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Abstract. Image translation refers to the task of mapping images from
a visual domain to another. Given two unpaired collections of images,
we aim to learn a mapping between the corpus-level style of each collec-
tion, while preserving semantic content shared across the two domains.
We introduce xgan, a dual adversarial auto-encoder, which captures a
shared representation of the common domain semantic content in an
unsupervised way, while jointly learning the domain-to-domain image
translations in both directions. We exploit ideas from the domain adap-
tation literature and define a semantic consistency loss which encourages
the learned embedding to preserve semantics shared across domains. We
report promising qualitative results for the task of face-to-cartoon trans-
lation. The cartoon dataset we collected for this purpose, ”CartoonSet”,
is also publicly available as a new benchmark for semantic style transfer
at https://google.github.io/cartoonset/index.html.

Keywords: Generative models · Style transfer · Domain adaptation.

1 Introduction

Image-to-image translation – learning to map images from one domain to another
– covers several classical computer vision tasks such as style transfer (rendering
an image in the style of a given input [4]), colorization (mapping grayscale images
to color images [26]), super-resolution (increasing the resolution of an input
image [13]), or semantic segmentation (inferring pixel-wise semantic labeling of
a scene [18]). Learning such mappings requires an underlying understanding of
the shared information between the two domains. In many cases, supervision
encapsulates this knowledge in the form of labels or paired samples. This holds
for instance for colorization, where ground-truth pairs are easily obtained by
generating grayscale images from colored inputs.
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Fig. 1. Semantic style transfer is the task of adapting an image to the visual appear-
ance of another domain without altering its semantic content given only two unpaired
image collections without pairs supervision (left). We define semantic content as char-
acteristic attributes which are shared across domains, but do not necessarily appear
the same at the pixel-level. For instance, cartoons and faces have a similar range of hair
color but with very different appearances, e.g., blonde hair is bright yellow in cartoons.
The proposed xgan applied on the face-to-cartoon task yields a shared representation
that preserves important face semantics such as hair style or face shape (right).

In this work, we consider the task of unsupervised semantic style transfer :
learning to map an image from one domain into the style of another domain
without altering its semantic content (see Figure 1). In particular, we experiment
on the task of translating faces to cartoons. Note that without loss of generality, a
photo of a face can be mapped to many valid cartoons, and vice-versa. Semantic
style transfer is therefore a many-to-many mapping problem, for which obtaining
labeled examples is ambiguous and costly. Furthermore in this unsupervised
setting we do not have access to supervision on shared domain semantic content
(e.g., facial attributes such as hair color, eye color, etc.). Instead, we propose an
encoder-decoder structure with a bottleneck embedding shared across the two
domains to capture common semantics as a latent representation.

The key issue is thus to learn an embedding that preserves semantic facial
attributes (hair color, eye color, etc.) between the two domains with little su-
pervision, and to incorporate it within a generative model to produce the actual
domain translations. Although this paper specifically focuses on the face-to-
cartoon setting, many other examples fall under this category: mapping land-
scape pictures to paintings (where the different scene objects and their compo-
sition describe the input semantics), transforming sketches to images, or even
cross-domain tasks such as generating images from text. We only rely on two
unlabeled training image collections or corpora, one for each domain, with no
known image pairings across domains. Hence, we are faced with a double do-
main shift, first in terms of global domain appearance, and second in terms of
the content distribution of the two collections.

Recent work [10,27,25,1,6] report good performance using GAN-based models
for unsupervised image-to-image translation when the two input domains share
similar pixel-level structure (e.g., horses and zebras) but fail for more signifi-
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cant domain shifts (e.g., dogs and cats). Perhaps the best known recent example
is CycleGAN [27]. Given two image domains D1 and D2, the model is trained
with a pixel-level cycle-consistency loss which ensures that the mapping g1→2

from D1 to D2 followed by its inverse, g2→1, yields the identity function; i.e.,
g1→2 ◦ g2→1 = id. We argue that such a pixel-level constraint is not sufficient
in our setting, and that we rather need a constraint in feature space to allow
for more permissive transformations of the pixel input. To this end, we propose
xgan (“Cross-GAN”), a dual adversarial auto-encoder which learns a shared
semantic representation of the two input domains in an unsupervised way, while
jointly learning both domain-to-domain translations. More specifically, the do-
main translation g1→2 consists of an encoder e1 taking inputs in D1, followed by
a decoder d2 with outputs in D2 (and likewise for g2→1) such that e1 and e2, as
well as d1 and d2, are partially shared across domains.

