality of
human movement, dimensionality reduction becomes inevitable to discard the
redundant or correlated dimensions. Here, we follow the approach adopted by
other works, such as [12, 18, 7], to generate a reduced dimensionality manifold to
capture the pose variation in our dataset. However, while these previous works
produced a pose manifold from PrimeSense or Kinect skeletons, we use the less
noisy VICON skeletons derived from motion capture measurements.

A simple approach to view-invariant manifold learning would be to generate
one manifold per view and operate on each independently to exhaustively seek a
solution. In [22], Zhao et al. learnt a latent space multiview manifold from several
images at once, which may be from different modalities, e.g. RGB or RGB-D,
with locality alignment using both a supervised and an unsupervised algorithm.
This effectively integrated several individual views of a scene into a single man-
ifold. Motion-capture 3D skeletons combine information from multiple cameras
and as such are view-independent. Therefore, we generate a view-invariant man-
ifold by applying Diffusion Maps [5] on our motion capture skeletons, which as a
result will allow a reduced dimensionality, view-independent model of an action.

We propose a CNN regression-based method to estimate human pose from
single RGB images. The view-invariant pose manifold serves as a target space to
our pose estimation method, which is trained from groundtruth poses obtained
by projection of motion capture skeletons onto the manifold space. Our CNN is
made view-invariant through the combined uses of a view-independent manifold
and multiple RGB views in its training set.

Skeleton Data Normalization and Manifold Learning – As in [12, 18,
7], before applying Diffusion Maps, we must normalise our data since different
subjects come in various shapes and sizes and they also do not perform actions
at the same world coordinates. To normalise for translation, we considered the

1 We used the Optitrack Flex 3 acquisition system and VICON’s NEXUS skeleton
building software.
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centre of the hip (p(hip center)) as our coordinate centre and normalised the other
joint positions relative to it as:

pjt = pjt − p
(hip center)
t , (1)

where t is the frame number, p is the joint position, and j = {1, 2, . . . , J} is
the joint number for the J = 39 joint positions supplied by our motion capture
system. To normalise for scaling, we defined a model skeleton as a template and
then used its torso, hand and leg sizes for normalising the data as follows:

torsoratio = torso sizetemplate/torso sizepose ,

pjt = pjt ∗ torsoratio, where j ∈ torso ,
(2)

handratio = hand sizetemplate/hand sizepose ,

pjt = pjt ∗ handratio, where j ∈ hand ,
(3)

legratio = leg sizetemplate/leg sizepose ,

pjt = pjt ∗ legratio, where j ∈ leg .
(4)

To normalise for rotation, we applied Procrustes analysis. This approach was not
used for translation and scaling since the center of human body shape is different
with the center computed by Procrustes, e.g. different body parts have different
scale ratios while the Procrustes analysis method scales the whole shape at once.

Finally, we applied Diffusion Maps [5] to reduce the dimensionality of our
data by selecting the manifold’s first N = 5 dimensions to represent 95% of the
total variance of our original data. This exceeds the 3 dimensions used in [7],
but our more complex movement requires more dimensions to describe it. While
in previous works a Robust Diffusion Map algorithm was used [12, 18, 7], the
robust extension was not required in our case because we work with skeletons
extracted from motion capture data, which do not suffer from the same level of
noise as the Kinect or PrimeSense skeletons used in these previous works.

Proposed Network Architecture – The overall structure of the network
is shown in Figure 3. We propose a regression CNN that can exploit the geometric
relationship between different body parts to allow the estimation of 3D pose in
a reduced-dimensionality manifold space. To this end, and to prevent overfitting
on subject appearance during the training of our CNN, we propose to explore
body joint heatmaps and a set of 2D vectors which encode the orientation and
location of body limbs (as limb-maps) as input, instead of RGB images. This
has the added benefit of reducing our data input size. We apply OpenPose [3]
to all our images, delimited by the bounding box containing the subject, to
generate 26 body joint heatmaps and 52 body limb-maps. All the images are at
first zero-padded and resized into 244× 244 pixels to remove scale variations.

By injecting priors on position and structure of body parts to the CNN, we are
able to estimate the 3D reduced pose of each person in manifold space accurately
since we force the CNN to extract the features from our desired regions.
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CNN Regression Network

(heatmaps & limb-maps) Output
Input

View-Invariant Manifold

Fig. 3. The overall structure of the network to estimate high-level view-invariant hu-
man pose in our view-invariant manifold.

Our input contains J + L channels, (J is the number of body joints, and L
is the number of limbs) where each channel describes one body joint or limb,
which leads to the size of the kernels in the first convolution layer to be J + L.

