
ar
X

iv
:1

90
7.

06
17

2v
1

 [
cs

.D
S]

 1
4

Ju
l 2

01
9

On Happy Colorings, Cuts, and Structural

Parameterizations⋆

Ivan Bliznets1,2 and Danil Sagunov1

1 St. Petersburg Department of Steklov Institute of Mathematics of the Russian
Academy of Sciences, St. Petersburg, Russia

iabliznets@gmail.com, danilka.pro@gmail.com
2 National Research University Higher School of Economics, St. Petersburg, Russia

Abstract. We study the Maximum Happy Vertices and Maximum
Happy Edges problems. The former problem is a variant of clusteriza-
tion, where some vertices have already been assigned to clusters. The
second problem gives a natural generalization of Multiway Uncut,
which is the complement of the classical Multiway Cut problem. Due
to their fundamental role in theory and practice, clusterization and cut
problems has always attracted a lot of attention. We establish a new con-
nection between these two classes of problems by providing a reduction
between Maximum Happy Vertices and Node Multiway Cut. More-
over, we study structural and distance to triviality parameterizations of
Maximum Happy Vertices and Maximum Happy Edges. Obtained
results in these directions answer questions explicitly asked in four works:
Agrawal ’17, Aravind et al. ’16, Choudhari and Reddy ’18, Misra and
Reddy ’17.

1 Introduction

In this paper, we study Maximum Happy Vertices and Maximum Happy
Edges. Both problems were recently introduced by Zhang and Li in 2015 [24],
motivated by a study of algorithmic aspects of the homophyly law in large net-
works. Informally they paraphrase the law as ”birds of a feather flock together”.
The law states that in social networks people are more likely to connect with
people sharing similar interests with them. A social network is represented by a
graph, where each vertex corresponds to a person in the network, and an edge
between two vertices denotes that corresponding persons are connected within
the network. Furthermore, we let vertices have colors assigned. The color of a
vertex indicates type, character or affiliation of the corresponding person in the
network. An edge is called happy if its endpoints are colored with the same color.
A vertex is called happy if all its neighbours are colored with the same color as
the vertex itself. Equivalently, a vertex is happy if all edges incident to it are
happy. The formal definitions of Maximum Happy Vertices and Maximum
Happy Edges are the following:

⋆ This research was supported by the Russian Science Foundation (project 16-11-
10123)

http://arxiv.org/abs/1907.06172v1

2 I. Bliznets and D. Sagunov

Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [ℓ] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [ℓ] extending the partial

coloring p such that the number of happy vertices with
respect to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [ℓ] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G) → [ℓ] extending the partial

coloring p such that the number of happy edges with re-
spect to c is at least k?

Maximum Happy Edges has an immediate connection to Multiway Cut.
Precisely, if each color is used in precoloring exactly once, then Maximum
Happy Edges is exactly the Multiway Uncut problem, i.e. the edge comple-
ment of Multiway Cut. Thus, Maximum Happy Edges is a generalization
of the Multiway Uncut problem. So, in this case the connection between clus-
tering vertices by color and cutting edges in order to separate different colors
is pretty obvious. However, this is not the case for vertex version of the prob-
lem, which we would like to connect with the vertex version of Multiway Cut,
Node Multiway Cut.

Maximum Happy Vertices can be seen as a sort of clusterization problem,
in which some vertices already have prescribed color/cluster and the goal is to
identify colors/clusters of initially uncolored/unassigned vertices. In some sense,
we would like to clusterize the graph in such a way that overall boundary of
clusters is minimized. Here, by a boundary of a cluster we understand vertices
of the cluster that are connected to vertices outside the cluster. While it is
possible to straightforwardly formulate the problem in terms of a special cutting
problem, this kind of formalization will sound complicated and unnatural. We
show that MHV can be easily transformed into Node Multiway Cut, thereby
constructing an additional bridge between clusterization and cutting problems.

Recently, MHV and MHE have attracted a lot of attention and were studied
from parameterized [1, 2, 3, 7, 19] and approximation [24, 25, 23, 22] points of
view as well as from experimantal perspective [18]. Further, dozens of algorithms
for the classical Multiway Cut problem have been considered as well, which
is the complement of a special case of MHE.

In 2015, Zhang and Li established that ℓ-MHE and ℓ-MHV are NP-hard for
ℓ ≥ 3, where ℓ is the number of colors used. Later, Aravind et al.[2] showed that
when the input graph is a tree, ℓ-MHV and ℓ-MHE can be solved in O(nℓ log ℓ)
and in O(nℓ) time respectively. In [19], Misra and Reddy proved NP-hardness
of both MHV and MHE on split and on bipartite graphs, and showed that
MHV is polynomial time solvable on cographs.

On Happy Colorings, Cuts, and Structural Parameterizations 3

From the approximation perspective, the currently best known results are
the following. Zhang et al. [25] showed that MHV can be approximated within

1
∆+1 , where ∆ is the maximum degree of the input graph, and MHE can be

approximated within 1
2 +

√
2
4 f(ℓ), where f(ℓ) =

(1−1/ℓ)
√

ℓ(ℓ−1)+1/
√
2

ℓ−1+1/2ℓ ≤ 1. They

also claimed that a more careful analysis can improve the approixmation ratio
for MHV to 1

∆+1/g(∆) , where g(∆) = (
√
∆+

√
∆+ 1)2∆ > 4∆2.

The known results in parameterized complexity (not including kernelization)
are summarized in Table 1. Results proved in the paper are marked by ∗ in
the table. Agrawal [1] provides O(k2ℓ2)-kernel for MHV, where ℓ is the number
of used colors and k is the number of desired happy vertices. Independently,
Gao and Gao [13] present a (2kℓ+k + kℓ + k + ℓ)-kernel for the general case
and a (7(kℓ + k) + ℓ − 10)-kernel in the case of planar graphs. We provide
a kernel on O(d3) vertices for MHV parameterized by the distance to clique,
partially answering a question in [19]. Note that the kernel sizes mentioned in
this paragraph correspond to the number of vertices in the kernels.

Parameter MHE ℓ-MHE MHV ℓ-MHV

Distance to
threshold graphs

? ? dO(d) · nO(1) [7]

Distance to clique dO(d) · nO(1) [19]

Distance to cluster W[1]-hard C3∗ ℓd · nO(1) dO(d) · nO(1) T3∗

Distance to
cographs

W[1]-hard C2∗

?

W[1]-hard C1∗

(2ℓ)d · nO(1)

Treewidth ℓtw · nO(1) [3, 1] ℓtw · nO(1) [3, 19]

Pathwidth ℓpw · nO(1) [3, 19] ℓpw · nO(1) [3, 1]
Cliquewidth ? ?

Feedback Vertex
Set Number

ℓd · nO(1) (2ℓ)d · nO(1)

Vertex Cover
Number

dO(d) · nO(1) [19]

Split Vertex Dele-
tion Number

para-NP-hard [19]
Odd Cycle
Transversal Num-
ber

Neighbourhood
Diversity

2nd · nO(1)[3]

Table 1. Known and established results under distance-to-triviality and structural
parameters. ∗ marks results of this work. T indicates a result proven as a theorem. C
indicates a result proven as a corollary. d denotes the distance parameter of the row.

4 I. Bliznets and D. Sagunov

Our results: The main contributions of our work are the following.

– We establish a natural connection between Maximum Happy Vertices on
a graph G and Node Multiway Cut on a second power of a certain sub-
graph of G.

– We answer questions in [1, 2] about existence of FPT-algorithm for MHV
parameterized by the treewidth of the input graph only.

– Similarly, we answer one of the questions from Choudhari et al. [7] and Misra
et al. [19] by showing W[1]-hardness of MHE parameterized by the cluster
vertex deletion number. We show that MHV, in contrast to MHE, is in
FPT when parameterized by the cluster vertex deletion number.

– We partially answer a question stated by Misra and Reddy in [19]. We pro-
vide a kernel of size O(d3) for MHV, where d is the distance to cliques.

– Among other results, we also present the first algorithm forNode Multiway
Cut parameterized by the clique-width of the input graph.

Organization of the paper: Section 3 describes results under some struc-
tural and distance-to-triviality parameters. In Section 5 we provide results con-
necting Node Multiway Cut and Maximum Happy Vertices. In Section 6
we provide a polynomial kernel forMHV parameterized by the distance to clique.
In Section 4 we show how to strengthen the results of W[1]-hardness and obtain
the corresponding W[2]-hardness results.

2 Preliminaries

Basic notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use ∞ to denote an infinitely large number, for which holds
n < ∞ and n+∞ = ∞+ n = ∞, where n is an arbitrary integer. We use ⊔ for
the disjoint union operator, i.e. A⊔B equals A∪B, with an additional constraint
that A and B are disjoint.

We employ partial functions in our work. To denote a partial function from
a set X to a set Y , that is, a function that may do not map some element of X
to an element of Y , we write f : X 9 Y . If a partial function f maps an element
x ∈ X to some element in Y , we say that f(x) is assigned. If f(x) is unassigned,
we allow to extend f by assigning the value of f(x).

We use the traditional O-notation for asymptotical upper bounds. We ad-
ditionally use the O∗-notation that hides polynomial factors. Many of our re-
sults concern the parameterized complexity of the problems, including fixed-
parameter tractable algorithms, kernelization algorithms, and some hardness re-
sults for certain parameters. For a detailed survey in parameterized algorithms
we refer to the book of Cygan et al. [10]. In their book one may also find defini-
tions of pathwidth and treewidth that are considered as parameters in some of
our results.

Throughout the paper, we use standard graph notation and terminology,
following the book of Diestel [12]. All graphs in our work are undirected simple

On Happy Colorings, Cuts, and Structural Parameterizations 5

graphs. We consider several graph classes in our work. Interval graphs are graphs
whose vertices can be represented as intervals on the real line, so that a pair of
vertices are connected by an edge if and only if their representative intervals
intersect. Cluster graphs are graphs that are a disjoint union of cliques, or,
equivalently, graphs that do not contain induced paths on three vertices.

We often refer to the distance to G parameter, where G is an arbitrary graph
class. For a graph G, we say that a vertex subset S ⊆ V (G) is a G modulator of
G, if G becomes a member of G after deletion of S, i.e. G \ S ∈ G. Then, the
distance to G parameter of G is defined as the size of its smallest G modulator.

Graph colorings. When dealing with instances of Maximum Happy Ver-
tices or Maximum Happy Edges, we use a notion of colorings. A coloring of
a graph G is a function that maps vertices of the graph to a set of colors. If this
function is partial, we call such a coloring partial. If not stated otherwise, we
use ℓ for the number of distinct colors, and assume that colors are integers in
[ℓ]. A partial coloring p is always given as a part of the input for both problems,
along with graph G. We also call p a precoloring of the graph G, and use (G, p)
to denote the graph along with the precoloring. The goal of both problems is to
extend this partial coloring to a specific coloring c that maps each vertex to a
color. We call c a full coloring (or simply, a coloring) of G that extends p. We
may also say that c is a coloring of (G, p). For convenience, introduce the notion
of potentially happy vertices, both for full and partial colorings.

Definition 1. We call a vertex v of (G, p) potentially happy, if there exists a
coloring c of (G, p) such that v is happy with respect to c. In other words, if
u and w are precolored neighbours of v, then p(u) = p(w) (and p(u) = p(v), if
v is a precolored vertex). We denote the set of all potentially happy vertices in
(G, p) by H(G, p).

By Hi(G, p) we denote the set of all potentially happy vertices in (G, p) such
that they are either precolored with color i or have a neighbour precolored with
color i:

Hi(G, p) = {v ∈ H(G, p) | N [v] ∩ p−1(i) 6= ∅}.
In other words, if a vertex v ∈ Hi(G, p) is happy with respect to some coloring
c of (G, p), then necessarily c(v) = i.

Note that if c is a full coloring of a graph G, then |H(G, c)| is equal to the
number of vertices in G that are happy with respect to c.

Clique-width.Among other structural parameters, we consider clique-width
in our work. We follow definitions presented by Lackner et al. in their work on
Multicut parameterized by clique-width [17].

To define clique-width, we need to define k-expressions first. For any k ∈ N,
a k-expression Φ describes a graph GΦ, whose vertices are labeled with inte-
gers in [k]. k-expressions and its corresponding graphs are defined recursively.
Depending on its topmost operator, a k-expression Φ can be of four following
types.

1. Introducing a vertex. Φ = i(v), where i ∈ [k] is a label and v is a vertex. GΦ

is a graph consisting of a single vertex v with label i, i.e. V (GΦ) = {v}.

6 I. Bliznets and D. Sagunov

2. Disjoint union. Φ = Φ′⊕Φ′′, where Φ′ and Φ′′ are smaller subexpressions. GΦ

is a disjoint union of the graphsGΦ′ and GΦ′′ , i.e. V (GΦ) = V (GΦ′)⊔V (GΦ′′)
and E(GΦ) = E(GΦ′)⊔E(GΦ′′). The labels of the vertices remain the same.

3. Renaming labels. Φ = ηi→j(Φ
′). The structure of GΦ remains the same as

the structure of GΦ′ , but each vertex with label i receives label j.
4. Introducing edges. Φ = ρi,j(Φ

′). GΦ is obtained from GΦ′ by connecting each
vertex with label i with each vertex with label j.

