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Abstract. Autonomous driving is a field that gathers many interests
in academics and industry and represents one of the most important
challenges of next years. Although individual algorithms of autonomous
driving have been studied and well understood, there is still a lack of
study for those tasks in a production-scale system. In this work, we pro-
file and analyze the perception module of the open-source autonomous
driving system Apollo, developed by Baidu, in terms of response time and
robustness against sensor errors. The perception module is fundamental
to the proper functioning and safety of autonomous driving, which relies
on several sensors, such as LIDARs and cameras, for detecting obstacles
and perceiving the surrounding environment. We identify the computa-
tion characteristics and potential bottlenecks in the perception module.
Furthermore, we design multiple noise models for the camera frames and
LIDAR cloud points to test the robustness of the whole module in terms
of accuracy drop against a noise-free baseline. Our insights are useful for
future performance and robustness optimization of autonomous driving
system.

Keywords: Autonomous driving - Robustness analysis - Performance
profiling - Deep neural networks

1 Introduction

Autonomous driving is becoming one of the most important applications. We
must understand the key characteristics of autonomous driving to build proper
architectures and systems for it. There are prior efforts in that direction, but they
mainly focus on individual tasks/kernels and rely on the usage of an autonomous
driving simulator, such as CARLA [1] or OpenPilot [2]. In other words, detailed
knowledge about a production-scale autonomous driving software system is still
a missing piece to the puzzle of understanding autonomous driving.

Motivated by that challenge, this work studies Apollo (version 3.5) [3], which
is an open-sourced production-scale autonomous driving software, developed by

* Jingwen Leng is the corresponding author of this paper.
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Baidu. It has many complex and realistic modules, each of which targets a high-
level feature of autonomous driving, such as perception, prediction, planning, as
shown in Fig. 1. Modules are described by their input/output (I/O) relationship
to other modules, modelled as stages of a pipeline, and not to be intended as
monolithic pieces of software, so they can be further decomposed as a set of
inner components, following the same architecture and design philosophy. The
communication, among modules and components, is data-driven and is enabled
by a runtime framework, named Cyber [4], that implements the publisher & sub-
scriber architecture. Each component can write and read on multiple channels,
and the messages are serialized using Google Protocol Buffer[5].

(GPU/IMU)—»C Localization ) ¢
Prediction Planning

) 1

Cloud Points

HDMap

Fig. 1: Apollo Software Architecture

Among the many modules in Apollo, the perception module, which is built
to perceive the environment, is the entry point to all the following modules. The
module uses multiple sensors, including Full-HD cameras and LIDARs, and is
also very computation-intensive as it relies on multiple deep neural networks
(DNNs). The whole system depends on the accuracy of such algorithms and de-
tectors to ensure responsiveness and safety. Thus, the perception module needs to
be trustable. This paper focuses on the perception module through performance
and robustness analysis.

We study the response time of different components in the perception module
because it is critical for the predictability and accuracy of the entire system. The
response time of each module has been set to 100 ms, which has been adopted
as the standard maximum response time since it should ensure a proper and
safe reaction to any possible situation. Besides that, response time is also crucial
for many dynamic processing routines that use time-deltas to perform online
corrections and discard past data. Exceeding these time requirements can lead
to a potential loss of useful information that may affect the accuracy of the
system. Different from prior efforts on individual sensors [6], our studies focus
on the separate and concurrent processing in the presence of multiple sensors,
which Apollo uses for safe and reliable output.

The robustness of perception module is also crucial for the autonomous driv-
ing system as failures in the module would cause disastrous consequences [7].
Meanwhile, DNN models are model-driven, and therefore, not all the possible
scenarios are predictable in the training phase of machine learning algorithms,
especially [8]. As such, we extend the robustness analysis methodology from re-
cent efforts [9, 10] to create noise models for both the camera and LIDAR sensors.
We use them to test the robustness of DNN models deployed in the perception
module.



Our performance analysis complies with prior work on that DNN models
take the majority of the average response time, and therefore, they are great
candidates for architectural specialization. However, prior work fails to recog-
nize the importance of the CPU owing to the pre- and post-processing that only
exists in a production-scale system. The robustness analysis tested the accuracy
of the perception against camera and LIDAR noise, separately. The loss of accu-
racy has been evaluated on obstacles, lanes and the outcome of the experiments
highlighted that even if detectors deteriorates, the whole module mitigates the
noise thanks to the presence of the fusion component, which, combining the data
coming from multiple sensors, can alleviate the effects.

The paper is organized as follows: in Section 2, a comprehensive view of al-
gorithms within the perception module are presented. Section 3 discusses each
component according to its response time. In Section 4, noise models and ro-
bustness experiments are introduced moreover, later in Section 5, conclusions
are provided.