The main novelty lies in how we constrain the shared embedding using tech-
niques from the domain adaptation literature, as well as a novel semantic consis-
tency loss. The latter ensures that the domain-to-domain translations preserve
the semantic representation, i.e., that e1 ≈ e2 ◦ g1→2 and e2 ≈ e1 ◦ g2→1. There-
fore, it acts as a form of self-supervision which alleviates the need for paired
examples and preserves semantic feature-level information rather than pixel-
level content. In the following section, we review relevant recent work before
discussing the xgan model in more detail in Section 3. In Section 4, we intro-
duce CartoonSet, our dataset of cartoon faces for research on semantic style
transfer. Finally, in Section 5 we report experimental results of xgan on the
face-to-cartoon task.

2 Related work

Recent literature suggests two main directions for tackling the semantic style
transfer task: traditional style transfer and pixel-level domain adaptation. The
first approach is inadequate as it only transfers texture information from a single
style image, and therefore does not capture the style of an entire corpus. The
latter category also fails in practice as it explicitly enforces pixel-level similarity
which does not allow for significant structural change of the input. Instead, we
draw inspiration from the domain adaptation and feature-level image-to-image
translation literature.

Style Transfer. Neural style transfer refers to the task of transferring the texture
of a specific style image while preserving the pixel-level structure of an input
content image [4,9]. Recently, [14,15] proposed to instead use a dense local patch-
based matching approach in the feature space, as opposed to global feature
matching, allowing for convincing transformations between visually dissimilar
domains. Still, these models only perform image-specific transfer rather than
learning a global corpus-level style and do not provide a meaningful shared
domain representation. Furthermore, the generated images are usually very close
to the original input in terms of pixel structure (e.g., edges) which is not suitable
for drastic transformations such as face-to-cartoon.
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Domain adaptation. xgan relies on learning a shared feature representation of
both domains in an unsupervised setting to capture semantic rather than pixel
information. For this purpose, we make use of the domain-adversarial training
scheme [3]. Moreover, recent domain adaptation work [2,22,1] can be framed as
semantic style transfer as they tackle the problem of mapping synthetic images,
easy to generate, to natural images, which are more difficult to obtain. The
generated samples are then used to train a model later applied to natural images.
Contrary to our work however, they only consider pixel-level transformations.

Unsupervised Image-to-Image translation. Recent work [10,27,25,6] tackle the
unsupervised pixel-level image-to-image translation task by learning both cross-
domain mappings jointly, each as a separate generative adversarial network, via a
cycle-consistency loss which ensures that applying each mapping followed by its
reverse yields the identity function. This intuitive form of self-supervision leads to
good results for pixel-level transformations, but often fails to capture significant
structural changes [27]. In comparison, our proposed semantic consistency loss
acts at the feature-level, allowing for more flexible transformations.

Orthogonal to this line of work is UNIT [16,7,19]. This model consists of
a coupled VAEGAN architecture [12,17] with a shared embedding bottleneck,
trained with pixel-level cycle-consistency. Similar to xgan, it learns a joint
feature-level representation of the two domains, however UNIT assumes that
sharing high-level layers in the architecture is a sufficient constraint, while xgan’s
objective explicitly introduces the semantic consistency component.

Finally, the Domain Transfer Network (DTN) [23,24] is closest to our work
in terms of objective and applications. The DTN architecture is a single auto-
encoder trained to map images from a source to a target domain with self-
supervised semantic consistency feedback. It was also successfully applied to the
problem of feature-level image-to-image translation, in particular to the face-to-
cartoon problem. Contrary to xgan however, the DTN encoder is pretrained and
fixed, and is assumed to produce meaningful embeddings for both the face and
the cartoon domains. This assumption is very restrictive, as off-the-shelf models
pretrained on natural images do not usually generalize well to other domains. In
fact, we show in Section 5 that a fixed encoder does not generalize well in the
presence of a large domain shift between the two domains.