Clique-width of a graph G is then defined as the smallest value of k needed
to describe G with a k-expression and is denoted as cw(G). To avoid confusion
with the parameter k of MHV and MHE, we may use notation of w-expression
instead of k-expression.

There is still no known FPT-algorithm for finding a k-expression of a given
graph G. However, there is an FPT-algorithm that decides that cw(G) > k or
outputs (23k+2 − 1)-expression of G. For more details on clique-width we refer
to [14].

3 Structural and distance-to-triviality parameters

In [1], Agrawal proved that Maximum Happy Vertices is W[1]-hard with
respect to the standard parameter, the number of happy vertices. In [2, 19, 7]
some structural parameters for MHV and MHE were studied. In [1], Agrawal
also asked whether MHV admits an FPT algorithm when parameterized by the
treewidth of the input graph alone. In this section, we show that both MHV and
MHE are W[1]-hard with respect to certain distance-to-triviality and structural
paramters, including treewidth, answering the question of Agrawal and some
other questions. We start with the definition of a classical W[1]-complete (with
respect to the solution size) problem.

Regular Multicolored Independent Set
Input: Graph G, with degree of every vertex in G equal to r, a

partition of G into k cliques V1, V2, . . . , Vk.
Parameter: k
Question: Is there a multicolored independent set in G of size k, i.e.

a subset S ⊆ V (G) of its vertices that is an independent
set in G and |S ∩ Vi| = 1 for every i ∈ [k]?

Theorem 1. Maximum Happy Vertices is W[1]-hard when parameterized
by the distance to graphs that are a disjoint union of paths consisting of three
vertices.

Proof. We reduce from Regular Multicolored Independent Set, that is
W[1]-complete with respect to k due to [4].

Let (G, k, V1, V2, . . . , Vk) be an instance of Regular Multicolored In-
dependent Set, and let r be the degree of every vertex in G, i.e. r = |N(v)|

On Happy Colorings, Cuts, and Structural Parameterizations 7

for any v ∈ V (G). We assume that |Vi| ≥ 2 for each i, since otherwise the in-
stance can be trivially reduced to an instance with a smaller k. We construct an
instance (G′, p, k′) of Maximum Happy Vertices as follows.

We set ℓ = |V (G)|, so each color corresponds to a unique vertex of G. For
convenience, we use vertices of G as colors, instead of the numbers in [ℓ].

For each edge uv ∈ E(G), we introduce a path on three vertices tuuv, euv, t
v
uv

in G′, with euv being the middle vertex of the path. Endpoint vertices tuuv and
tvuv are precolored in colors u and v respectively, i.e. p(tuuv) = u and p(tvuv) = v,
and the middle vertex is left uncolored.

We then introduce a selection gadget in G′. That is, we introduce k uncolored
vertices s1, s2, . . . , sk. For each i ∈ [k] and each color v ∈ Vi, we connect si with
each vertex precolored in color v. Thus, a vertex tuuv becomes connected to
exactly one vertex of the selection gadget si, where i is such that u ∈ Vi. The
purpose of the selection gadget is that the color of si in the optimal coloring
corresponds to a vertex that we should take in Vi in the initial instance of
Regular Multicolored Independent Set.

We finally set k′ = kr and argue that (G, k, V1, V2, . . . , Vk) is a yes-instance
of Regular Multicolored Independent Set if and only if (G′, p, k′) is a
yes-instance of Maximum Happy Vertices.

Let S ⊆ V (G) be a multicolored independent set ofG, i.e. S is an independent
set in G and |S ∩ Vi| = 1 for each i. Let us construct a coloring c of V (G′) such
that it extends p and at least k′ = kr vertices of G are happy with respect to
c. For each i, set the color of si to vi, i.e. c(si) = vi, where vi ∈ S ∩ Vi. For
each edge uv ∈ E(G), set the color of euv to u, if u ∈ S, or to v, if v ∈ S, and
to an arbitrary color otherwise. Formally, c(euv) = u, if u ∈ S, and c(euv) = v,
if v ∈ S. If u, v /∈ S, then c(euv) can be assigned an arbitrary color. Note that
either u /∈ S or v /∈ S, since S is an independent set.

G′ has no other uncolored vertex, thus the construction of c is complete.

Claim 1. For each vertex u ∈ S and each edge uv ∈ E(G) incident to u, tuuv is
happy with respect to c.

Proof of Claim 1. Indeed, tuuv is adjacent to exactly two vertices: si, where u ∈
Vi, and euv. Since u ∈ S, c(si) = u and c(euv) = u by construction of c. tuuv is a
vertex precolored with color u, hence tuuv is happy with respect to c. �

For each u ∈ S, there are exactly r edges adjacent to u, hence all r vertices
precolored with color u are happy. |S| = k, hence at least kr vertices of G′ are
happy with respect to c.

It is left to prove that if (G′, p, k′) is a yes-instance of Maximum Happy
Vertices, then (G, k, V1, V2, . . . , Vk) is a yes-instance of Regular Multicol-
ored Independent Set.

Claim 2. Let c be an arbitrary coloring of V (G′) extending p. There are at
most kr happy vertices in G′ with respect to c. Moreover, all happy vertices are
precolored vertices of at most k distinct colors.

8 I. Bliznets and D. Sagunov

Proof of Claim 2. Observe that for each i ∈ [k], si is unhappy with respect to
any coloring extending p, since neighbours of si are precolored with colors in
Vi, and each color is presented exactly r times among its neighbours, and we
assumed that Vi consists of at least two vertices.

For each uv ∈ E(G), euv is adjacent to exactly two vertices tuuv and tvuv,
which are precolored with two distinct colors u and v. Thus, euv is also unhappy
with respect to any coloring extending p.

Hence, only precolored vertices of G′ can be happy, i.e. vertices tuuv for uv ∈
E(G). Each of them is adjacent to exactly one vertex of the selector gadget, i.e.
vertex si for some i ∈ [k]. But for each i ∈ [k], only the neighbours that share
the same color as si can be happy. Thus, each happy vertex shares a color with
one of k vertices of the selection gadget. Since each color is presented exactly r
times in the partial coloring p, there can be at most kr such happy vertices. �

Let c be a coloring of V (G′) extending p such that at least kr vertices of
G′ are happy with respect to c. According to Claim 2, exactly kr vertices of
G′ are happy with respect to c, and they are precolored with k different colors.
Moreover, for each color, all r precolored vertices of this color are happy. Let S
be the set of these k colors, i.e. S = {c(s1), c(s2), . . . , c(sk)}. We argue that S is
an independent set in G. Note that |S ∩ Vi| = 1 is then automatically satisfied,
as Vi is a clique in G for each i ∈ [k].

Claim 3. If there are kr happy vertices among the vertices of type tvuv in G′

with respect to coloring c, that extends p, then S = {c(s1), c(s2), . . . , c(sk)} is
an independent set in G.

Proof of Claim 3. Indeed, suppose that S is not an independent set in G, i.e.
there are vertices u, v ∈ S, such that uv ∈ E(G). Then there is a path tuuv, euv,
tvuv in G′. tuuv is a happy vertex of color c(tuuv) = p(tuuv) = u, hence c(euv) = u.
Analogously, tvuv is a happy vertex of color v, hence c(euv) = v. We get that
u = c(euv) = v, which contradicts our assumption. �

We have shown that (G′, p, k′) is an instance equivalent to (G, k, V1, V2, . . . ,
Vk); moreover, it can be constructed in polynomial time.

Note that the deletion of the selector gadget vertices in G′ leads to G′ being
a disjoint union of paths consisting of three vertices. Thus, G′ has the distance
parameter being at most k, and if Maximum Happy Vertices is in FPT when
parameterized by the distance to graphs being a disjoint union of path consisting
of three vertices, then W[1]-complete Regular Multicolored Independent
Set is also in FPT. Hence, MHV is W[1]-hard with respect to the distance
parameter. �

The following corollary answers an open question posed in [1].

Corollary 1. Maximum Happy Vertices is W[1]-hard with respect to param-
eters pathwidth, treewidth or clique-width, distance to cographs, feedback vertex
set number.

On Happy Colorings, Cuts, and Structural Parameterizations 9

Proof. W[1]-hardness of MHV with respect to the parameters distance to cographs
or feedback vertex set number is an immediate corollary of Theorem 1, since
graphs of type n×P3 (that is, graphs that are a disjoint union of paths consist-
ing of three vertices) are simultaneously cographs and forests.

Pathwidth. Let G be a graph and S ⊆ V (G) be a n × P3 modulator of G,
i.e. G[V (G) \ S] is a graph consisting of connected components that are disjoint
paths on three vertices. Observe that the pathwidth of G is at most |S| + 1.
Indeed, let V (G) \ S consist of n connecting components, ith of them is a three-
vertex path vi,1 − vi,2 − vi,3. Then construct a path decomposition of G as a
sequence S ∪ {v1,1, v1,2}, S ∪ {v1,2, v1,3}, S ∪ {v2,1, v2,2}, . . . , S ∪ {vi,1, vi,2}, S ∪
{vi,2, vi,3}, . . . , S ∪ {vn,2, vn,3}.

Constructed sequence is a correct path decomposition of G. Firstly, each
vertex is contained in a contiguous segment of sets in the sequence. Secondly,
for each edge in E(G), its endpoints are contained in some set of the sequence
simultaneously, as each edge of G is either an edge between a vertex in S and
some vertex vi,j , or an edge between vi,t and vi,t+1 for some i ∈ [n] and t ∈ [2].
The size of each set of the sequence is |S| + 2, hence the pathwidth of G is at
most |S|+1. Thus, if a graph has the distance-to-n×P3 graphs parameter equal
to k, then its pathwidth is at most k + 1. By Theorem 1, MHV is W[1]-hard
when parameterized by the pathwidth of the input graph.

Treewidth. W[1]-hardness for the treewidth parameter follows from the fact
that a path decomposition of a graph is a tree decomposition of the graph; if a
graph is of pathwidth k, it is of treewidth at most k.

Clique-width. In [8], Corneil and Rotics proved that a graph of treewidth k
has clique-width at most 3·2k−1. This already gives us the hardness result for the
clique-width parameter. Though, one can improve the upper bound and show
that if a graph has a n× P3-modulator of size k, then the clique-width of such
graph is at most k + 3. �

Theorem 2. Maximum Happy Edges is W[1]-hard when parameterized by
the distance to graphs that are disjoint union of paths consisting of three vertices
and is W[1]-hard when parameterized by the distance to graphs that are a disjoint
union of cycles of length three.

Proof. We adjust the reduction from Regular Multicolored Independent
Set to MHV provided in the proof of Theorem 1.

Given an instance (G, k, V1, V2, . . . , Vk) of Regular Multicolored In-
dependent Set, we construct an instance (G′, p, k′) of Maximum Happy
Edges as follows.

Let n = |V (G)|, m = |E(G)|. G′ is constructed in the same way as in the
proof of Theorem 1: for each edge uv ∈ E(G), we introduce a path on three
vertices tuuv, euv, t

v
uv, and set p(tuuv) = u, p(tvuv) = v, and euv is left uncolored;

then we introduce the selection gadget vertices s1, s2, . . . , sk, and introduce an
edge between si and tuuv for each i ∈ [k], u ∈ Vi and uv ∈ E(G). For each i ∈ [k],
si is left uncolored.

Additionally, we introduce edges new to this construction: for each i, j ∈ [k]
and each edge uv ∈ E(G), such that u ∈ Vi and v ∈ Vj , we introduce edges

10 I. Bliznets and D. Sagunov

between euv and si and between euv and sj . In case i = j, we introduce only
one edge.

We also need additional precolored vertices in order for this reduction to
work. For each i ∈ [k], and each v ∈ Vi, we introduce m new paths consisting
of three vertices in G′: for each j ∈ [m], we introduce a path a1v,j , a

2
v,j , a

3
v,j . We

precolor every vertex in these new paths with color v, i.e. p(a1v,j) = p(a2v,j) =

p(a3v,j) = v for each j. Then we connect each of them by a newly-introduced
edge to the vertex si of the selector gadget. These auxiliary vertices will ensure
that for each i ∈ [k], si is colored with one of the colors in Vi. Note that paths
between these newly-introduced vertices atv,j are needed only to preserve the
distance parameter.

Claim 4. In any optimal coloring c of G′ extending p, c(si) ∈ Vi for each i ∈ [k].

Proof of Claim 4. Suppose c is an optimal coloring of G′ extending p, but c(si) /∈
Vi for some i ∈ [k]. Then no edge between si and akv,j is happy for any j, k with
respect to c. Hence, the only edges incident to si that can be happy are edges
between si and vertices of the paths constructed for edges, i.e. tuuv or euv. There
are exactly 3m such vertices, thus si is incident to at most 3m edges happy with
respect to c. But for each v ∈ Vi, si is adjacent to 3m vertices of type akv,j and
r vertices of type tvuv precolored with color v . Hence, if we change the color of
si in c to one of the colors in Vi, we lose at most 3m happy edges, and win at
least 3m+ r happy edges, which contradicts the optimality of c. �

We finally set k′ = kr+(m+kr)+(3k+2n)·m and argue that (G, k, V1, V2, . . . ,
Vk) is a yes-instance of Regular Multicolored Independent Set if and
only if (G′, p, k′) is a yes-instance of Maximum Happy Edges.