2 Perception Module Description

The perception module, as presented in Fig. 2, is composed of several compo-
nents. The fusion camera detection is in charge of detecting obstacles, lanes
and tracking them through past frames. The LIDAR segmentation identifies ob-
stacles from cloud points, which are further classified and tracked by LIDAR
recognition. The output of the LIDAR recognition and the fusion camera detec-
tion is now homogenous to be fused into a single coherent detection, taking into
account all the obstacles, by the fusion component, which represents the last
component of the module.

Perception

G [+
Cloud Points Lidar Lidar
Se%mentauon Recognition

Fusion Camera
Detection

Obstacle Detections

Fig. 2: Perception Software Architecture
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Fig. 3: Obstacle Camera Pipeline



4 A. Toschi, M. Sanic, J. Leng, Q. Chen, M. Guo, C. Wang

2.1 Camera Sensor and Computation

The objective of the fusion camera detection is to detect obstacles within camera
frames, such as vehicles, pedestrians, lanes, and keep the reference of previous
obstacles to track them over frames. Detection is achieved by applying camera
frames to an obstacle camera pipeline, that is shown in Fig. 3.

Lanes detection is performed using the state-of-art convolutional neural net-
work (CNN) Spatial CNN [11], which outperformed other lanes detector. The
main feature of the network is that exploits spatial relationship among pixels,
being able to identify straight shaped objects, such as lanes, even if obstructed.
Lanes post-processing is necessary to extract, from the raw output of the neural
network, the coefficients of the polynomial that approximate each lane together
with lane edge points. The points and coefficients belong to the image plane,
so another post-processing operation is to project them first upon the car and
ground planes and then to combine the two projections, obtaining the three-
dimensional representation, which refers to world coordinates.

Obstacles detection is achieved using a CNN based on YOLO [12,13] that
has been enhanced to identify the obstacles bounding boxes in three dimensions.
Similar to lanes detection, each bounding box is further projected onto world
coordinates by the obstacle post-processor.

Obstacles tracking consists of two main steps: prediction, in which previous
obstacles positions and bounding boxes are updated according to time-delta,
between the current iteration and the past one, and the car pose through an
Adaptive Kalman Filter; association, in which the tracker tries to associate past
obstacles to the new obstacles found by the detector, using the frame similarities
as a metric, and eventually discard old obstacles.

2.2 LIDAR Sensor and Computation

The LIDAR is a sensor able to measure distances, using light impulses, gener-
ating a three-dimensional representation of the neighboring environment. A LI-
DAR message is a cluster of cloud points; usually, the size of the cluster is around
one hundred thousand points. A cloud point represents a three-dimensional
point, expressed in LIDAR coordinates, and a light intensity value, which cor-
responds to the object reflectance [14].

The computation regarding the LIDAR sensor is divided between two com-
ponents: LIDAR segmentation and LIDAR recognition, as shown in Fig. 2.

LIDAR Segmentation The LIDAR segmentation [15] is the process that de-
tects obstacles, within the surrounding environment, given the cloud points com-
ing from the LIDAR. The pre-processing filters illegal values and discards points
that are outside the Region of Interest (Rol) respect the car position. The seg-
mentation is performed using a CNN, so the filtered cloud points need to be
converted into feature maps manageable by the neural network. The conversion
into feature maps projects the (x, y) coordinates of cloud points over a quantized
two-dimensional grid. The CNN is composed of a custom-design convolutional



auto-encoder, which selects only the most semantic information for the seg-
mentation, and then a classifier detects the obstacles attributes such as center
position, height and class probability. Finally, a bounding box is built for each
obstacle, by finding a 6-edge polygon of cloud points, which completely wraps
the obstacle.

LIDAR Recognition The LIDAR recognition [15] is in charge of tracking
LIDAR obstacles over time. Similar to, the tracking of camera obstacles, each
LIDAR obstacle tries to match to an existing obstacle by constructing a bipartite
graph, in which to each obstacle is associated with its distance from existing
tracks, and then the assignment problem is solved using the Hungarian algorithm
[16]. Later, the class assigned to each obstacle is further assigned, taking into
consideration past matched obstacles to reducing the class switch during the
whole observation.

2.3 Fusion

The fusion component associates and merges obstacles’ bounding boxes, com-
ing from LIDARs and cameras and then updates the motion state of each
obstacle. The bounding box [17], at time step k, is represented as a vector
x(k) = [z(k), y(k), 0(k), v(k), w(k), a(k), w(k), I(k), h(k)]T, where (x, y) is the
center position, 6 is the heading angle, v is the linear velocity, w is the angular
velocity, a is the acceleration and w, I, h define the width, length and height of
the 3D box. The association among bounding boxes is achieved by minimizing
the Euclidean distance of the center positions, using the Hungarian algorithm
[16]. The motion state is estimated through an Adaptive Kalman Filter with
constant acceleration model using the velocity and position provided by bound-
ing boxes [15]. The fusion algorithm implemented is not sequential; observations
from sensors are not treated equally since the component defines a main fusion
sensor, which triggers the fusion action. The main fusion sensor is configurable
and observations dispatched from it cause the execution, determining the fusion
frequency. Measurements from other sensors are cached in an ordered queue,
according to timestamps. When a new main fusion sensor’s message arrives, the
component assesses the reliability of cached measurements by checking the time-
deltas, between the new message and their timestamps, discarding those who are
above a threshold.