3 Proposed model: XGAN

Let D1 and D2 be two domains that differ in terms of visual appearance but share
common semantic content. It is often easier to think of domain semantics as a
high-level notion, e.g., semantic attributes, however we do not require such an-
notations in practice, but instead consider learning a feature-level representation
that automatically captures these shared semantics. Our goal is thus to learn in
an unsupervised fashion, i.e., without paired examples, a joint domain-invariant
embedding: semantically similar inputs across domains will be embedded nearby
in the learned feature space.
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Architecture-wise, xgan is a dual auto-encoder on domains D1 and D2 Fig-
ure 2(A). We denote by e1 the encoder and by d1 the decoder for domain D1;
likewise e2 and d2 for D2. For simplicity, we also denote by g1→2 = d2 ◦ e1 the
transformation from D1 to D2; likewise g2→1 for D2 to D1.
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(A) High-level view of
the xgan dual
auto-encoder
architecture
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Fig. 2. The xgan (A) objective encourages the model to learn a meaningful joint em-
bedding (B1) (Lrec and Ldann), which should be preserved through domain translation
(B2) (Lsem), while producing output samples of good quality (B3) (Lgan and Lteach)

The training objective can be decomposed into five main components: the re-
construction loss, Lrec, encourages the learned embedding to encode meaningful
knowledge for each domain; the domain-adversarial loss, Ldann, pushes embed-
dings from D1 and D2 to lie in the same subspace, bridging the domain gap
at the semantic level; the semantic consistency loss, Lsem, ensures that input
semantics are preserved after domain translation; Lgan is a simple generative
adversarial (GAN) objective, encouraging the model to generate more realistic
samples, and finally, Lteach is an optional teacher loss that distills prior knowl-
edge from a fixed pretrained teacher embedding, when available. The total loss
function is defined as a weighted sum over these five loss terms:

Lxgan = Lrec + ωdLdann + ωsLsem + ωgLgan + ωtLteach,

where the ω hyper-parameters control the contributions from each of the indi-
vidual objectives. An overview of the model is given in Figure 2, and we discuss
each objective in more detail in the rest of this section.

Reconstruction loss, Lrec. Lrec encourages the model to encode enough infor-
mation on each domain for to perfectly reconstruct the input. More specifically
Lrec = Lrec,1 + Lrec,2 is the sum of reconstruction losses for each domain.

Lrec,1 = Ex∼pD1
(‖x− d1(e1(x))‖2) , likewise for domain D2 (1)
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Domain-adversarial loss, Ldann. Ldann is the domain-adversarial loss between
D1 and D2, as introduced in [3]. It encourages the embeddings learned by e1 and
e2 to lie in the same subspace. In particular, it guarantees the soundness of the
cross-domain transformations g1→2 and g2→1. More formally, this is achieved
by training a binary classifier, cdann, on top of the embedding layer to catego-
rize encoded images from both domains as coming from either D1 or D2 (see
Figure 2 (B1)). cdann is trained to maximize its classification accuracy while
the encoders e1 and e2 simultaneously strive to minimize it, i.e., to confuse the
domain-adversarial classifier. Denoting model parameters by θ and a classifica-
tion loss function by ` (e.g., cross-entropy), we optimize

min
θe1 ,θe2

max
θdann

Ldann, where (2)

Ldann = EpD1
`(1, cdann(e1(x))) + EpD2

` (2, cdann(e2(x)))

Semantic consistency loss, Lsem. Our key contribution is a semantic consistency
feedback loop that acts as self-supervision for the cross-domain translations g1→2

and g2→1. Intuitively, we want the semantics of input x ∈ D1 to be preserved
when translated to the other domain, g1→2(x) ∈ D2, and similarly for the reverse
mapping. However this consistency property is hard to assess at the pixel-level
as we do not have paired data and pixel-level metrics are sub-optimal for im-
age comparison. Instead, we introduce a feature-level semantic consistency loss,
which encourages the network to preserve the learned embedding during domain
translation. Formally, Lsem = Lsem,1→2 + Lsem,2→1, where:

Lsem,1→2 = Ex∼pD1
‖e1(x)− e2(g1→2(x))‖, likewise for Lsem,2→1. (3)

‖ · ‖ denotes a distance between vectors.

GAN objective, Lgan. We find that generating realistic image transformations
has a crucial positive effect for learning a joint meaningful and semantically con-
sistent embedding as the produced samples are fed back through the encoders
when computing the semantic consistency loss: making the transformed distri-
bution p(g2→1(D2)) as close as possible to the original domain p(D1) ensures
that the encoder e1 does not have to cope with an additional domain shift.