Again, similarly to the proof of Theorem 1, let construct a coloring c of
G′ from a multicolored independent set S of G with |S| = k. The coloring is
constructed almost in the same way as in the proof of Theorem 1: for each
i ∈ [k], we put c(si) = vi, where vi ∈ S ∩ Vi, and for each uvi ∈ E(G) we put
c(euvi) = vi. The difference is in coloring vertices euv, where u /∈ S and v /∈ S.
Since euv is now adjacent to one or two vertices of the selector gadget, one may
win one happy edge by coloring euv with one of the colors of the selector gadget
vertices. Thus we put

c(euv) =

u, if u ∈ S,
v, if v ∈ S,

c(si) or c(sj), where u ∈ Vi and v ∈ Vj , otherwise.

Claim 5. There are exactly k′ = kr + (m+ kr) + (3k + 2n) ·m edges that are
happy with respect to c.

Proof of Claim 5. Let consider every type of edges in G′.

1. Edges inside of the path a1v,j, a
2
v,j , a

3
v,j for any v ∈ V (G) and j ∈ [m].

Each such path gives exactly 2 happy edges, and there are nm such paths.
In total, there are 2nm edges of this type.

On Happy Colorings, Cuts, and Structural Parameterizations 11

2. Edges of type (si, a
k
v,j), for any i ∈ [k], v ∈ Vi, j ∈ [m], and k ∈ [3].

Since c(si) = vi ∈ Vi, only edges between si and akvi,j are happy for a fixed i.
There are k ·m · 3 possible options of choosing i, j and k, hence these edges
are 3km in total.

3. Edges between si and tvuv for any i ∈ [k], v ∈ Vi and uv ∈ E(G).
Again, since tvuv is precolored with color v, and c(si) = vi ∈ Vi, only edges
between si and tviuvi are happy. There are exactly r edges incident to vi in
G, hence si is adjacent to exactly r vertices of type tviuvi . In total, these sum
up to kr edges.

4. Edges between euv and tvuv for any uv ∈ E(G).
Since c(euv) = c(tvuv) if and only if v ∈ S, for each fixed v ∈ S there are
exactly r happy edges of such type. Hence, there are kr such happy edges.

5. Edges between si and euv, for any i ∈ [k], v ∈ Vi and uv ∈ E(G), where
u /∈ S and v /∈ S.
For each such uv ∈ E(G), we constructed c so that euv is colored in the color
of one of its neighbours in the selector gadget. euv is adjacent to one or two
selector gadget vertices of distinct colors, hence it is adjacent to exactly one
edge of such type. There are exactly m−kr edges in G with no endpoints in
S, thus exactly m− kr edges of type (si, euv) are happy in G′ with respect
to c.

6. Edges between si and euv, for any i ∈ [k], v ∈ Vi and uv ∈ E(G), where
v ∈ S.
As v ∈ S, v ∈ S ∩ Vi, hence c(si) = v. Also, since v ∈ S, c(euv) = v. Thus,
each edge of such type in G′ is happy with respect to c, and there are kr
edges of such type.

In total, we get that exactly

2nm+ 3km+ kr + kr + (m− kr) + kr = k′

edges are happy in G′ with respect to c. �

Claim 5 shows that if (G, k, V1, V2, . . . , Vk) is a yes-instance of RMIS, then
(G′, p, k′) is a yes-instance of MHE. We now give a proof in the other direction.

Let c be a coloring of G′ extending p such that at least k′ edges are happy
in G′ with respect to c. We may assume that c is an optimal coloring of G′, i.e.
it yields the maximum possible number of happy edges in G′. Then, by Claim
4, c(si) ∈ Vi for every i ∈ [k].

Again, we argue that S = {c(s1), c(s2), . . . , c(sk)} is a multicolored indepen-
dent set in G. We start proving this fact with the following claim.

Claim 6. There are at least m+kr happy edges incident to the vertices of type
euv with respect to c.

Proof of Claim 6. We bound the number of happy edges not incident to the
vertices of type euv.

From c(si) = vi ∈ Vi follows that exactly (3k+2n) ·m edges are happy with
respect to c among edges that are incident to auxiliary vertices akv,j . These are

12 I. Bliznets and D. Sagunov

exactly the edges of types 1 and 2 in the proof of Claim 5, and happy edges
among them are counted in the same way as in the proof.

The only other edges not incident to the vertices of type euv are edges between
si and tvuv for each i ∈ [k], v ∈ Vi and uv ∈ E(G). Again, analysis of these edges
is the same as the analysis of the edges of type 3 in the proof of Claim 5, and
their number is at most kr.

The only happy edges left are edges incident to euv for some uv ∈ E(G), hence
the number of happy edges among them is at least k′ − (3k + 2n) · m − kr =
m+ kr. �

The following claim, along with Claim 6, allows us to move from counting
happy edges to counting happy vertices in G′.

Claim 7. For any uv ∈ E(G), euv cannot be incident to more than two happy
edges in G′ with respect to any coloring c extending p. Moreover, if euv is incident
to exactly two happy edges, then either tvuv is happy or tuuv is happy with respect
to c.

Proof of Claim 7. Take any uv ∈ E(G). The neighbours of euv are vertices tuuv
and tvuv, and also si and sj , where u ∈ Vi and v ∈ Vj . In case i = j, euv has only
three neighbour vertices.

We know that c(tvuv) 6= c(tuuv), as p(tvuv) 6= p(tuuv). Hence, only one of the
edges between (euv, t

v
uv) and (euv, t

u
uv) can be happy with respect to the same

coloring c.
The same holds for si and sj : since c(si) 6= c(sj), only one of the edges

between euv and si or between euv and sj can be happy at the same time. In
case i = j, there is the only edge (euv, si) that can be either happy or not.

Thus, happy edges incident to euv can sum up to no more than two edges.
Suppose now that euv is incident to exactly two happy edges. Then these edges
are (euv, t

x
uv) and (euv, sy) for some x ∈ {u, v} and some y ∈ {i, j}. Hence,

c(sy) = c(txuv) = x. By Claim 4, x ∈ Vy , i.e. it is either x = u and y = i or x = v
and y = j. Hence, txuv and sy are connected by an edge in G′, and, since txuv has
exactly two neighbours euv and sy and they share the same color, txuv is happy
with respect to c. �

By Claim 6 and Claim 7, at least kr vertices of type euv are incident to
exactly two happy edges with respect to c. Hence, there are at least kr vertices
of type tvuv that are happy in G′ with respect to c. Note that these vertices
remain happy with respect to c even if we remove auxiliary vertices akv,j and
edges between euv and si, i.e. return to the original construction of G′ in the
proof of Theorem 1.

Thus, coloring c yields at least kr happy vertices of type tvuv in the original
construction of G′ in the proof of Theorem 1, hence we use Claim 3 to finish the
proof of the first part of this theorem in the same way.

We thereby have shown that MHE is W[1]-hard when parameterized by the
distance to graphs being a disjoint union of paths on three vertices. To prove the
same for the distance to graphs being a disjoint union of cycles of length three,

On Happy Colorings, Cuts, and Structural Parameterizations 13

we note that in our construction of G′, endpoints of the paths are precolored
vertices.

Hence, we can add an edge between endpoints of each path, i.e. between tvuv
and tuuv for each uv ∈ E(G) and between a1v,j and a3v,j for each v ∈ V (G) and
j ∈ [m], and just increase the parameter k′ by the number of newly-appeared
happy edges. Namely, these are the edges between a1v,j and a3v,j, thus we increase
k′ by n ·m, and the other parts of the construction remain the same. �

Corollary 2. Maximum Happy Edges is W[1]-hard with respect to parame-
ters pathwidth, treewidth or clique-width, distance to cographs, feedback vertex
set number.

The rest of the section focuses on the parameterized complexity of both
MHV and MHE parameterized by the distance to cluster parameter. We sep-
arate MHE and MHV, showing that the former problem is W[1]-hard with
respect to this parameter, but the latter admits an FPT-algorithm. This an-
swers an open question posed in works of Choudhari and Reddy [7] and Misra
and Reddy [19].

Corollary 3. Maximum Happy Edges is W[1]-hard when parameterized by
the cluster vertex deletion number.

Proof. Observe that graph consisting of disjoint cycles of length three is a cluster
graph. Then, by Theorem 2, MHE is W[1]-hard when parameterized by the
distance to cluster graphs. �

Theorem 3. Maximum Happy Vertices can be solved in O∗((2d)d) time,
where d is the distance to cluster parameter of the input graph.

Proof. We adapt algorithms of Misra and Reddy presented in [19] in their proofs
of FPT membership result for bothMHV andMHE parameterized by the vertex
cover number and by the distance to clique parameters.

Let (G, p, k, S) be an instance of MHV, and S is a given minimum modulator
to cluster of G. We describe an algorithm that works in O∗(dd), where d = |S|
is the distance to cluster parameter of G. Note that it is not necessary that
S is given explicitly. To find S, one can simply consider G as an instance of
Cluster Vertex Deletion parameterized by the solution size, and employ
one of the algorithms working in time O∗(cd), let it be a simple O∗(3d) running
time algorithm [16], or more sophisticated ones, working in O∗(2d) [15] or even
in O∗(1.9102d) [5] running time. Note that this would not change the overall
O∗(dd) running time, since c is a constant value.

To solve the problem, the algorithm finds an optimal coloring of (G, p). Let
c be an arbitrary optimal coloring of (G, p). Firstly, the algorithm guesses what
vertices of S are happy with respect to c. Clearly, there are 2d options to choose
a subset H ⊆ S, and the algoithm considers each one of them. From now on, let
H be a fixed guess of the algorithm, i.e. it assumes that H is the set of vertices
of S that are happy in (G, p) with respect to c.

14 I. Bliznets and D. Sagunov

At the other hand, c partitions vertices of S into groups of the same color, in
other words, into equivalence classes. Obviously, such partitions can be enumer-
ated in O∗(dd) time (if ℓ < d, there are at most ℓd such partitions, that is even
less). The algorithm guesses a partition corresponding to c. Let S1⊔S2⊔ . . . St =
S be a fixed guessed partition, where t ≤ d. Formally, a partition correspond-
ing to c should satisfy c(u) = c(v) ⇔ ∃i : u, v ∈ Si for each pair of vertices
u, v ∈ S. For each i, the vertices in Si are assigned the same color, denote this
color by αi. The actual value of the colors αi is not known to the algorithm.
Thus, α1, α2, . . . , αt are color variables and the algorithm is to determine what
actual colors they should correspond to. Importantly, for distinct i and j, αi and
αj should correspond to distinct colors in [ℓ].

For convenience, we introduce a partial function σ : V (G) 9 {α1, α2, . . . , αt}
to the algorithm. If specified, a value σ(v) denotes a color variable that corre-
sponds to the color c(v). Since distinct variables correspond to different colors,
σ can be viewed as a partial coloring of the vertices of G, just with the color
variables used instead of actual colors. If both σ(u) and σ(v) are specified for a
pair of vertices u, v, then σ(u) = σ(v) if and only if c(u) = c(v). In other words,
σ agrees with c. Since c is a coloring of (G, p), σ agrees with p as well.

The purpose of σ is to reflect restrictions on a coloring that are implied
by the fixed guesses of the algorithm. That is, σ should agree with the set of
happy vertices H , and with the partition S1, S2, . . . , St. Clearly, for each i ∈ [t]
and for each v ∈ Si, σ(v) = αi. Also, since all vertices in H are happy with
respect to c, for each v ∈ H and for each u ∈ N(v), σ(u) should equal σ(v).
The algorithm assigns values of σ so that these restrictions are satisfied. If the
fixed guesses correspond to an actual coloring, the function σ satisfying these
restrictions exists and is found easily by the algorithm. If σ cannot be found,
the algorithm stops working with the currently fixed guesses, since they do not
correspond to any coloring of G. Note that the restrictions do not ensure that
all vertices in S \H are unhappy. We formulate the main property of σ in the
following claim.

Claim 8. Let c′ be a coloring that agrees with σ constructed by the algorithm.
Then all vertices in H are happy with respect to c′ in G and c′ partitions the
vertices of S according to S1, S2, . . . , St.

Now the algorithm starts to find values of the color variables. This can be
viewed as a constructing an injective function λ : {α1, α2, . . . , αt} 9 [ℓ]. Since σ
agrees with p, some values of λ can be determined by the algorithm: if for some
vertex v both σ(v) and p(v) are specified, then λ(σ(v)) = p(v). The algorithm
constructs λ so that this property is satisfied. If it is impossible to construct an
appropriate injective λ, the algorithm stops working with the current guesses
and continues with another ones.

When found, λ allows to extend both σ and p. If a correspondence between
a color variable αi and a color a was established, i.e. λ(αi) = a, then we may
assume that σ(v) = αi ⇔ p(v) = a. According to this, the algorithm extends σ
and p. Note that p is no more an initial precoloring of G, since it was extended
according to σ.