3 Performace Analysis

The objective of the performance analysis is to characterize the perception mod-
ule, using the response time as a metric, to understand the computational effort
required by each task. The study is a useful guide to figure out how a real
autonomous driving system is designed and its response to real-world scenarios.
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Table 1: Neural Network Parameters - A summary of the neural networks present in
the perception module.

Network Input Size Layers Parameters

SONN [11] 640x480x3 | 143 convolutional 13.68 M
3 deconvolutional

YOLO [12,13]  |1440x800x3 |34 convolutional 6.54 M

Segmentation 15 lutional
Section 2.2 864x864x4 cotvoruiona 2.97 M

. 10 deconvolutional
Custom Design

Experimental Setup In our simulation, we configure the perception module
to use one camera sensor and one LIDAR sensor. The hardware platform we
study includes an Intel i7 8700 CPU and an NVIDIA GTX 1080TI GPU, which
aligns with Apollo’s officially recommended system Nuvo-6108GC [18]. The rec-
ommended system uses an Intel i7 6700 CPU and an NVIDIA GTX 1080 GPU.
We compile the code with optimization enabled and GPU support. For the input
data to the perception module, we use various scenarios taken from the Kitti
dataset [19]. The dataset includes both camera frames and cloud points.

Fig. 4 and Fig. 5 show our performance analysis result. Fig. 4 (a) shows the
execution time breakdown of the fusion camera detector component, where the
DNN computation (for lane detector and obstacle detector) accounts for the
97.26% of the whole component response time. In contrast, Fig. 4 (b) shows
the execution time breakdown of the LIDAR segmentation component, where
the DNN computation (for segmentation) only accounts for the 50.55% of the
whole component response time. The pre-processing of clout points (one-by-one
filtering of cloud points) on the CPU takes about the other half.

Fig. 4 (c) and (d) show the execution time for the LIDAR recognition and
fusion component, respectively. Those components run on the CPU and their
execution time is much less than the previous two components. However, un-
like the constant processing time of the previous two components, the execution
time of LIDAR recognition and fusion component highly depend on the number
of objects in the frame, which may make their real time processing more chal-
lenging. Fig. 5 shows the averaged response time with standard deviation for all
computation tasks in the perception module.

In summary, we make the following observations from the results:

O1 The GPU is an crucial architecture for the autonomous driving system since
it enables the acceleration of DNNs. It is impossible to use only the CPU to
meet the 100 ms because of the heavy computation requirement of DNNs.

02 The CPU tasks (pre-processing in Fig. 4 (b), LIDAR recognition in (c),
and fusion in (d)) still take a large portion of the response time. Specific
platform solutions, like NVIDIA Jetson, are built to fit the requirements of
autonomous driving using ARM CPUs, which do not provide the same power
as the high-end consumer CPU, i.e. the Intel i7 8700 [20]. As such, the CPU
may become the bottleneck for the system.
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03 The DNN computation makes the response time highly predictable and can
be assumed as constant due to the lower variance exposed by such tasks.

04 The LIDAR pre-processing can still approximate as a constant task since
the number of cloud points varies very little over different frames. But the
LIDAR recognition and fusion component highly depend on the number
of obstacles, either current and past. As such, it may be desirable to pro-
vide computation sprinting mechanism based on the number of obstacles to
smooth those modules’ response time.

The analysis opens the possibility to explore the relationship among GPU
and multiple sensors to identify the proper scheduling policy to adopt in case
of race, or the thermal and power impact related to the number of sensors. The
study pointed out that neural network computation is statically executed for each
frame, without exploiting similarities among them to approximate the outcomes
and lighten the workload. Another possibility to diminish the calculation is to
share the first convolutional layers among similar neural networks, operating on
homogenous input, and then differentiate them according to their functions.

4 Robustness Analysis

Prior work [21,22] studies the DNN robustness by inject noise into the GPU
architectural states and has shown DNN models are inherently resilient to the
architectural transient errors. Unlike those work, we directly inject noise to the
different sensors to study the DNN robustness. We set up three experiments
to test the accuracy of the obstacles detection, LIDAR segmentation and lanes
detection, against camera and LIDAR noise.