Thus, to improve sample quality, we add a generative adversarial loss [5]
Lgan = Lgan,1→2 + Lgan,2→1, where Lgan,1→2 is a state-of-the-art GAN objec-
tive [5] where the generator g1→2 is paired against the discriminator D1→2 (and
likewise for g2→1 and D2→1). In this scheme, a discriminator D1→2 strives to
distinguish generated samples from real ones in D2, while the generator g1→2

aims to produce samples that confuse the discriminator. The formal objective is

min
θg1→2

max
θD1→2

Lgan,1→2 (4)

Lgan,1→2 = Ex∼pD2
(log(D1→2(x))) + Ex∼pD1

(log(1−D1→2(g1→2(x))))

Likewise Lgan,2→1 is defined for the transformation from D2 to D1.
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Note that the combination of the Lgan and Lsem objectives should subsume
the role of the domain-adversarial loss Ldann in theory. However, Ldann plays an
important role at the beginning of training to bring embeddings across domains
closer, as the generated samples are typically poor and not yet representative of
the actual input domains D1 and D2.

Teacher loss, Lteach. We introduce an optional component to incorporate prior
knowledge in the model when available, e.g., in a semi-supervised setting. Lteach
encourages the learned embeddings to lie in a region of the subspace defined by
the output representation of a pretrained teacher network, T . In other words, we
distills feature-level knowledge from T and constrains the embeddings to a more
meaningful sub-region, relative to the task on which T was trained; This can be
seen as a form of regularization of the learned embedding. Moreover, Lteach is
asymmetric by definition. It should not be used for both domains simultaneously
as each term would potentially push the learned embedding in two different
directions. Formally, Lteach (applied to domain D1) is defined as:

Lteach = Ex∼pD1
‖T (x)− e1(x)‖, (5)

where ‖ · ‖ is a distance between vectors.

3.1 Architecture and Training procedure

We use a simple mirrored convolutional architecture for the auto-encoder. It
consists of 5 convolutional blocks for each encoder, the two last ones being shared
across domains, and likewise for the decoders (5 deconvolutional blocks with the
two first ones shared). This encourages the model to learn shared representations
at different levels of the architecture rather than only in the middle layer. A
more detailed description is given in Table 1. For the teacher network, we use
the highest convolutional layer of FaceNet [21], a state-of-the-art face recognition
model trained on natural images.

The xgan training objective is to minimize (Eq. 1). In particular, the two ad-
versarial losses (Lgan and Ldann) lead to min-max optimization problems requir-
ing careful optimization. For the GAN loss Lgan, we use a standard adversarial
training scheme [5]. Furthermore, for simplicity we only use one discriminator in
practice, namely D1→2 which corresponds to the face-to-cartoon path, our tar-
get application. We first update the parameters of the generators g1→2 and g2→1

in one step. We then keep these fixed and update the parameters for the dis-
criminator D1→2. We iterate this alternating process throughout training. The
adversarial training scheme for Ldann can be implemented in practice by connect-
ing the classifier cdann and the embedding layer via a gradient reversal layer [3]:
the feed-forward pass is unaffected, however the gradient is backpropagated to
the encoders with a sign-inversion representing the min-max alternation. We
perform this update simultaneously when computing the generator parameters.
Finally, we train the model with Adam optimizer [11] and an initial learning
rate of 1e-4.
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Layer Size

Inputs 64x64x3

conv1 32x32x32

conv2 16x16x64

(//) conv3 8x8x128

(//) conv4 4x4x256

(//) FC1 1x1x1024

(//) FC2 1x1x1024

(a) Encoder

Layer Size

Inputs 1x1x1024

(//) deconv1 4x4x512

(//) deconv2 8x8x256

deconv3 16x16x128

deconv4 32x32x64

deconv5 64x64x3

(b) Decoder

Layer Size

Inputs 64x64x3

conv1 32x32x16

conv2 16x16x32

conv3 8x8x32

conv4 4x4x32

FC1 1x1x1

(c) Discriminator
Table 1. Overview of the XGAN architecture used in practice. The encoder and de-
coder have the same architecture for both domains, and (//) indicates that the layer
is shared across domain.

4 The CartoonSet Dataset

Although previous work has tackled the task of transforming frontal faces to a
specific cartoon style, there is currently no such dataset publicly available. For
this purpose, we introduce a new dataset, CartoonSet7, which we release publicly
to further aid research on this topic.