On Happy Colorings, Cuts, and Structural Parameterizations 15

We now want each vertex of G to be assigned either a color (by p) or a color
variable (by σ). If for a vertex v ∈ V (G), neither σ(v) nor p(v) is assigned, we
call v unassigned. Recall that all vertices in S are assigned a color variable by σ.
It is left to assign colors (by p) or color variables (by σ) to each of the vertices
of the cluster, i.e. vertices in V (G) \ S. It turns out to be possible since we are
looking for an optimal coloring that agrees with p and σ. p and σ already ensure
happiness of all vertices in H , so the algorithm can focus directly on happiness
of the vertices in V (G) \ S.

Consider a connected component in the cluster graph G \ S, say, a clique C.
There are a few cases to consider. If C contains two vertices that are assigned
distinct colors by p or distinct colors by σ, then all vertices in C are unhappy
with respect to any coloring that agrees with p and σ. Thus, vertices in C
can be colored arbitrarily and there are no happy vertices among them. The
algorithm assigns an arbitary color, say color 1, to each unassigned vertex in
C. Now |p(C)| ≤ 1 and |σ(C)| ≤ 1, consider easier case p(C) = ∅. In this case,
the algorithm assigns color variables to unassigned vertices in C. C can yield
a happy vertex only if all vertices in C receive the same color variable. Since
|σ(C)| ≤ 1, there is an optimal coloring in which all vertices in C are colored
with the same color. If |σ(C)| = 1, this is simply the color variable in σ(C).
Otherwise, the algorithm can simply determine how many happy vertices will C
yield if a color variable αi is chosen. The only neighbours of vertices in C outside
of C are vertices in S, and each vertex in S is assigned a color variable by σ.
Thus, it is easy to determine for a vertex whether it is happy if the whole clique
is assigned a color variable αi. The algorithm chooses a color variable that gives
the maximum possible number of happy vertices in C, and assigns it to each
vertex in C.

It is left to consider p(C) = {a}. In this case, C can yield a happy vertex only
if all vertices in C receive color a. Hence, there is an optimal coloring where each
unassigned vertex in C is colored with color a. The algorithm assigns color a to
each unassigned vertex in C. It is left to determine how many happy vertices
does C contain. In contrast with the previous two cases, this depends on which
color variable does correspond to color a. In case σ(C) = {αi}, C can yield
happy vertices only if αi corresponds to a, and it is easy to find the number
of happy vertices in C. In case σ(C) = ∅, each vertex in C is colored with
color a. Therefore, C can contain some vertices that are happy in any case, that
is, vertices that have no neighbours outside C. Since these vertices are always
happy, the algorithm does not count them. Each other vertex in C has at least
one neighbour in S. If it has two neighbours with distinct color labels assigned,
it can never be happy. Otherwise, all of its neighbours in S are assigned the same
color label, say αj , and the vertex is happy if and only if αj corresponds to a.
Thus, for each color variable αj we get that C yields a certain number of happy
vertices if αj corresponds to a.

Summing up these values over all clique components, we get a weighted
bipartite graph B. Left part of the graph corresponds to the color variables
{α1, α2, . . . , αt}, and the right one corresponds to the colors [ℓ]. An edge between

16 I. Bliznets and D. Sagunov

αi in the left part and a in the right part is assigned a weight equal to the number
of happy vertices in V (G) \ S in case αi gets corresponding to a (not counting
vertices that are happy independently of this choice). Some color variables can
already be assigned a color by λ, and the graph should reflect that. That is,
for each αi with λ(αi) assigned, there is only one edge incident to αi in B, and
this edge is αia. For each other color variable, there is each of ℓ possible edges
presented in B. Clearly, a maximum-weight matching M in B that saturates all
color variables yields an optimal way to assign colors to the color variables.

The algorithm constructs graph B and finds a maximum matching M in B
in polynomial time. If αi gets connected to a in M , the algorithm extends λ with
λ(αi) = a. Since G no more contains unassigned vertices, the optimal coloring
can be simply constructed from the values of p, σ and λ. The pseudo-code of
the algorithm procedure working with a single pair of guesses is presented in
Fig. 1. The algorithm applies this procedure to each guess of the algorithm, and
chooses the best among the resulting colorings. The correctness of the algorithm
follows from the discussion. It is formulated in the following claim.

Claim 9. Let c be a coloring of (G, p), H be the set of vertices in S that are
happy with respect to c, {S1, S2, . . . , St} be the partition of S into groups of
the same color according to c. Then find coloring(G, p, S,H, {S1, S2, . . . St})
outputs a coloring c′ that yields at least the same number of happy vertices as
c.

Since the procedure works in polynomial time for any given partition, the
overall running time is 2d · dd · nO(1). This finishes the proof. �

4 Obtaining W[2]-hardness

We are grateful for the anonymous reviewers of this paper for sharing ideas of
how the statements of Theorem 1 and Theorem 2 can be changed to obtain
W[2]-hardness with respect to structural parameters, strengthening corrollaries
1, 2 and 3. This section is dedicated to these W[2]-hardness results.

Theorem 4. Maximum Happy Vertices is W[2]-hard when parameterized by
the distance to graphs that are a disjoint union of stars.

Proof. The proof is by reduction from the Colourful Red-Blue Dominating
Set problem.

Colourful Red-Blue Dominating Set (CRBDS) [11]
Input: A bipartite graph G = (R ⊔ B,E), an integer k, and a

coloring c : R → [k].
Parameter: k
Question: Does there exist a set D ⊆ R of k distinctly colored ver-

tices such that D is a dominating set of B?

In [11], Cygan et al. proved that Colourful Red-Blue Dominating Set
is W[2]-hard with respect to k. Let (G = (R⊔B,E), k, c) be an input of CRBDS.

On Happy Colorings, Cuts, and Structural Parameterizations 17

Algorithm: find coloring(G, p, S,H, {S1, S2, . . . , St})

Output: An optimal coloring c′ of (G, p) corresponding to the partition
{S1, S2, . . . , St} such that all vertices in H are happy with respect to
c′; or Nothing, if c′ does not exist.

1 initialize σ : V (G) 9 {α1, α2, . . . , αt} with no value assigned
2 foreach i ∈ [t], v ∈ Si do σ(v)← αi

3 foreach v ∈ H, u ∈ N(v) do
4 σ(u)← σ(v), or return Nothing if σ(u) 6= σ(v)

5 initialize λ : {α1, α2, . . . , αt}9 [ℓ] with no value assigned
6 foreach v ∈ V (G) with both σ(v), p(v) assigned do

7 λ(σ(v))← p(v), or return Nothing if λ(σ(v)) 6= p(v)

8 if ∃i, j ∈ [t] with i 6= j but λ(αi) = λ(αj) then
9 return Nothing

10 foreach αi with λ(αi) assigned do

11 foreach v ∈ V (G) with p(v) = λ(αi) or σ(v) = αi do

12 p(v)← λ(αi); σ(v)← αi

13 initialize bipartite graph B on ({α1, α2, . . . , αt}, [ℓ]) with zero-weight edges
according to λ

14 foreach connected component C in G \ S do

15 if |p(C)| ≥ 2 or |σ(C)| ≥ 2 then

16 foreach v ∈ C with both p(v), σ(v) unassigned do

17 p(v)← 1

18 else

19 foreach i ∈ [t] do
20 Ci ← {v ∈ C | σ(N [v]) = {αi}}

21 if p(C) = ∅ then
22 i← argmaxi∈[t] |Ci|

23 foreach v ∈ C do

24 σ(v)← αi

25 else

26 a← the color in p(C)
27 foreach v ∈ C with both p(v), σ(v) unassigned do

28 p(v)← a

29 foreach i ∈ [t] do
30 increase the weight of edge αia in B by |Ci| if it exists

31 M ← maximum-weight matching in B saturating {α1, α2, . . . , αt}
32 foreach αia ∈M do

33 λ(αi)← a

34 foreach v ∈ V (G) with p(v) unassigned do

35 p(v)← λ(σ(v))

36 return p

Fig. 1. A procedure finding an optimal coloring for fixed partitions of S.

18 I. Bliznets and D. Sagunov

We assume that for each v ∈ B, degG(v) > 1. If degG(v) = 0 for some v ∈ B,
then (G, k, c) is a no-instance. If degG(v) = 1 for some v ∈ B, then the only
neighbour of v should be taken into the answer set D, and the instance can be
trivially reduced. Analogously, we assume that for each color i ∈ [k], there are
at least two distinct vertices in B that are colored with the color i by c.

We show how to construct an instance (G′, p′, k′) of MHV in polynomial
time, such that (G, k, c) is a yes-instance of CRBDS if and only if (G′, p′, k′) is
a yes-instance of MHV. Additionally, G′ is a graph such that at most k vertices
can be deleted from it to obtain a disjoint union of stars.

Start from G′ being a graph consisting of no vertices and no edges. For each
v ∈ B, introduce a new vertex v in G′. Then, for each u ∈ N(v), introduce a
new vertex uv to G′ and connect it with the vertex v by an edge. Note that for
each vertex u ∈ B, exactly |N(u)| vertices are introduced in G′, that are vertices
uv1 , uv2 , . . . , uvd , where N(u) = {v1, v2, . . . , vd}. Observe that G′ is now a graph
consisting of |B| connected components, and each of them is a star.

The set of colors used in the precoloring p′ of G′ is identified with the set R.
For each copy of a vertex u ∈ R, that is, for each u ∈ R and for each v ∈ N(u),
precolor uv with a color u, i.e. put p′(uv) = u. Thus, |R| colors are used in the
precoloring p′ of G′.

Now introduce the selector gadget in G′, that consists of exactly k vertices.
For each i ∈ [k], introduce new vertex si in G′. Connect the vertex si with all
vertices of type uv, such that c(u) = i, where c is the coloring from the instance
of CRBDS. That is, take each vertex that is colored with the color i in the
initial instance of CRBDS and connect si with each copy of this vertex in G′.
The construction of G′ is finished. Note that only the copies of the vertices in R
are precolored by p′ in G′. Finally, put k′ = |B|.

Analogously to the proof of Theorem 1, we now show that if k′ happy vertices
in (G′, p′) are achievable with some coloring c′ of G′ extending p′, then D =
{c′(s1), c′(s2), . . . , c′(sk)} is an answer to the initial instance (G, k, c). And vice
versa, if D is a colorful dominating set of B, then it is enough to color vertices
of the selector gadget in G′ correspondingly to the vertices of D. We first need
the following claim.

Claim 10. There is an optimal coloring c′ of (G′, p′) such that c(c′(si)) = i for
each i ∈ [k].

Proof of Claim 10. Take a coloring c′ and suppose that c(c′(si)) 6= i for some i ∈
[k]. Note that si cannot be happy with respect to c′ as it has at least two distinctly
precolored neighbours. Note that for each neighbor uv of si, c(c

′(uv)) = i by the
construction of G′. Hence, c′(si) 6= c′(uv), so uv is not happy with respect to c′.
Thus, one can change the color of si in c′ to an arbitrary color without losing
any happy vertices.

Pick an arbitrary neighbor uv of si and assign c′(si) = c′(uv), so that
c(c′(si)) = i is now satisfied. Proceed with another i until c′ satisfies the claim
statement. �

This allows us to formulate the next claim.

On Happy Colorings, Cuts, and Structural Parameterizations 19

Claim 11. Let c′ be a coloring of (G′, p′) such that at least k′ vertices are
happy in G′ with respect to c′ and c(c′(si)) = i for each i ∈ [k]. Then D =
{c′(s1), c′(s2), . . . , c′(sk)} is an answer to (G, k, c).

Proof of Claim 11. Note that the vertices of the selector gadget, i.e. vertices of
type si cannot be happy in (G′, p′), as each of them has at least two neighbours
with distinct colors in p′. For each v ∈ B, a copy of v (one of |B| star centers)
cannot be happy in (G′, p′) for the same reasons. Thus, the only vertices that
can be happy in (G′, p′) are precolored vertices.

Note that in each of |B| stars in G′, only one vertex can be happy in (G′, p′)
simultaneously, as all precolored vertices in (G′, p′) are distinctly precolored, but
a happy vertex should be colored by c′ with the same color as the star center.
Since at least k′ = |B| vertices are happy in G′ with respect to c′, exactly one
leaf vertex in each star is happy with respect to c′, and exactly |B| vertices are
happy in G′ with respect to c′ at all.

That is, for each v ∈ B, there exists u ∈ N(v), such that c′(v) = c′(uv) = u.
Note that uv is also connected to sc(u), and since uv is a happy vertex, c′(sc(u)) =
c′(uv), hence c′(v) = c′(sc(u)). This proves that D is a dominating set of B, as
for each vertex v ∈ B, c′(v) ∈ NG(v) and c′(v) ∈ D. The fact that D consists of
k distinctly precolored vertices follows from the claim statement. Thus, D is a
colorful red-blue dominating set in (G, k, c). �

The claim shows that if (G′, p′, k′) is a yes-instance, then (G, k, c) is a yes-
instance. We finally claim the other direction.