We conduct two experiments regard the camera noise, and one experiment
regards the LIDAR noise, the trials, for obstacle detection and LIDAR, segmen-
tation, using scenarios from the Kitti dataset [19], while the lanes experiment
use the TuSimple dataset [23]. The accuracy is evaluated using the F1 metric,
which takes into account the presence of false positives and false negatives. A
true positive is a matching having an Intersection over Union (IoU) value, with
the respects to the noise-free detection, higher than 0.5 for obstacles and 0.3 for
the lanes experiment.

4.1 Noise Models

Our noise models between camera and LIDAR sensors are independent. In the
real world, external factors like weather can impact the camera and LIDRA
sensors simultaneously. Although camera noise models that simulate weather
conditions [24] exist, LIDAR still lacks rigorous noise model definitions. Our
work can be easily extended to use those joint models in the future.

The camera noise has been modelled using two classical image filters: bright-
ness and contrast [25]. The filters can be expressed using the following mathe-
matical function: f(X) = aX + 8, where a and (3 represent the contrast and
the brightness factor, respectively.
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Fig.7: Contrast

Table 2: Camera Noise Model Parameters

Filter Values
Brightness 30.0 60.0 90.0 0.0 0.0 0.0
Contrast 1.0 1.0 1.0 1.5 2.0 2.5

The parameters, used in the camera noise experiment, are listed in Table 2,
and an application example of such filters is shown in Fig. 6 and 7.

The LIDAR noise model is composed of two filters: drop filter and Gaussian
noise. The drop filter simulates a cloud point loss by randomly discarding a fixed
percentage of cloud points, 25% and 50% in this study. The Gaussian noise is
applied to cloud points coordinates to simulate a measurement error, having zero
mean and a standard deviation of 0.1, which represents a deviation of 10 cm.

p=[r,y.2] p =p+e e~N(001%1;) (1)

4.2 Experiments

The first experiment involves obstacles detection; the camera noise is injected
to camera frames to evaluate the accuracy of camera detection and fusion com-
ponent. The main fusion sensor is set to be the camera, so, LIDAR cloud points
are provided without alteration. Similar to the previous, the second experiment
modifies cloud points according to LIDAR noise model. The accuracy evaluation
accounts LIDAR segmentation together with the fusion component, having set
LIDAR as main fusion sensor. The last experiment focuses on lane detection and
concerns only the camera detection evaluation since the fusion component is not
implicated in this task.
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Fig. 8: Accuracies of camera and fusion components based on camera filters.
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Fig.9: Accuracies of LIDAR and fusion Fig. 10: Accuracies of lane detection based
components based on LIDAR filters. on camera filters.

The experiments show similar behavior; however, there are several points
they differ.

O6 The number of obstacles detected by LIDAR is higher than those of the
camera, due to the narrower perspective and range of the camera view. The
different perspective explains why LIDAR noise compromises more the fusion
accuracy than the camera noise, proving that Apollo perception heavily relies
on LIDAR.

O7 Fig. 8 and Fig. 9 suggest that obstacles fusion makes the overall compo-
nent more noise resistant. Moreover, this feature causes further modules to
experience less noise by limiting propagation.

08 Fig. 6 and Fig. 7 show that as brightness and contrast values increase, it gets
harder to detect lanes, especially under the sunlight, due to the tendency of
the image to become whiter. Fig. 10 presents that contrast filter has a more
significant impact on the accuracy of lane detection. The accuracy drops
below 45% when the contrast value reaches 2.5.

The results show that the system is susceptible to vision disruptions. Further
exploration should involve more complex simulation environments, populated by
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multiple sensors and validated using rigorous fault injection tools, like the re-
cently proposed model [26], capable of generating faults covering different gran-
ularity, such as GPU bit flipping, obstacle obscuration, output alteration within
ranges. Efforts should be spent to develop an enhanced version of the fusion
component that dynamically changes the main fusion sensor according to the
encountered scenario. Finally, it should be advantageous to study the effects of
weather conditions on cloud points, to provide reproducible noise models to help
the training phase; besides, data augmentation techniques should be adopted to
counteract the effects of noise.

5 Conclusion

This work presents the performance and robustness analysis of the perception
module belonging to a production-ready autonomous driving system. The per-
formance analysis, focuses on the average response time, composed by neural
networks and multiple sensors, which require acceleration via GPU to meet tem-
poral constraints. This analysis demonstrated that neural networks take most of
the calculation time and are fixed system, which cannot be dynamically adapted
over similar inputs to reduce the inference time. The robustness analysis deter-
mines how accurate the camera and LIDAR are when they encounter challenging
situations. The models proposed in this paper are similar to real events, such
as brightness, contrast and measurement error. The analysis illustrated that the
camera component is majorly affected by contrast, which causes detection of
lanes and obstacles to be compromised. The robustness analysis also highlighted
a new role for the fusion component within the module, which reduces the noise
propagation to the following modules.
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