Each cartoon face is composed of 16 components including 12 facial attributes
(e.g., facial hair, eye shape, etc) and 4 color attributes (such as skin or hair color)
which are chosen from a discrete set of RGB values. The number of options
per attribute category ranges from 3 to 111, for the largest category, hairstyle.
Each of these components and their variation were drawn by the same artist,
resulting in approximately 250 cartoon components artworks and 108 possible
combinations. The artwork components are divided into a fixed set of layers that
define a Z-ordering for rendering. For instance, face shape is defined on a layer
below eyes and glasses, so that the artworks are rendered in the correct order.
For instance, hair style needs to be defined on two layers, one behind the face and
one in front. There are 8 total layers: hair back, face, hair front, eyes, eyebrows,
mouth, facial hair, and glasses. The mapping from attribute to artwork is also
defined by the artist such that any random selection of attributes produces a
visually appealing cartoon without any misaligned artwork; which sometimes
involves handling interaction between attributes, e.g. the appearance of ”short
beard” will changed depending of the face shape. For example, the proper way
to display a ”short beard” changes for different face shapes, which required
the artist to create a ”short beard” artwork for each face shape. We create
the CartoonSet dataset from arbitrary cartoon faces by randomly sampling a
value for each attribute. We then filter out unusual hair colors (pink, green
etc) or unrealistic attribute combinations, which results in a final dataset of
approximately 9, 000 cartoons. In particular, the filtering step guarantees that
the dataset only contains realistic cartoons, while being completely unrelated to
the source dataset.

7 CartoonSet, https://github.com/google/cartoonset

https://github.com/google/cartoonset
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Fig. 3. Random samples from our cartoon dataset, CartoonSet.

Fig. 4. Random centered aligned samples from VGG-Face. We preprocess them with
automatic portrait matting to avoid dealing with background noise.

5 Experiments

We experimentally evaluate our xgan model on semantic style transfer ; more
specifically, on the task of converting images of frontal faces (source domain) to
images of cartoon avatars (target domain) given an unpaired collection of such
samples in each domain. Our source domain is composed of real-world frontal-
face images from the VGG-Face dataset [20]. In particular, we use an image
collection consisting of 18,054 uncropped celebrity frontal face pictures. As a
preprocessing step, we align the faces based on eyes and mouth location and re-
move the background. The target domain is the CartoonSet dataset introduced
in the previous section. Finally, we randomly select and take out 20% of the
images from each dataset for testing purposes, and use the remaining 80% for
training. For our experiments we also resize all images to 64× 64. As shown in
Figures 3 and 4, the two domains vary significantly in appearance. In particular,
cartoon faces are rather simplistic compared to real faces, and do not display as
much variety (e.g., noses or eyebrows only have a few shape options). Further-
more, we observe a major content distribution shift between the two domains
due to the way we collected the data: for instance, certain hair color shades
(e.g., bright red, gray) are over-represented in the cartoon domain compared to
real faces. Similarly, the cartoon dataset contains many samples with eyeglasses
while the source dataset only has a few.

Fig. 5. Selected samples generated by xgan on the VGG-Face (left) to CartoonSet
(right) task. The figure reads row-wise: for each face-cartoon pair, the target image
(cartoon) on the right was generated from the source image (face) on the left.



10 A. Royer et al.

Comparison to the DTN baseline. Our first evaluation is a qualitative com-
parison between the Domain Transfer Network (DTN) [23] and xgan on the
semantic style transfer problem outlined above. To the best of our knowledge,
DTN is the current state of the art for semantic style transfer given unpaired
image corpora from two domains with significant visual shift. In particular, DTN
was also applied to the task of transferring face pictures to cartoons (bitmojis)
in the original paper8. Figure 6 shows the results of both DTN and xgan applied
to random VGG-Face samples from the test set to produce their cartoon coun-
terpart. Evaluation metrics for style transfer are still an active research topic
with no good unbiased solution yet. Hence we choose optimal hyperparameters
by manually evaluating the quality of resulting samples, focusing on accurate
transfer of semantic attributes, similarity of the resulting sample to the target
domain, and crispness of samples.

(a) Baseline: DTN

(b) Proposed: XGAN

Fig. 6. A qualitative comparison between DTN and xgan. In both cases we present
random test samples for the face-to-cartoon transformation. The tables are organized
row-wise where each face input is mapped to the cartoon face immediately on its right.