Claim 12. Let D = {u1, u2, . . . , uk} be a dominating set of B in G, where
ui ∈ B and c(ui) = i for each i ∈ [k]. Extend the precoloring p′ to a full coloring
c′ by putting c′(si) = ui for each i ∈ [k] and, for each v ∈ B, put c′(v) = uj ,
where uj ∈ D ∩ NG(v) is a vertex dominating v. Exactly k′ vertices are happy
in (G′, p′) with respect to c′.

Proof of Claim 12. To prove this claim, one can easily follow the construction
of c′ and the proof of Claim 11. �

The last claim shows that if (G, k, c) is a yes-instance, then (G′, p′, k′) is a
yes-instance. The provided construction is polynomial. Deletion of the selector
gadget makes G′ a disjoint union of star graphs, so the distance parameter is
preserved. The proof is complete. �

Theorem 5. Maximum Happy Edges is W[2]-hard when parameterized by
the distance to graphs that are a disjoint union of stars and is W[2]-hard when
parameterized by the distance to graphs that are a disjoint union of cliques.

Proof. As in the proof of Theorem 4, we again reduce from W[2]-hard Colour-
ful Red-Blue Dominating Set. Given an instance (G, k, c) of CRBDS, we
construct an instance (G′, p′, k′) in polynomial time.

In the same way as in the proof of Theorem 4, start with G′ being an empty
graph; for each v ∈ B introduce a star in G′ with the center in v and vertices

20 I. Bliznets and D. Sagunov

uv for each u ∈ NG(v), precolored as p′(uv) = u. Introduce the selector gadget
vertices s1, s2, . . . , si toG

′, but now connect them only to each of the star centers.
Thus, the star centers and the vertices of the selector gadget induce a complete
bipartite graph in G′. Note that the vertices of the selector gadget are not in
any way connected to the precolored vertices of type uv, as it was before in
the proof of Theorem 4. To avoid a situation when it is profitable to color si
in a way that c(c′(si)) = i, for each u ∈ R introduce |B| new vertices in G′,
precolor them with color u and connect them with sc(u). Finally, ask to make at
least k′ = (2 + k) · |B| edges happy in (G′, p′). The construction of (G′, p′, k′) is
finished. Note that the deletion of the selector gadget from G′ still makes G′ a
disjoint union of stars.

We continue the proof with the series of claims similar to one in the proof of
Theorem 4.

Claim 13. There is an optimal coloring c′ of (G′, p′) such that c(c′(si)) = i for
each i ∈ [k].

Proof of Claim 13. Take an optimal coloring c′ of (G′, p′) and suppose that
c(c′(si)) 6= i for some i ∈ [k]. For each v ∈ B, si is connected to v in G′.
Note that any other neighbour of si in G′ is precolored by p′ with a color u such
that c(u) = i. The color of si in c′ does not satisfy this property, so only edges
that are happy in G′ with respect to c′ and star centers. Hence, at most |B|
edges incident to si are happy in G′ with respect to c′.

Now take an arbitrary vertex u ∈ B with c(u) = i and change the color of si
in c′ to u. si is now incident to at least |B| happy edges. At most |B| happy edges
was lost with such operation, and at least |B| happy edges was gained. Since c′

was an optimal coloring, the number of happy edges remained the same and c′

remains optimal. Continue this process until c′ satisfies the claim statement. �

Claim 14. Let c′ be a coloring of (G′, p′) such that at least k′ edges are happy in
G′ with respect to c′ and c(c′(si)) = i for each i ∈ [k]. Then D = {c′(s1), c′(s2),
. . . , c′(sk)} is an answer to (G, k, c).

Proof. Note that for each v ∈ B, a star centered in the copy of v in G′ can
contain at most one happy edge with respect to c′. Moreover, the vertex set of
this star can be incident to at most two happy edges: one inside the star and
one going from the star center to a vertex of the selector gadget.

Edges that are not incident to the star components are edges between the
selector gadget and the auxiliary vertices, that were introduced to ensure that
c(c′(si)) = si for each i ∈ [k]. For each vertex si of the selector gadget, there are
exactly |B| such happy edges incident to it, so there are exactly k · |B| such edges
in total. Hence, at least 2|B| happy edges are incident to the star components.
Since there are exactly |B| stars and at most two happy edges can be incident
to each one of them, exactly two happy edges are incident to each of the |B| star
centers.

That is, for each v ∈ B, c′(v) = c′(uv) for some u ∈ NG(v), and c′(v) = c′(si)
for some i ∈ [k]. Similarly to the proof of Claim 11, this leads to that D is an
answer to (G, k, c). �

On Happy Colorings, Cuts, and Structural Parameterizations 21

The following claim again resembles a claim from the proof of Theorem 4
and is clear.

Claim 15. Let D = {u1, u2, . . . , uk} be a dominating set of B in G, where
ui ∈ B and c(ui) = i for each i ∈ [k]. Extend the precoloring p′ to a full coloring
c′ by putting c′(si) = ui for each i ∈ [k] and, for each v ∈ B, put c′(v) = uj ,
where uj ∈ D ∩NG(v) is a vertex dominating v. Exactly k′ edges are happy in
(G′, p′) with respect to c′.

We resembled the proof of Theorem 4 by proving a similar chain of claims
for MHE. Thus, the W[2]-hardness of MHE with respect to the distance to a
disjoint union of stars is proven. It is left to prove the same for the distance to
cluster parameter.

Note that after the deletion of the selector gadget G′ becomes a graph, where
each component is a star where each leaf vertex is a precolored vertex. Moreover,
all leaf vertices of each star are distinctly precolored. Thus, complementing each
star to a clique in G′ yields edges that cannot be happy with respect to any col-
oring extending p′. Obtain a graph G′′ by complementing each abovementioned
star in G′ to a clique. Clearly (G′, p′, k′) and (G′′, p′, k′) are equivalent instances
of MHE, and G′′ has the distance to cluster parameter being at most k. This
finishes the proof. �

Corollary 4. Maximum Happy Vertices and Maximum Happy Edges are
both W[2]-hard with respect to parameters pathwidth, treewidth or clique-width,
distance to cographs, feedback vertex set number.

Proof. The proof is similar to the proof of Corollary 1: star graphs are simulta-
neously cographs and forests, their pathwidth is equal to 1. �

5 Maximum Happy Vertices and Node Multiway Cut

This section reveals the connection between Maximum Happy Vertices and
Node Multiway Cut. This connection is a natural supplement of the straight-
forward connection of the edge versions of the problems, Maximum Happy
Edges and Multiway Cut. It is more convenient for us to use a variation of
Node Multiway Cut, called Group Multiway Cut, where terminal groups
are used instead of singleton terminals.

Group Multiway Cut [6]
Input: A graph G and pairwise disjoint sets of terminals

{T1, T2, . . . , Tℓ}, and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k such that G \ S

has no u− v path for any u ∈ Ti, v ∈ Tj and i 6= j?

We start with the following crucial lemma.

22 I. Bliznets and D. Sagunov

Lemma 1. Let G be a graph with precoloring p. Let H ⊆ H(G, p) be an arbitrary
subset of its potentially happy vertices. Then a coloring c extending p, so that
all vertices in H are happy with respect to c, exists if and only if there exists no
path u1, u2, . . . , ut in G, such that u1 and ut are precolored and p(u1) 6= p(ut),
and for each i ∈ [t− 1], either ui or ui+1 is in H.

Proof. Let (G, p) be a graph with precoloring, and H ⊆ H(G, p) be a subset of
its potentially happy vertices. We prove the statement first in the direction that
the existence of the coloring implies the non-existence of the path.

Suppose there is a coloring c of (G, p) such that all vertices in H are happy
with respect to c. Suppose by contradiction that there exists a path u1, u2, . . . , ut

in (G, p), such that p(u1) 6= p(ut) and for each i ∈ [t−1], either ui is in H or ui+1

is in H . All vertices in H are happy with respect to c, hence all edges incident
to the vertices in H are happy with respect to c. Thus, for each i ∈ [t− 1], the
edge (ui, ui+1) is happy with respect to c, i.e. c(ui) = c(ui+1). This contradicts
p(u1) 6= p(ut).

Let us prove in the other direction. Suppose that there exists no path u1, u2,
. . . , ut satisfying the conditions in (G, p). Construct a coloring c as follows. For
each vertex v in V (G), such that v is neither in H nor a neighbour of a vertex
in H , remove v from G and set c(v) = p(v) if v is precolored, or set c(v) to an
arbitrary color otherwise. No deleted vertex influences a happiness of a vertex
in H , so it is left to color the vertices of the remaining graph G[N [H]] so that
each vertex in H is happy. Consider a connected component C of G[N [H]] and
observe that there are no two vertices in C that are precolored with a different
color. Suppose it’s not true, then there exists a path between some vertices u
and w, p(u) 6= p(w), in (G[N [H]], p|N [H]). Note that each edge of this path has
an endpoint in H , and obtain a contradiction.

Thus, each connected component of (G[N [H]], p|N [H]) either contains no
precolored vertices, or all precolored vertices in this component are of the same
color. That is, each connected component of (G[N [H]], p|N [H]) can be colored

with a single color, so all vertices of G[N [H]] are happy. Hence, all vertices in H
are also happy with respect to the same coloring in (G, p). This concludes the
proof. �

Theorem 6. Let (G, p, k) be an instance of Maximum Happy Vertices. Then
(G, p, k) is a yes-instance of Maximum Happy Vertices if and only if
(G2[H(G, p)], {H1(G, p),H2(G, p), . . . ,Hℓ(G, p)}, |H(G, p)|−k) is a yes-instance
of Group Multiway Cut.

Proof. Let (G, p, k) be a yes-instance of MHV. We show that (G2[H(G, p)],
{H1(G, p),H2(G, p), . . . ,Hℓ(G, p)}, |H(G, p)| − k) is a yes-instance of Group
Multiway Cut. Since (G, p, k) is a yes-instance, there is a coloring c such that
at least k vertices of (G, p) are happy with respect to c. Let H be a set of any k
of these vertices, i.e. |H | = k and all vertices in H are happy with respect to c
in (G, p).

Observe that any path in G whose all edges are incident to at least one vertex
of H , corresponds to a simple path in G2[H]. Indeed, let u1, u2, . . . , ut be a path

On Happy Colorings, Cuts, and Structural Parameterizations 23

in G such that ui ∈ H or ui+1 ∈ H for each i ∈ [t−1]. Let uH
1 , uH

2 , . . . , uH
t1 be the

subsequence of u1, . . . , ut of vertices in H (H ∩ {u1, . . . , ut} = {uH
1 , . . . , uH

t1}).
Note that for each i ∈ [t1 − 1], uH

i and uH
i+1 are either consequent in u1, . . . , ut

or there is only one vertex between them in u1, . . . , ut. That is, there is an edge
between uH

i and uH
i+1 in G2[H]. Thus, uH

1 , uH
2 , . . . , uH

t1 is a path in G2[H]. Vice
versa, any simple path in G2[H] corresponds to paths in G which edges are
incident to vertices in H .

Since all verticesH are happy in (G, p), by Lemma 1, there is no path between
differently precolored vertices with all edges incident to at least one vertex in
H . Consider G2[H] and suppose that there exists a path between vertices v
and w in G2[H], such that v ∈ Hi(G, p) and w ∈ Hj(G, p), and i 6= j. As
shown above, this path corresponds to a path between v and w in G, and all
edges of this path are incident to H . Since v ∈ Hi(G, p), there is a precolored
vertex v′ ∈ N [v] with p(v′) = i. Similarly, there is a w′ ∈ N [w] with p(w′) =
j. There is a path between v′ and w′ in G with all edges incident to H and
p(v′) 6= p(w′), a contradiction. Hence, no vertices in different sets of terminals
Hi(G, p) and Hj(G, p) are connected in G2[H]. Thus, H(G, p) \H is an answer
to (G2[H(G, p)], {Hi(G, p)}, |H(G, p)| − k), so it is a yes-instance of Group
Multiway Cut.

The proof in the other direction is similar: if S, (|S| = |H(G, p)| − k), is
a solution to the instance of Group Multiway Cut, then all k vertices in
H(G, p) \ S can be happy simultaneously in (G, p). �

Theorem 6 shows the importance of potentially happy vertices in the input of
MHV. Other vertices are playing role of common neighbours or precolored neigh-
bours for potentially happy vertices. Note that the sets H(G, p) and Hi(G, p) are
computable in polynomial time. Thus, an instance of MHV can be compressed
in order to contain only useful information about potentially happy vertices. We
formulate this in the following corollary.

Corollary 5. Maximum Happy Vertices, parameterized by the number of
potentially happy vertices h, (i) admits a polynomial compression into Group
Multiway Cut with h vertices and (ii) admits a kernel with O(h2) vertices and
edges.