After [3], for each joint j ∈ {1, . . . , J}, we produce a heatmap Hj whose
value at pixel position p is

Hj(p) = exp(−‖p− Pj‖22
σ2

), (5)

where Pj is position of joint j and σ determines the spread of the peak.
For each body limb l ∈ {1 . . . L}, we generate a body limb-map Bl, such that,

if j1 and j2 are body joints defining a limb, then

Bl(p) =

{
v if p on limb l

0 otherwise
where v =

pj1 − pj2
‖pj1 − pj2‖

. (6)

To implement our network, we use ResNet and modify its first and last layers.
We replace the first layer with a convolutional layer, with a depth of J +L, and
the last layer with a regression layer with the size of the manifold dimension.
Our mean square error (MSE) loss function computes the difference between the
groundtruth X and the 3D reduced pose Y estimated by the proposed method,

Loss(X,Y ) =
1

N

N∑
i=1

‖xi − yi‖22 . (7)

4 Experimental Results

We perform 3 experiments on the turn-walk action. First we show the impor-
tance of our heatmap and limb-map in estimating high-level view-invariant hu-
man pose on normal subjects. Then, we probe our method’s performance, given
single and combined of views at training time, to assess the ability of a CNN to
attain view invariance for pose estimation. Finally, we perform movement quality
classification (into normal and abnormal) using spatio-temporal modeling.

Experimental Setup – Our experiments were performed under Pytorch
on a GeForce GTX 750 GPU, training our pose estimation model for the turn-
walk action for 15 epochs with a learning rate of 0.001, and batch size of 10.
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Table 1. The MSE for pose estimation when training with different inputs

Error
RGB Depth Depth

Heatmap Limb-map
Heatmap

BB BB Silhouette [7] & Limb-map

MSE 0.72 0.70 0.72 0.67 0.67 0.66

Our training was on 12 subjects at 53544 frames, and testing was on 5 subjects
at 21991 frames. For assessing movement quality, we additionally tested on 6
subjects with stroke, 8 subjects with limp, and 12 subjects with Parkinsons.

For evaluation against the closest possible approach, in our first experiment,
we compare against Crabbe et al. [7]. Since their dataset does not contain RGB
data, the only possible comparative analysis is for us to apply their method
using depth silhouettes generated from our data. In addition, [7]’s simple depth
silhouette extraction method is not robust to cluttered environments. Instead,
we use OpenPose [3] to obtain better depth silhouettes and do region growing
from seeds located at joint positions estimated by OpenPose. For robustness, we
only use as seeds the non-occluded torso joints. The same depth and contrast
normalisation as in [7] was then applied to the silhouette and its background.
Also, [7] used Alexnet to train their model, but for a fairer comparison, we apply
ResNet for all our experiments. In the following experiments, since it is not simple
to extract a depth silhouette, we also use the depth bounding box (Depth BB)
of the subject to compare against. For accuracy, we compute the MSE between
groundtruth pose and estimated human pose in our manifold space.

Comparison of Input Features – We train our network with different
types of inputs, i.e. RGB bounding box (RGB BB) of subject, depth BB of sub-
ject, depth silhouette similar to Crabbe et al. [7] but extracted using OpenPose
[3], body joint heatmaps, body limb-maps, and combined heatmap and limb-
maps, from all our views, to assess the performance of the proposed method.
Table 1 shows that when trained by using combined heatmap and body limb-
maps, the network has the least error in estimating high-level pose. As a result,
for the rest of our experiments, we only train the network with heatmaps and
body limb-maps. The result from Crabbe et al. [7] using depth silhouettes is
poorer than when Depth BB is used potentially due to the general difficulty in
accurate silhouette extraction. While in [7] the small size of the dataset required
simplifying the learning task for the CNN by extracting the depth silhouette as
a preprocessing stage, with our dataset and ResNet architecture this is not the
case anymore and the depth BB obtains good results. For this reason, for the
rest of the experiments, instead of depth silhouettes, we compare against Crabbe
et al.’s work with the simpler Depth BB put through the network.

Assessing Single and Combinations of Views – The first four rows of
Table 2 report the pose estimation MSE when we train our method each time
using single individual views only. View 1 and View 4 are the opposite camera
views, View 2 is the camera view from the side, and View 3 is around 45◦ above
View 1. View 3 provides the best result and will hereafter be used as the basis
of all other experiments. Furthermore, for all single views, the proposed method
performs better than Depth BB.
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Table 2. MSE between estimated pose and groundtruth on single and multiple views.