It is clear from Figure 6 that DTN fails to capture the transformation func-
tion that semantically stylizes frontal faces to cartoons from our target domain.
In contrast, XGAN is able to produce sensible cartoons both in terms of the

8 The original DTN code and dataset is not publicly available, hence we instead report
results from our implementation applied to the VGG-Face to CartoonSet setting.
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style domain – the resulting cartoons look crisp and respect the specific Car-
toonSet style – and in terms of semantic similarity to the input samples from
VGG-Face. There are some failure cases such as hair or skin color mismatch,
which emerge from the weakly supervised nature of the task and the significant
content shift between the two domains (e.g., red hair is over-represented in the
target cartoon dataset). In Figure 5 we report selected xgan samples that we
think best illustrate its semantic consistency abilities, showing that the model
learns a meaningful shared representation that preserves common face semantics.
Additional random samples are also reported in Figure 7.

(a) Source to target mapping (face-to-cartoon)

(b) Target to source mapping (cartoon-to-face)

Fig. 7. Random samples obtained by applying xgan on faces and cartoons from the
testing set for both cross-domain mappings
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We believe the failure of DTN is primarily due to its assumption of a fixed
joint encoder for both domains. Although the decoder learns to reconstruct in-
puts from the target domain almost perfectly, the semantics are not well pre-
served across domains and the decoder yields samples of poor quality for the
domain transfer. In fact, FaceNet was originally trained on real faces inputs,
hence there is no guarantee it can produce a meaningful representation for Car-
toonSet samples. In contrast to our dataset, the target bitmoji domain in [23] is
visually closer to real faces, as bitmojis are more realistic and customizable than
the cartoon style domain we use here. This might explain the original work per-
formance even with a fixed encoder. Our experiments suggest that using a fixed
encoder is too restrictive and does not adapt well to new scenarios. We also train
a DTN with a finetuned encoder which yields samples of better quality than the
original DTN. However, this setup is very sensitive to hyperparameters choice
during training and prone to mode collapse (see Section 7.1).

Comparison to CycleGAN. As we have mentioned in the related work section,
CycleGAN [27], DiscoGAN [10] and DualGAN [25] form another family of closely
related work for image-to-image translation problems. However, differently from
DTN and the proposed XGAN, these models only consider a pixel-level cycle con-
sistency loss and do not use a shared domain embedding. Consequently, they fail
to capture high-level shared semantics between significantly different domains.
To explore this problem, we experiment with CycleGAN9 on the face-to-cartoon
task. We train a CycleGAN with a pix2pix [8] generator as in the original pa-
per, which is close to the generator we use in XGAN in terms of architecture
choices and size (depth and width of the network). As shown in Figure 8, this
approach yields poor results, which is explained by the explicit pixel-level cycle
consistency loss and the fact that the pix2pix architecture contains backwards
connections (U-net) between the encoder and the decoder; both these features
enhance pixel structure similarities which is not desirable for this task.

Fig. 8. The default CycleGAN model is not suitable for transformation between do-
mains with very dissimilar appearances as it enforces pixel-level structural similarities

9 CycleGAN-tensorflow, https://github.com/xhujoy/CycleGAN-tensorflow

https://github.com/xhujoy/CycleGAN-tensorflow
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Ablation study. We conduct a number of insightful ablation experiments on
xgan. We first consider training only with the reconstruction loss Lrec and
domain-adversarial loss Ldann. In fact these form the core domain adaptation
component in xgan and, as we will show, are already able to capture basic se-
mantic knowledge across domains in practice. Secondly we experiment with the
semantic consistency loss and teacher loss. We show that both have complemen-
tary constraining effects on the embedding space which contributes to improving
the sample consistency.

We first experiment on xgan with only the reconstruction and domain-
adversarial losses active. These components prompt the model to (i) encode
enough information for each decoder to correctly reconstruct images from the
corresponding domain and (ii) to ensure that the embedding lies in a common
subspace for both domains. In practice in this setting, the model is robust to
hyperparameter choice and does not require much tuning to converge to a good
regime, i.e., low reconstruction error and around 50% accuracy for the domain-
adversarial classifier. As a result of (ii), applying each decoder to the output of
the other domain’s encoder yields reasonable cross-domain translations, albeit of
low quality (see Figure 9). Furthermore, we observe that some simple semantics
such as skin tone or gender are overall well preserved by the learned embed-
ding due to the shared auto-encoder structure. For comparison, failure modes
occur in extreme cases, e.g., when the model capacity is too small, in which case
transferred samples are of poor quality, or when the weight ωd is too low. In the
latter case, the source and target embeddings are easily distinguishable and the
cross-domain translations do not look realistic.