Proof. (i) is a direct corollary of Theorem 6. To prove (ii) and obtain a ker-
nel with O(h2) vertices and edges for an instance (G, p, k) of MHV, compress
it firstly to an equivalent instance (G2[H(G, p)], {Hi(G, p)}, h − k) of Group
Multiway Cut. Then, transform this instance back to an equivalent instance
(G′, p′, k) of MHV as follows. Construct G′ as a subdivision of G2[H(G, p)], and
then introduce two vertices t1 and t2 to G′, connect them by an edge (t1, t2),
and connect them both to each vertex that was introduced to G′ because of
the subdivision of an edge. Finally, for each i ∈ [ℓ] and each v ∈ Hi(G, p), set
p′(v) = i; then set p′(t1) = 1 and p′(t2) = 2. Observe that H(G′, p′) = H(G, p)
and Hi(G

′, p′) = Hi(G, p), as no newly-introduced vertex is potentially happy,
and no potentially happy vertex in G′ is adjacent to a vertex precolored by p′.
Moreover, (G′)2[H(G′, p′)] = G2[H(G, p)] by means of the subdivision. Hence,

24 I. Bliznets and D. Sagunov

(G′, p′, k) is an instance equivalent to (G, p, k), and there is O(|H(G, p)|2) ver-
tices and edges in G′. �

Another interesting consequence of Theorem 6, along with Corollary 1, is a
lower bound on algorithms for Group Multiway Cut parameterized by clique-
width.

Corollary 6. Group Multiway Cut is W[1]-hard when parameterized by the
clique-width of the input graph.

Proof. By Corollary 1, Maximum Happy Vertices is W[1]-hard when param-
eterized by the clique-width of the input graph. Take an instance (G, p, k) of
MHV. As shown by Todinca in [21], if G has clique-width t, then the power
Gc of G has clique-width at most 2tct. Hence, G2 has clique-width at most 2t2t.
Then, as shown by Courcelle and Olariu in [9], every induced subgraph of a graph
of clique-width t has clique-width at most t, so G2[H(G, p)] has clique-width at
most 2t2t as well. So, in an instance (G2[H(G, p)], {Hi(G, p)}, |H(G, p)| − k) of
Group Multiway Cut equivalent to the instance (G, p, k), the clique-width
of the input graph is bounded if the clique-width of G is bounded. Since the
reduction from MHV to Group Multiway Cut is polynomial, the corollary
statement follows. �

In contrast, we have that Node Multiway Cut is in FPT when parame-
terized by the clique-width of the input graph. We present an algorithm solving
Node Multiway Cut using dynamic programming on a w-expression of G.

Theorem 7. Node Multiway Cut can be solved in (w + 3)2w · nO(1), if a
w-expression of G is given.

Proof. Let (G, T, k, Ψ) be an instance of Node Multiway Cut with a given
w-expression Ψ of G. To solve the instance, we employ dynamic programming.
To help undestanding it, we suggest to consider the following. Consider a subex-
pression Φ of Ψ . Let S be a vertex subset of V (GΦ) \ T whose deletion from GΦ

disconnects all terminals in T from each other. That is, S is a possible answer
for the smaller graph GΦ. Let Vi(GΦ \ S) denote the set of vertices with label i
in GΦ \S. Let Rj(GΦ \S) denote the set of vertices reachable from the terminal
tj in GΦ \ S (including tj itself). If tj /∈ V (GΦ), then let Rj(GΦ \ S) = ∅. Since
S is an answer to the instance, all Rj(GΦ \ S) are disjoint.

Consider an arbitrary vertex label i ∈ [w] in Φ. We distinguish four types of
labels depending on what terminal vertices in T the vertices in Vi(GΦ \ S) are
connected to. If there is no vertex with label i in GΦ \ S, i.e. Vi(GΦ \ S) = ∅,
we say that i is of ∅-type in GΦ \ S. If all vertices with label i in GΦ \ S are not
connected with any of the terminals in T , i.e. Vi(GΦ \ S) ∩ Rj(GΦ \ S) = ∅ for
each j ∈ [ℓ], and Vi(GΦ \S) is not empty, we say that i is of 0-type in GΦ \S. If a
label i is not of these two types, then it must contain a vertex that is connected
to some terminal in T . If there are two vertices with label i, each of these two
is connected to a terminal in GΦ \ S, but these two terminals are distinct, i.e.

On Happy Colorings, Cuts, and Structural Parameterizations 25

Vi(GΦ \S)∩Rj(GΦ \S) 6= ∅ for at least two values of j, we say that i is of 2-type.
Otherwise, there is exactly one terminal, say sj, reachable from Vi(GΦ \ S) in
GΦ \ S, and we say that i is of 1-type. Note that in that case sj is necessarily a
vertex of GΦ.

In this way, the set of labels [w] become partitioned into four sets P∅, P0,
P1 and P2, depending on the value of Φ and S. Note that each 1-type label
corresponds to a single teminal. Thus, the set P1 can be further partitioned
into a family of sets P1 = {P1,1, P1,2, . . . , P1,p}, p ≤ w, where each P1,j is a
set containing all 1-type labels corresponding to a certain terminal. Note that
despite there are ℓ terminals in T and ℓ may be much greater than w, P1 always
contains no more than w sets, since it is a partition of P1. We obtain a partition
(P∅, P0,P1, P2) according to S and Φ. Thus, for fixed Φ and S, there is exactly
one partition corresponding to S. Note that different values of S may lead to
the same partitions in Φ. Also, for some partitions of labels of Φ, there may be
no corresponding values of S. We now bound the number of possible partitions.

Claim 16. There are at most (w + 3)w possible partitions (P∅, P0,P1, P2) of
the label set [w], and all possible partitions can be enumerated in O∗((w+3)w)
time.

Proof of Claim 16. Observe that any partition contains at most w+3 sets. Since
each element in [w] appears in exactly one set of the partition, there are at most
(w + 3)w possible partitions and they can be enumerated easily. �

We are ready to introduce the dynamic programming. For each subexpression
Φ of Ψ , and each possible partition (P∅, P0,P1, P2),

OPT (Φ, P∅, P0,P1, P2)

stores the minimum size of S among all possible solutions S for GΦ (that is,
S ⊆ V (GΦ) \ T and deletion of S disconnects all terminals in GΦ from each
other), such that S corresponds to the partition (P∅, P0,P1, P2). If there is no
solution S corresponding to the partition, OPT (Φ, P∅, P0,P1, P2) = ∞. Clearly,
OPT consists of at most |Ψ | · (w+3)w states. The initial instance (G, T, k, Ψ) is
a yes-instance if and only if

min
(P∅,P0,P1,P2)

OPT (Ψ, P∅, P0,P1, P2) ≤ k.

We now show how we compute the values of OPT . We compute the values of
OPT going from smaller subexpressions of Ψ to larger. Thus, if we are to compute
the values of OPT for some subexpression Φ of Ψ , we have all values of OPT
calculated for all subexpressions of Φ. Let Φ be a fixed subexpression of Ψ . To
simplify our task, we do not consider a fixed stageOPT (Φ, P∅, P0,P1, P2) ofOPT
and compute its value at once. Instead, we initialize all values of OPT (Φ, ·) with
∞, and then update them considering values of OPT for smaller subexpressions.
This procedure depends on the topmost operator in Φ.

26 I. Bliznets and D. Sagunov

1. Φ = i(v). That is, GΦ consists of a single vertex with label i. Each label,
except for i, is of ∅-type. One may either choose to pick v in the solution
and delete it, or not to delete it. In other words, the possible values of S are
∅ and v. However, if v ∈ T , we should always leave the vertex in the graph.
If we choose not to delete v, i stays a label of 1-type. Hence, we put OPT (Φ,
[w] \ {i}, ∅, {{i}}, ∅) = 0. If we choose to delete v (in that case, v /∈ T), GΦ

becomes empty, so we put OPT (Φ, [w], ∅, ∅, ∅) = 1. Clearly, all other values
OPT (Φ, ·) should be left equal ∞.

2. Φ = ρi→jΦ
′. Note that any solution S for GΦ′ is a solution for GΦ, and vice

versa. Let S be a solution that corresponds to a partition (P ′
∅, P

′
0,P ′

1, P
′
2) in

Φ′. S also corresponds to some partition (P∅, P0,P1, P2) in Φ, and it occurs
that this partition is easy to find if the partition (P ′

∅, P
′
0,P ′

1, P
′
2) is given.

Since Φ differs from Φ′ only in renaming label i to label j, (P∅, P0,P1, P2)
differs from (P ′

∅, P
′
0,P ′

1, P
′
2) only in positions of labels i and j. In fact,

Vi(GΦ) = ∅, so i is of ∅-type in GΦ \ S. Thus, i ∈ P∅. It is left to deter-
mine the position of label j in the partition (P∅, P0,P1, P2).
Since Vj(GΦ) = Vi(GΦ′) ⊔ Vj(GΦ′), the type of j in GΦ depends on types of
i and j in GΦ′ . If at least one of i or j are of ∅-type in GΦ′ \ S, without loss
of generality let it be i, then Vj(GΦ) = Vj(GΦ′). Hence, the type of j in GΦ

is equal to the type of j in G{Φ
′} \ S, and its position in the partition (if it

is 1-type) remains the same. When neither of i and j are of ∅-type, but at
least one of them is of 0-type, again, let it be i, the type and position of j
in GΦ remains the same as in GΦ′ . If at least one of i or j are of 2-type in
GΦ′ \ S, then, clearly, j is of 2-type in GΦ \ S.
It is left to consider the case when both i and j are of 1-type in GΦ′ \ S,
i.e. i, j ∈ P ′

1. Consider i and j belonging to distinct sets in P ′
1, that is,

there is a terminal reachable from Vi(GΦ′)\S and a terminal reachable from
Vj(GΦ′)\S, and these terminals are distinct. Then, both these terminals are
reachable from Vj(GΦ) \S, so j should be of 2-type in GΦ \S, i.e. j ∈ P2. In
the only case left, i and j belong to the same set in P ′

1. Clearly, the position
of j should not change in that case.
Thus, to compute all values OPT (Φ, ·), we iterate over all possible par-
titions (P ′

∅, P
′
0,P ′

1, P
′
2) of labels in GΦ′ . For a fixed partition, we find the

corresponding partition (P∅, P0,P1, P2) of labels in GΦ in polynomial time
as described above. Finally, we update OPT (Φ, P∅, P0,P1, P2) with the value
of OPT (Φ′, P ′

∅, P
′
0,P ′

1, P
′
2).

3. Φ = Φ′ ⊕ Φ′′. That is, GΦ is a disjoint union of GΦ′ and GΦ′′ . Thus, if
S is a solution for GΦ, then S′ = S ∩ V (GΦ′) is a solution for GΦ′ , and
S′′ = S ∩ V (GΦ′′) is a solution for GΦ′′ , and vice versa, two solutions S′

and S′′ give a solution S′ ⊔ S′′ for GΦ. Thus, any solution for GΦ is a union
of solutions for GΦ′ and GΦ′′ . Again, we consider all possible partitions
(P ′

∅, P
′
0,P ′

1, P
′
2) and (P ′′

∅ , P
′′
0 ,P ′′

1 , P
′′
2) for solutions S

′ and S′′ respectively in
GΦ′ and GΦ′′ , and show how to find a partition (P∅, P0,P1, P2) corresponding
to their union S = S′ ⊔ S′′ in GΦ.
Since Vi(GΦ) \ S = (Vi(GΦ′) \ S′) ⊔ (Vi(GΦ′′) \ S′′) for each label i, it is
enough to show how to determine position of label i in the partition for GΦ

On Happy Colorings, Cuts, and Structural Parameterizations 27

knowing its position in the partitions for GΦ′ and GΦ′′ . Consider the types
of i in GΦ′ \ S′ and GΦ′′ \ S′′. Cases when at least one of these types is not
1-type are handled in the same way as above for the relabelling operator.
Consider the case when i is of 1-type both in GΦ′ \S′ and in GΦ′′ \S′′. That
means that there is a terminal in GΦ′ reachable from the vertices with label
i in GΦ′ \ S′, and a terminal in GΦ′′ reachable from the vertices with label i
in GΦ′′ \ S′′. Since V (GΦ′) and V(GΦ′′) are disjoint, these two terminals are
distinct. Hence, in GΦ \ S there are at least two terminals reachable from
vertices with label i. Therefore, i should receive 2-type in GΦ \ S.
Again, to compute values of OPT (Φ, ·), we iterate over all possible partitions
(P ′

∅, P
′
0,P ′

1, P
′
2) and (P ′′

∅ , P
′′
0 ,P ′′

1 , P
′′
2). Having these two partitions fixed, we

find the combined partition (P∅, P0,P1, P2) and update OPT (Φ, P∅, P0,P1,
P2) with OPT (Φ′, P ′

∅, P
′
0,P ′

1, P
′
2) +OPT (Φ′′, P ′′

∅ , P
′′
0 ,P ′

1, P
′′
2).

4. Φ = ηi,jΦ
′. That is, GΦ is a graph obtained by introducing all possible edges

with endpoints having labels i and j. It is again easy to see that if S is a
solution for GΦ, then S is a solution for GΦ′ . However, a solution for GΦ′

does not yield a solution GΦ. It occurs again that to check that a solution
S for GΦ′ is a suitable solution for GΦ, it suffices to know the partition of
labels for S and Φ′.