Train set Test set Depth BB Proposed Method

View 1 View 1 0.73 0.67

View 2 View 2 0.76 0.71

View 3 View 3 0.70 0.63

View 4 View 4 0.73 0.65

View 1 1.13 1.02
View 3 View 2 1.42 1.36

View 4 1.10 1.04

Average (inc View 3) 1.21 1.14

View 1 1.07 0.95
Views 3,4 View 2 1.42 1.36

View 3 1.59 0.64
View 4 0.70 0.64

Average 1.19 0.89

View 1 0.68 0.67
Views 1,3,4 View 2 1.40 1.20

View 3 1.66 0.64
View 4 0.68 0.65

Average 1.10 0.79

View 1 1.09 0.95
Views 2,3,4 View 2 0.73 0.75

View 3 1.63 0.62
View 4 0.69 0.62

Average 1.03 0.73

View 1 0.69 0.69
Views 1,2,3,4 View 2 0.75 0.72

View 3 1.73 0.64
View 4 0.69 0.64

Average 0.96 0.67

Row 5 in Table 2 illustrates that training from a single view only, even if
it is the best view, is not sufficient if the test data comes from others views.
We only show the case for the best single training view, i.e. View 3, while the
results for the other train/test combinations are similar or worse. The remaining
rows in Table 2 show the MSE between the estimated pose and groundtruth for
different combinations of views for Depth BB and the proposed method. Again,
we only show sample combinations that are rooted in View 3, including the
combination of all views, while other results remain quite similar. These results
indicate that the proposed method can maintain a high accuracy when more
views are provided and has learnt well to distinguish between views.

Quality of Movement Assessment – We need to examine if the high-level
view-invariant poses extracted by the proposed method are suitable for assessing
the quality of human movement. For spatio-temporal analysis of the movement,
we apply the framework proposed in [12] which generates two statistical mod-
els of normal pose and dynamics. A frame is classified as normal or abnormal
depending on how far away from these models it is, based on an empirically
determined threshold on log-likelihood. We test on both normal and abnormal
sequences which contain all normal (resp. abnormal) frames.

For sequences with abnormal movements, no motion capture skeleton data is
available. It is therefore not possible to measure MSE error for pose estimation
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Table 3. Frame classification performance for normal and abnormal sequences

Normal Stroke Limp Parkinson All sequences
TN FP Specificity TP FN TP FN TP FN Precision Recall

Depth BB 3795 4095 0.48 3793 1497 5665 2663 8939 3950 0.81 0.69

Proposed 4780 3110 0.60 3540 1750 4592 3736 6699 6190 0.82 0.55

Table 4. Percentage of frames classified as normal by the pose/dynamics models

Normal Stroke Limp Parkinson

Depth BB 79% / 55% 79% / 30% 78% / 34% 80% / 32%

Proposed Method 86% / 65% 78% / 35% 81% / 48% 85% / 51%

due to lack of groundtruth. However, we may still assess our method’s perfor-
mance indirectly through movement quality analysis, which depends directly on
the quality of pose estimate, as highlighted in [7].

We note from Table 3 the overall poorer performance of the movement quality
assessment method compared to previous uses of it in [12, 18, 7]. This may not
necessarily indicate a poor performance of pose estimation, but rather be due in
large part to the method being designed for modelling and assessing the quality
of single movements, while in our case we consider a more complex action made
up of two distinct basic movements (walk-turn). Since improving on this method
is not the topic of the present study, we leave this to future works, and we focus
on comparing pose estimates from the Depth BB and proposed methods.

Table 3 shows that the specificity for the proposed method to estimate pose
of normal sequences is higher at 0.60 than for depth BBs at 0.48, which implies
that the estimated poses are close to motion-captured data. Table 4 shows that
the movement analysis modelling mostly finds pose to be normal, while the dy-
namics is particularly abnormal in all abnormal sequences. This is in line with
our scenarios where all three abnormality types mostly imply abnormal dynamics
with relatively normal poses. The depth BB approach tends to yield more ab-
normal pose outcomes than ours, in line with the results of previous experiments
(Tables 1 & 2). This may contribute to explaining its poorer classification results
on normal sequences in Table 3 and its better results on abnormal sequences.

5 Conclusions

We proposed a CNN regression method to extract high-level view-invariant pose
and applied it to asses the overall quality of human movement. We also intro-
duced a new multiview, multimodal human movement dataset to evaluate the
performance of the proposed method and which we hope will be of use to the rest
of the community. The implication of our approach is that a CNN may learn
to estimate high-level pose from arbitrary view points. We also demonstrated
the superiority of RGB-derived heatmaps and limb-maps as input data for pose
estimation, over depth data. For future work, we plan to build on our method
to produce a multiview framework that may combine any number of arbitrary
view points for a more robust pose estimation.
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