(a) source to target

(b) target to source

Fig. 9. Test results for xgan with the reconstruction (Lrec) and domain-adversarial
(Ldann) losses active only in the training objective Lxgan



14 A. Royer et al.

Secondly, we investigate the benefits of adding semantic consistency in xgan
via the following three components: sharing high-level layers in the auto-encoder
leads the model to capture common semantics earlier in the architecture. In
general, high-level layers in convolutional neural networks are known to encode
semantic information. We performed experiments with sharing only the middle
layer in the dual auto-encoder. As expected, the resulting embedding does not
capture relevant shared domain semantics. Second, we use the semantic con-
sistency loss as self-supervision for the learned embedding, ensuring that it is
preserved through the cross-domain transformations. It also reinforces the action
of the domain-adversarial loss as it constrains embeddings from the two input
domains to lie close to each other. Finally, the optional teacher loss leads the
learned source embedding to lie near the teacher output (in our case, FaceNet’s
representation layer), which is meaningful for real faces. It acts in conjunction
with the domain-adversarial loss and semantic consistency loss, whose role is to
bring the source and target embedding distributions closer to each other.

(i) source to target (ii) target to source
(a) Teacher loss inactive

(i) source to target (ii) target to source
(b) Semantic consistency loss inactive

Fig. 10. Results of ablating the teacher loss (Lteach) (top) and semantic consistency
loss (Lsem) (bottom) in the xgan objective Lxgan.

In Figure 10 we report random test samples for both domain translations
when ablating the teacher loss and semantic consistency loss respectively. While
it is hard to draw conclusions from visual inspections, it seems that the teacher
network has a positive regularization effect on the learned embedding by guiding
it to a more realistic region: training the model without the teacher loss (Figure
10 (a)) yields more distorted samples, especially when the input is an outlier, e.g.,
person wearing a hat, or cartoons with unusual hairstyle. Conversely, when the
semantic consistency is inactive (Figure 10 (b)), the generated samples overall
display less variety. In particular, rare attributes (e.g., unusual hairstyle) are not
as well preserved as when the semantic consistency term is present.



XGAN: Unsupervised Image-to-Image Translation 15

Discussions and Limitations. Our initial aim was to tackle the semantic style
transfer problem in a fully unsupervised framework by combining techniques
from domain adaptation and image-to-image translation: We first observe that
using a simple setup where a partially shared dual auto-encoder is trained with
reconstruction and domain-adversarial losses already suffices to produce an em-
bedding that captures basic semantics rather well (for instance, skin tone). How-
ever, the generated samples are of poor quality and fine-grained attributes such
as facial hair are not well captured. These two problems are greatly diminished
after adding the GAN loss and the proposed semantic consistency loss, respec-
tively. Failure cases still exist, especially on non-representative input samples
(e.g., a person wearing a hat) which are mapped to unrealistic cartoons. Adding
the teacher loss mitigates this problem by regularizing the learned embedding,
however it requires additional supervision and makes the model dependent on
the specific representation provided by the teacher network.

Future work will focus on evaluating xgan on different domain transfer tasks.
In particular, though we introduced xgan for semantic style transfer, we think
the model goes beyond this scope and can be applied to classical domain adapta-
tion problems, where quantitative evaluation becomes possible: while the pixel-
level transformations are not necessary for learning the shared embedding, they
are beneficial for learning a meaningful representation across visual domains,
when combined with the self-supervised semantic consistency loop.

6 Conclusions

In this work, we introduced xgan, a model for unsupervised domain transla-
tion applied to the task of semantically-consistent style transfer. In particular,
we argue that, similar to the domain adaptation task, learning image-to-image
translation between two structurally different domains requires learning a high-
level joint semantic representation while discarding local pixel-level dependen-
cies. Additionally, we proposed a semantic consistency loss acting on both do-
main translations as a form of self-supervision.

We reported promising experimental results on the task of face-to-cartoon
that outperform the current baseline. We also showed that additional weak su-
pervision, such as a pretrained feature representation, can easily be added to
the model in the form of teacher knowledge. It acts as a good regularizer for
the learned embeddings and generated samples. This is particularly useful for
natural image datasets, for which off-the-shelf pretrained models are abundant.
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7 Appendix

7.1 Finetuning the DTN encoder

As mentionned in Section 5, the main drawback of DTN is that it keeps a fixed
pretrained encoder, which cannot bridge the visual appearance gap between
domains. Following this observation, we perform another experiment in which
we finetune the FaceNet encoder relatively to the semantic consistency loss,
additionally to the decoder parameters.