Let (P ′
∅, P

′
0,P ′

1, P
′
2) be a partition corresponding to S inGΦ′ . We show how to

check that S is a suitable solution forGΦ, and find a partition (P∅, P0,P1, P2)
corresponding to S in GΦ. Clearly, it is enough to consider the types of labels
i and j in GΦ′ \ S. If at least one of i and j are of ∅-type, then no edge is
actually added by the operator and GΦ = GΦ′ . Thus, S is a suitable solution
for GΦ and the partition for GΦ\S remains the same as for GΦ′ \S. If neither
of i and j are of ∅-type, but at least one of them is of 2-type in GΦ′ \ S,
then S is not a suitable solution for GΦ. Indeed, without loss of generality
let i be of 2-type, i.e. vertices with label i are connected to two distinct
terminals. Since there is at least one vertex with label j, adding all edges
between vertices with labels i and j connects these two terminals together.

It is left to consider cases when i and j are of 0-type or of 1-type in GΦ′ \S.
If both of them are of 0-type, then adding edges between vertices of these
two labels does not yield any connection between terminals. Hence, S is a
suitable solution for GΦ. Also, i and j remain being of 0-type in GΦ \ S, so
the partition remains the same. If one label is of 0-type, and the other is of
1-type, then adding edges does not yield any connection between two distinct
terminals, and S is a suitable solution for GΦ. However, since vertices with
both labels are now connected to the same terminal in GΦ \S, the partition
should be changed: both labels should receive 1-type and go into the same
set in P1. It is left to consider the case when both i and j are of 1-type in
GΦ′ . If i and j are in the same set in P ′

1, then no two terminals become
connected, so S is a suitable solution for GΦ. The partition remains the
same. Otherwise, i and j are in distinct sets inside P1, i.e. the vertices with
labels i and j are connected to two distinct terminals. Clearly, in that case,
S is not a suitable solution for GΦ.

28 I. Bliznets and D. Sagunov

We have shown how to obtain the partition of labels (P∅, P0,P1, P2) forGΦ\S
knowing the partition (P ′

∅, P
′
0,P ′

1, P
′
2) for GΦ′ \ S′, and to ensure that any

solution for GΦ′ corresponding to (P ′
∅, P

′
0,P ′

1, P
′
2) is a suitable solution for

GΦ. Thus, we again iterate over all possible partitions for (P ′
∅, P

′
0,P ′

1, P
′
2) and

check that it corresponds to a suitable solution of GΦ. If it does, we find the
partition for GΦ\S and update OPT (Φ, P∅, P0,P1, P2) with OPT (Φ′, P ′

∅, P
′
0,

P ′
1, P

′
2).

We have shown how to compute the values of OPT . Each computation step
occurs for a fixed subexpression Φ, and is done by considering all possible par-
titions for child subexpressions of Φ. Since there are always at most two child
subexpression (in the case of the disjoint union operator), so the heaviest com-
putation step takes (w + 3)2w · nO(1) running time. Having all values of OPT
calculated, the answer to the initial instance is then found in (w + 3)w time by
considering each value of type OPT (Ψ, ·). Thus, the running time of the whole
algorithm is |Ψ | · (w + 3)2w · nO(1). The correctness follows from the discussion.
This finishes the proof. �

6 Polynomial kernel for Maximum Happy Vertices

In this section, we present a polynomial kernel for MHV parameterized by the
distance to clique. This partially answers a question of Misra and Reddy in [19],
where they also showed FPT algorithms for bothMHV andMHE parameterized
by this parameter. We start with the following technical lemma.

Lemma 2. Maximum Happy Vertices admits a kernel with O(|H(G, p)| +
|S|2) vertices, if a clique modulator S of G is given.

Proof. Let (G, p, k, S) be an instance of MHV with a clique modulator S of G
given. That is, V (G) = C ⊔ S, and C induces a clique in G. Let h = |H(G, p)|
as usual. This lemma has much in common with Corollary 5. Here, to obtain a
linear dependency on h, we exploit the fact that G contains a large clique.

Our kernelization algorithm outputs an instance (G′, p′, k) of MHV with

|V (G′)| ≤ 2|H(G, p)|+ 3|S|+
(|S|

2

)

+ 2. The graph G′ is obtained as an induced
graph G[T] of G for some vertex subset T . Additional two vertices are then
introduced in G′ to ensure that certain vertices are not happy. We now show
how the algorithm constructs the set T . By means of Theorem 6, the goal of T is
to preserve all potentially happy vertices, colors of their neighbours, and paths
of length two between them.

Firstly, the algorithm puts all potentially vertices of (G, p) and all vertices
of the clique modulator in T , i.e. T = H(G, p) ∪ S initially. Each vertex in
H(G, p) either has no precolored neighbours, or all its neighbours are precolored
with the same color. For each such vertex that has a precolored neighbour, say
v ∈ Hi(G, p) for some i ∈ [ℓ], the algorithm chooses any neighbour u of v with
p(u) = i, and puts it in T . Now T consists of at most 2h+ 2|S| vertices.

On Happy Colorings, Cuts, and Structural Parameterizations 29

It is left to add vertices in T that preserve paths of length two between
potentially happy vertices. For each vertex in S, say s ∈ S, the algorithm picks
any neighbour of s in C, and adds it to T . If s has no neighbours in C, the
algorithm does nothing. Finally, for each pair of vertices in S, say s1, s2 ∈ S,
that has a common neighbour in G, the algorithm adds any common neighbour
of s1 and s2 to T . It is easy to see that |T | ≤ 2h+ 3|S|+ 3

(|S|
2

)

now.
The graph G′ is then obtained as the induced graph G[T] of G. The precolor-

ing p′ is obtained as just a restriction p|T of the precoloring p to the set T . The
only problem behind (G′, p′) is that Hi(G, p) = Hi(G

′, p′) not necessarily holds
true for each i ∈ [ℓ]: some vertices that are not potentially happy in (G, p) can
become potentially happy in (G′, p′). To overcome that, the algorithm introduces
two vertices t1, t2 to G′, connects them by an edge in G′, and precolors them
with colors 1 and 2 respectively, i.e. p′(ti) = i. Then it connects both t1 and t2
with each vertex in T \H(G, p) by an edge in G′. The construction of (G′, p′, k)
is finished.

Claim 17. For the constructed instance (G′, p′, k) the following holds:

1. H(G, p) = H(G′, p′);
2. For each i ∈ [ℓ], Hi(G, p) = Hi(G

′, p′);
3. G2[H(G, p)] and (G′)2[H(G′, p′)] are the same.

Proof of Claim 17. For each potentially happy vertex v of G, it was preserved in
T and at least one of its colored neighbours is preserved in T . Thus, H(G, p) ⊆
H(G′, p′) and Hi(G, p) ⊆ Hi(G

′, p′). At the other hand, all vertices in T that are
not potentially happy in G, are connected with two vertices t1 and t2, that are
of different colors in (G′, p′). Moreover, neither t1 nor t2 are potentially happy in
(G′, p′) since they are connected by an edge. Therefore, the first two conditions
of the claim follows.

To prove the third condition of the claim, note that

(G′)2[H(G′, p′)] = (G′)2[H(G, p)] = (G[T])2[H(G, p)],

since vertices t1 and t2 of G′ are connected only with vertices that are not
potentially happy in (G, p). Hence, t1 and t2 cannot contribute to a path of length
two between a pair of vertices in H(G, p). Suppose that (G[T])2[H(G, p)] 6=
G2[H(G, p)]. Then, it is only the case that some path of length two between
some non-adjacent vertices u, v ∈ H(G, p) is missing in G[T], but they share a
common neighbour w in G. As w is missing in G[T], it is the case that w ∈ C.
Otherwise w ∈ S and the algorithm would include it in the set T initially.

Since u and v are non-adjacent, we may assume without loss of generality
that u ∈ S. Suppose that v ∈ S. Then, u and v are vertices in S that share a
common neighbour in G. But then the algorithm has added at least one their
neighbour in T , so there should be a path of length two between them in G[T].
Hence, it is the case that v ∈ C. But w ∈ C also, so u has a neighbour in C,
say w′ ∈ C, that the algorithm has included in T . uw′v is a path of length two
between u and v in G[T], a contradiction. Therefore, the third condition of the
claim holds. �

30 I. Bliznets and D. Sagunov

From the claim and Theorem 6 follows the lemma. �

Lemma 3. Maximum Happy Vertices admits a polynomial kernel of size
O(d3), where d is the size of a given clique modulator S.

Proof. Let (G, p, k, S) be an instance of MHV with a clique modulator S of G
of size d given. As usual, we denote the set of the vertices of the clique by C,
i.e. V (G) = C ⊔ S. Throughout the proof, we assume that d ≥ 2, otherwise the
instance is trivial.

We present an algorithm that transforms (G, p, k, S) into an instance (G′, p′,
k′) of MHV with |V (G′)| = O(d3). The algorithm reduces the number of po-
tentially happy vertices in (G, p) step-by-step. To do that, the algorithm makes
some potentially happy vertices unhappy. As does the algorithm in the proof of
Lemma 2, the algorithm introduces two new adjacent vertices t1 and t2 to G
and precolors them with colors 1 and 2 respectively. Then, to make a poten-
tially happy vertex v unhappy, the algorithm connects t1 with v and t2 with v
by introducing two new edges. Note that this operation is done in polynomial
time and strictly decreases the number of potentially happy vertices. t1 and t2
are introduced to G only once, and after the introduction S may no longer be
a clique modulator of G. To fix that, we say that algorithm extends S with t1
and t2. Thus, d increases by a constant value of two. We further assume that G
contains the vertices t1 and t2, S is the extended clique modulator and d = |S|
is equal to its size.

When the number of potentially happy vertices becomesO(d3), the algorithm
continues following the Lemma 2. We now show how the algorithm achieves
O(d3) potentially happy vertices.

Firstly, the algorithm ensures that each color in [ℓ] is presented at least once
in p. It applies the following reduction rule exhaustively.

Reduction rule 1 If there is a color i ∈ [ℓ] that is not presented in p, p−1(i) =
∅, decrease color numbers in {i+ 1, i+ 2, . . . ℓ} by 1 and decrease ℓ by 1.

Then, the following claim allows to deal with the case when the number of
colors in (G, p) is sufficiently large.

Claim 18. If ℓ > d + 1, then either there is a color i ∈ [ℓ] with p−1(i) = ∅, or
only the vertices of S can be happy in (G, p), i.e. S ⊇ H(G, p).

Proof of Claim 18. Suppose ℓ > d+ 1 and each color in [ℓ] is presented at least
once in p. Then there is a sequence of distinct vertices v1, v2, . . . , vℓ with p(vi) = i.
Since ℓ ≥ d + 2 and |S| = d, at least two vertices in the sequence are from the
clique C. Colors of these two vertices are distinct, so no vertex in the clique can
be happy with respect to any coloring of (G, p). �

The claim shows that after the exhaustive application of Reduction rule 1, if
ℓ is large, then the number of potentially happy vertices in that case is at most
d. The following part of the algorithm is dealing with the case when ℓ ≤ d+ 1.

On Happy Colorings, Cuts, and Structural Parameterizations 31

Then, the algorithm finds sets C1, C2, . . . , Cℓ, where

Ci = C ∩Hi(G, p)

is the set of potentially happy vertices in C that are either precolored with color
i or has a neighbour precolored with color i in G. Also, algorithm finds a set C0

of potentially happy vertices in C that are not precolored and have no precolored
neighbour in (G, p), C0 = H(G, p)\C1 \C2\ . . .\Cℓ. The sequence C0, C1, . . . , Cℓ

is found in polynomial time. If all sets in the sequence have size at most d, then
the number of potentially happy vertices in (G, p) is at most ℓ · d ≤ (d + 1) · d.
The following claim helps to deal with the other case.

Claim 19. If |C0| + |Ci| > d for some i ∈ [ℓ], then in any optimal coloring
c of (G, p), all vertices of the clique are colored with the same color by c, i.e.
|c(C)| = 1.

Proof of Claim 19. If |c(C)| ≥ 2, only vertices in S can be happy with respect
to c. Since |S| = d, at most d vertices can be happy with respect to c in (G, p).
However, since |C0|+ |Ci| > d, a trivial extension of p with the color i yields at
least d+ 1 happy vertices. �

The algorithm then applies the following reduction rule, that gets rid of
potentially happy vertices in C that are never happy in any optimal coloring of
(G, p).

Reduction rule 2 If there exists i ∈ [ℓ] with |Ci| + d <
ℓ

max
j=1

|Cj |, make all

vertices in Ci unhappy.

Claim 20. Reduction rule 2 is safe.

Proof of Claim 20. Note that |Cj | ≥ d + 1. Then, by Claim 19, in any optimal
coloring c, c(C) = 1. Suppose the reduction rule is not safe. Then, there is a
optimal coloring c with c(C) = {i}. c yields at most |C0|+ |Ci|+d happy vertices
in (G, p). At the other hand, a trivial extension of p with color j yields at least
|C0|+ |Cj | > |C0|+ |Ci|+ d happy vertices. Hence, c is not an optimal coloring.
Moreover, for any optimal coloring of c, no vertex in Ci is happy with respect
to c. �

After a single application of Reduction rule 2, Ci becomes empty. The al-
gorithm applies the rule exhaustively. Denote the set of colors corresponding to
non-empty sets in the sequence C1, C2, . . . , Cℓ by L = {i | Ci 6= ∅}.

At the next step, the algorithm deals with non-precolored vertices in S. The
obstacle behind non-precolored vertices in S is that we can not be sure about
their color in an optimal coloring. Depending on the color of the clique, certain
colorings of certain non-precolored vertices in S can make some vertices in the
clique not happy. The following claim helps in reducing the number of clique
neighbours for the non-precolored vertices.

32 I. Bliznets and D. Sagunov

Claim 21. In any optimal coloring c of (G, p), for any i ∈ L and any non-
precolored vertex v ∈ S, if |N(v) ∩ Ci| ≥ d and c(C) = {i}, then c(v) = i. Also,
if i = 0 and |N(v) ∩ C0| ≥ d and c(C) = {j}, then c(v) = j.

Proof of Claim 21. Suppose i ∈ L and c is an optimal coloring with c(C) = {i},
but there is a vertex v ∈ S with that has at least d neighbours in Ci, and c(v) 6= i.
Note that only vertices in C0 ∪ Ci ∪ S can be happy with respect to c.

Denote

Bi = {u | u ∈ S, |N(u) ∩ (C0 ∪ Ci)| > 0, c(u) 6= i}.

That is, Bi is a set of neighbours of C0∪Ci that are colored with a color different
from i in c. Bi is not empty and no vertex in Bi is happy with respect to c. Also,
since v ∈ Bi, |N(Bi) ∩ Ci| ≥ d.

Construct a coloring c′ by changing colors of all vertices in Bi to i in c. That
is, c′(Bi) = {i}, but c′(u) = c(u) for each u ∈ V (G) \ Bi. After such change,
some vertices in S \Bi that are happy with respect to c, become not happy with
respect to c′. On the other hand, all vertices in N(Bi)∩(C0∪Ci) (all of them are
not happy with respect to c) become happy with respect to c′. No other vertex
is influenced by the change. Since |S \Bi| ≤ d−1 and |N(Bi)∩Ci| ≥ d, c′ yields
at least one happy vertex more than c does. A contradiction with the optimality
of c.

The case i = 0 is handled in the same way. �

The claim results in the following reduction rule.

Reduction rule 3 If there is a non-precolored vertex v ∈ S with |N(v)∩Ci| > d
for some i ∈ {0} ∪ L, take any u ∈ N(v) ∩Ci and remove the edge vu from G.

Claim 22. Reduction rule 3 is safe.

Proof of Claim 22. Suppose (G, p, k) and (G \ vu, p, k) are not equivalent in-
stances. Note that for any coloring c, H(G, c) ⊆ H(G \ vu, c). Instances are not
equivalent, so there is an optimal coloring c of (G \ vu, p) that yields at least
k happy vertices in (G \ vu, p). But since (G, p, k) is a no-instance, c yields at
most k− 1 happy vertices in (G, p). Thus, the edge vu changes the happiness of
at least one of u and v with respect to c. In particular, c(u) 6= c(v).

At the other hand, |NG(v)∩Ci| > d, hence |Ci| > d and |NG\vu(v)∩Ci| ≥ d.
By Claim 19, c(C) = {j} for some j ∈ L. Hence, c(u) = j, but c(v) 6= j. Suppose
that i = 0. By Claim 21 applied to c and (G \ vu, p), it holds that c(v) = j, a
contradiction.

Then it is the case that i 6= 0. Since c(C) = {j} and c(v) 6= j, v is not happy
in G \ vu with respect to c. Then the edge vu changes the happiness of u, so u
is happy with respect to c in G \ vu. Since i 6= 0 and u ∈ Ci is a happy vertex,
c(u) = i, so i = j. But |NG\vu(v) ∩ Ci| ≥ d and c(C) = {i}, and from Claim 21
follows that c(v) = i. This contradiction finishes the proof. �

On Happy Colorings, Cuts, and Structural Parameterizations 33

The algorithm applies Reduction rule 3 exhaustively. Then, when it got rid
of non-precolored vertices with many neighbours, it gets rid of clique vertices
with no non-precolored neighbours in S. This is formulated in the following two
reduction rules, that the algorithm applies exhaustively.

Reduction rule 4 If |C0| > d+ 1 and C0 contains a vertex that has no neigh-
bours in S, make that vertex unhappy and decrease k by 1.

Claim 23. Reduction rule 4 is safe.

Proof of Claim 23. Let (G, p, k) be an instance with |C0| > d+1. Let v ∈ C0 be
a vertex that has no neighbours in S. Let (G′, p, k− 1) be the instance obtained
after a single application of the reduction rule. G′ differs from G only in two
edges that ensure unhappiness of v. Obviously, if there is an optimal coloring of
(G, p) that yields at least k happy vertices in (G, p), the same coloring yields at
least k − 1 happy vertices in (G′, p).

Take now an optimal coloring c′ of (G′, p). |C0 \ {v}| ≥ d + 1, and again by
Claim 19 (applied now to (G′, p′)), |c′(C)| = 1. Apply c′ to (G, p). |c′(C)| = 1,
so v is happy with respect to c′ in (G, p). Thus, c′ yields all the happy vertices in
(G, p) that it does in (G′, p′), and also the vertex v. Therefore, if an optimal
coloring of (G′, p′) yields at least k − 1 happy vertices, there is an optimal
coloring of (G, p) that yields at least k vertices. The safeness of the reduction
rule follows. �

The following reduction rule is of the same nature, but is a bit more compli-
cated.

Reduction rule 5 If for each i ∈ L, |Ci| > d+1 and Ci contains a vertex that
has only precolored neighbours in S, do the following. For each i ∈ L, make one
such vertex in Ci unhappy. Decrease k by 1.

Claim 24. Reduction rule 5 is safe.

Proof of Claim 24. Let (G, p, k) be the instance before an application of the
reduction rule. |Ci| > d+ 1 holds for each i ∈ [ℓ]. For each i ∈ [ℓ], let vi ∈ Ci be
the vertex in Ci that has only precolored neighbours in S. Let (G′, p, k − 1) be
the instance after the application of the reduction rule.

We show that if (G, p, k) is a yes-instance, then (G′, p′, k−1) is a yes-instance.
Let c be an optimal coloring of (G, p) yielding at least k happy vertices. By
Claim 19, c(C) = {i}, and i ∈ L. Note that vi is happy with respect to c, since
all vertices of the clique are colored with color i and all vertices in N(vi)∩S are
precolored with the color i. Moreover, for each j ∈ [ℓ] \ {i}, no vertex in Cj is
happy with respect to c. Thus, c yields all the same happy vertices in (G′, p) as
it does in (G, p), except for the single vertex vi. Hence, c

′ yields at least k − 1
happy vertices in (G′, p).

To prove in the other direction, take an optimal coloring c′ of (G′, p) that
yields at least k − 1 happy vertices. |Ci \ {vi}| ≥ d+ 1 for each i ∈ [ℓ], so apply
Claim 19 to (G′, p′) and get that |c′(C)| = {i} for some i ∈ L. vi is not happy

34 I. Bliznets and D. Sagunov

in (G′, p′) with respect to c′, but it is happy in (G, p) with respect to c′. All
other happy vertices remain the same. Hence, c′ yields at least k happy vertices
in (G, p). This finishes the proof. �

We finally claim that the number of remaining potentially happy vertices is
O(d3).

Claim 25. After the exhaustive application of the reduction rules, the clique C
contains at most d2 + d · (d+1)2 potentially happy vertices, i.e. |C ∩H(G, p)| ≤
d2 + d · (d+ 1)2.

Proof of Claim 25. Observe that |C ∩ H(G, p)| = |C0 ∪ C1 ∪ C2 ∪ . . . ∪ Cℓ| =
|C0|+

∑

i∈L |Ci|. We bound |C0| and
∑

i∈L |Ci| separately.
Each non-precolored vertex in S has at most d neighbours in C0, otherwise

Reduction rule 3 could be applied. This contributes to at most d2 such vertices
in C0. And since Reduction rule 4 cannot be applied, C0 either contains no other
vertices or consists of at most d+ 1 vertices in total. Hence, |C0| ≤ max{d2, d+
1} = d2.

We now bound
∑

i∈L |Ci|. We suppose that L is not empty, otherwise
∑

i∈L |Ci| = 0. Since Reduction rule 5 cannot be applied, there is either a set
Ci with |Ci| ≤ d + 1, or there is a set Cj that consists only of neighbours of
non-precolored vertices in S. In the latter case, |Cj | ≤ d2, otherwise Reduction
rule 3 could be applied. In any case, there is a set Ck of size at most d2, k ∈ L.

Recall that Reduction rule 2 ensures that |Ci| ≤ |Ck| + d for each i ∈ L.
Since it was applied exhaustively, we get that

∑

i∈L |Ci| ≤ ℓ · (|Ck| + d) ≤
(d+ 1) · (d2 + d) = d · (d+ 1)2. �

The claim shows that the number of potentially happy vertices is bounded
and Lemma 2 can be applied. The proof is finished. �

The lemmata above require that a clique modulator of G is given as an input.
This is not that necessary, since the distance to clique number is 2-approximable
in polynomial time.

Lemma 4. There is a polynomial-time algorithm that finds a clique modulator
of a given G consisting of at most 2d vertices, where d is the size of minimum
clique modulator of G.

Proof. Observe that a clique modulator S ofG is a vertex cover of its complement
G. And vice versa, a vertex cover of G is a clique modulator in G. Thus, d is
the size of minimum vertex cover of G. Take a well-known 2-approximation
algorithm for vertex cover by Gavril and Yannakakis [20], and apply it to G.
Resulting vertex cover of size at most 2d is a clique modulator of G. �

We combine algorithms of Lemma 4 and Lemma 3 to finally obtain the
following result.

Theorem 8. Maximum Happy Vertices admits a kernel with O(d3) vertices,
where d is the distance to clique parameter, and the parameter and a clique
modulator of G are not given explicitly.

On Happy Colorings, Cuts, and Structural Parameterizations 35

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Inter-
national Workshop on Combinatorial Algorithms. pp. 103–115. Springer (2017)

2. Aravind, N., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: International Workshop on Combinatorial
Algorithms. pp. 281–292. Springer (2016)

3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Belmonte, R., Golovach, P.A., van ’t Hof, P., Paulusma, D.: Parameterized com-
plexity of two edge contraction problems with degree constraints. In: Parameterized
and Exact Computation, pp. 16–27. Springer International Publishing (2013)

5. Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for
cluster vertex deletion. Theory of Computing Systems 58(2), 357–376 (apr 2015)

6. Chitnis, R., Fomin, F.V., Lokshtanov, D., Misra, P., Ramanujan, M.S., Saurabh,
S.: Faster exact algorithms for some terminal set problems. In: Parameterized and
Exact Computation, pp. 150–162. Springer International Publishing (2013)

7. Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring,
empire coloring and boxicity. In: WALCOM: Algorithms and Computation, pp.
228–239. Springer International Publishing (2018)

8. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM Journal on Computing 34(4), 825–847 (jan 2005)

9. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (apr 2000)

10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized algorithms, vol. 3. Springer (2015)

11. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Domi-
nating set is fixed parameter tractable in claw-free graphs. Theoretical Computer
Science 412(50), 6982–7000 (Nov 2011). https://doi.org/10.1016/j.tcs.2011.09.010,
https://doi.org/10.1016/j.tcs.2011.09.010

12. Diestel, R.: Graph theory. Springer Publishing Company, Incorporated (2018)
13. Gao, H., Gao, W.: Kernelization for maximum happy vertices problem. In: Latin

American Symposium on Theoretical Informatics. pp. 504–514. Springer (2018)
14. Hlineny, P., i. Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-

width and their applications. The Computer Journal 51(3), 326–362 (nov 2007)
15. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-

rithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217
(oct 2008)

16. Jansen, K., Scheffler, P., Woeginger, G.: The disjoint cliques problem. RAIRO-
Operations Research 31(1), 45–66 (1997)

17. Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded
clique-width. In: Combinatorial Optimization and Applications, pp. 115–126.
Springer Berlin Heidelberg (2012)

18. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: An analysis of the max-
imum happy vertices problem. Computers & Operations Research 103, 265–276
(2019)

19. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In: In-
ternational Workshop on Combinatorial Algorithms. pp. 142–153. Springer (2017)

20. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall (1981)

https://doi.org/10.1016/j.tcs.2011.09.010

36 I. Bliznets and D. Sagunov

21. Todinca, I.: Coloring Powers of Graphs of Bounded Clique-Width. In: Graph-
Theoretic Concepts in Computer Science, pp. 370–382. Springer Berlin Heidelberg
(2003)

22. Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and
vertex happiness. CoRR (2016)

23. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: International Computing and Combina-
torics Conference. pp. 159–170. Springer (2015)

24. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theoretical Com-
puter Science 593, 117–131 (2015)

25. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation
algorithms for the maximum happy vertices and edges problems. Algorithmica
80(5), 1412–1438 (2018)

	On Happy Colorings, Cuts, and Structural Parameterizations