While this yields visually better samples (see Figure 11(b)), it also raises
the classical domain adaptation issue of guaranteeing that the initial FaceNet
embedding knowledge is preserved when retraining the embedding. In compar-
ison, xgan exploits a teacher network that can be used to distill prior domain
knowledge throughout training, when available. Secondly, this finetuned DTN
is prone to mode collapse. In fact, the encoder is now only trained relatively to
the semantic consistency loss which can be easily minizimed by mapping each
domain to the same point in the embedding space, leading to the same cartoon
being generated for all of them. In xgan, the source embeddings are regularized
by the reconstruction loss on the source domain. This allows us to learn a joint
domain embedding from scratch in a proper domain adaptation framework.

(a) Random generated samples (left) and
reconstructions (right) with fixed FaceNet embedding

(b) Random samples with
fine-tuned FaceNet encoder

Fig. 11. Reproducing the Domain Transfer Network performs badly in our experi-
mental setting (a); fine-tuning the encoder yields better results (b) but is unstable for
training in practice.

7.2 Extensive qualitative evaluation

As mentioned in the main text, the DTN baseline fails to capture a meaningful
shared embedding for the two input domains. Instead, we consider and experi-
ment with three different models to tackle the semantic style transfer problem.
Selected samples are reported in Figure 12:

– Finetuned DTN, as introduced previously. In practice, this model yields
satisfactory samples but is very sensitive to hyperparameter choice and often
collapses to one model.
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– XGAN with Lrec and Ldann active only corresponds to a simple domain-
adaptation setting: the proposed xgan model where only the reconstruction
loss Lrec and the domain-adversarial loss Ldann are active. We observe that
semantics are globally well preserved across domains although the model still
makes some basic mistakes (e.g., gender misclassifications) and the samples
quality is poor.

– XGAN, the full proposed model, yields the best visual samples out of the
models we experiment on. In the rest of this section, we report a detailed
study on its different components and possible failure modes.

(a) Baseline: DTN (b) Finetuned DTN (c) XGAN (Lr only) (d) XGAN

Fig. 12. Cherry-picked samples for the DTN baseline and three improved models we
consider for the semantic style transfer task

In Figure 7 we also report a more extensive random selection of samples
produced by xgan. Note that we only used a discriminator for the source to
target path (i.e., Lgan,2→1 is inactive); in fact the GAN objective tends to make
training more unstable so we only use one for the transformation we care most
about for this specific application, i.e., faces to cartoons. Other than the GAN
objective, the model appears to be robust to the choice of hyperparameters.

Overall, the cartoon samples are visually very close to the original dataset
and main identity characteristics such as face shape, hair style, skin tone, etc.,
are well preserved between the two domains. The main failure mode appears
to be mismatched hair color: in particular, bright red hair appear very often in
generated samples which is likely due to its abundance in the training cartoon
dataset. In fact, when looking at the target to source generated samples, we
observe that this color shade often gets mapped to dark brown hair in the real
face domain. One could expect the teacher network to regularize the hair color
mapping, however FaceNet was originally trained for face identification, hence
is most likely more sensitive to structural characteristics such as face shape.
More generally, most mistakes are due to the shift in content distribution rather
than style distribution between the two domains. Other examples include bald
faces being mapped to cartoons with light hair (most likely due to the lack of
bald cartoon faces and the model mistaking the white background for hair color).
Also, eyeglasses on cartoon faces disappear when mapped to the real face domain
(only very few faces in the source dataset wear glasses).
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7.3 Failure mode when training with Lrec and Ldann

In Figure 13 we report examples of failure cases when ωdann is too high in the
setting with the reconstruction and domain-adversarial loss only: the domain-
adversarial classifier cdann reaches perfect accuracy and cross-domain translation
fails.

source to target target to source

Fig. 13. Random test samples for both cross-domain translations in the failure mode
for the Lrec + Ldann only xgan setting

7.4 GAN loss ablation experiment

As mentioned previously, we only use a GAN loss term for the source → target
translation, to ease training. This prompts the face-to-cartoon path to generate
more realistic samples. As expected, when the GAN loss is inactive, the generated
samples are noisy and unrealistic (see Figure 14(a)). For comparison, tackling the
low quality problem with simpler regularization techniques such as using total
variation smoothness loss leads to more uniform samples but significantly worsen
their blurriness on the long term (see Figure 14(b)). This shows the importance
of the GAN objective for image generation applications, even though it makes
the training process more complex.

(a) Without total variation loss (b) With total variation loss

Fig. 14. Test samples for xgan when the GAN loss Lga is inactive
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