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Abstract

Imagine that unlabelled tokens are placed on the edges of a graph,
such that no two tokens are placed on incident edges. A token can jump
to another edge if the edges having tokens remain independent. We study
the problem of determining the distance between two token configura-
tions (resp., the corresponding matchings), which is given by the length
of a shortest transformation. We give a polynomial-time algorithm for
the case that at least one of the two configurations is not inclusion-wise
maximal and show that otherwise, the problem admits no polynomial-
time sublogarithmic-factor approximation unless P = NP. Furthermore,
we show that the distance of two configurations in bipartite graphs is
fixed-parameter tractable parameterized by the size d of the symmetric
difference of the source and target configurations, and obtain a d

ε-factor
approximation algorithm for every ε > 0 if additionally the configurations
correspond to maximum matchings. Our two main technical tools are
the Edmonds-Gallai decomposition and a close relation to the Directed

Steiner Tree problem. Using the former, we also characterize those
graphs whose corresponding configuration graphs are connected. Finally,
we show that deciding if the distance between two configurations is equal
to a given number ℓ is complete for the class D

P, and deciding if the
diameter of the graph of configurations is equal to ℓ is D

P-hard.
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Figure 1: A reconfiguration sequence Ms = M0,M1, . . . ,M4 = Mt of matchings
in a graph G.

1 Introduction

A reconfiguration problem asks for the existence of a step-by-step transformation
between two given configurations, where in each step we apply some simple
modification to the current configuration. The set of configurations may for
instance be the set of k-colorings [3, 10] or independent sets [13, 14, 16] of a
graph, or the set of satisfying assignments of Boolean formulas [12]. A suitable
modification may for example alter the color of a single vertex, or the truth
value of a variable in a satisfying assignment. For a survey on reconfiguration
problems, the reader is referred to [23] or [19].

Recently, there has been considerable interest in the complexity of finding
shortest transformations between configurations. Examples include finding a
shortest transformation between triangulations of planar point sets [21] and
simple polygons [1], configurations of the Rubik’s cube [6], and satisfying assign-
ments of Boolean formulas [17]. For all of these problems, except the last one,
we can decide efficiently if a transformation between two given configurations
exists. However, deciding if there is a transformation of at most a given length
is NP-complete. In particular, the flip distance of triangulations of planar point
sets is known to be APX-hard [21] and, on the positive side, fixed-parameter
tractable (FPT) in the length of the transformation [15]. Our reference prob-
lem is the task of computing the length of a shortest transformation between
matchings of a graph. We show that even in a very restricted setting the problem
admits no o(logn)-factor approximation unless P = NP and we give polynomial-
time algorithms in some special cases. Furthermore, we show that the problem
is FPT in the size of the symmetric difference of the two given configurations,
which implies that it is also FPT in the length of the transformation.

Reconfiguration of matchings. Deciding if there is a transformation be-
tween two matchings of a graph is known as an early example of a reconfigura-
tion problem that admits a non-trivial polynomial-time algorithm [13]. Recall
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that a matching M of a graph is a set of pairwise independent edges. (Figure 1
shows the six different matchings of the graph G.) We may consider a matching
as a placement of (unlabeled) tokens on independent edges: Then, the Token
Jumping (TJ ) operation provides an adjacency relation on the set of matchings
of a graph, all having the same cardinality1: Two matchings M and M ′ of a
graph G are adjacent (under TJ) if one can be obtained from the other by relo-
cating a single token, that is, if |M \M ′| = 1 and |M ′ \M | = 1. We say that
a sequence M0,M1, . . . ,Mℓ of matchings of G is a reconfiguration sequence of
length ℓ from M to M ′, if M0 = M , Mℓ = M ′, and Mi−1 and Mi are adjacent
for each i, 1 ≤ i ≤ ℓ. (See the sequence M0,M1, . . . ,M4 in Figure 1 as an
example.) The following question is often referred to as the reachability variant
of the matching reconfiguration problem:

Matching Reconfiguration

Input: Graph G and two matchings Ms,Mt of G.
Question: Is there a reconfiguration sequence from Ms to Mt?

ForYes-instances of the above problem the polynomial-time algorithm given
in [13] gives a bound of O(n2) on the length of a transformation. The distance
between two matchings is the length of a shortest transformation between them
(under TJ). If there is no transformation between two matchings, we regard
their distance as infinity. In this paper we study the complexity of the following
optimization problem related to matching reconfiguration, which is also referred
to as the shortest variant.

Matching Distance

Input: Graph G and two matchings Ms,Mt of G.
Task: Compute the distance between Ms and Mt.

We also study two related exact problems. The first is the exact version of
Matching Distance, which takes as input also the supposed distance ℓ of the
given matchings.

Exact Matching Distance

Input: Graph G, matchings Ms,Mt of G, and number ℓ ∈ N.
Question: Is ℓ equal to the distance between Ms and Mt?

The second decides the maximum distance (diameter) of any two matchings of
a given cardinality k in a graph.

Exact Matching Diameter

Input: Graph G and numbers k, ℓ ∈ N.
Question: Is ℓ equal to the maximum distance between any two
matchings of cardinality k of G?

Related results. Despite recent intensive studies on reconfiguration prob-
lems (see, e.g., a survey [19]), most of known algorithmic (positive) results are
obtained for reachability variants. However, they sometimes give answers to

1There is another well-studied operation, called Token Sliding (TS), for reconfiguration of
subgraphs having the same cardinality. In this paper, we employ TJ as the default operation.
However, some of our results apply also to TS, because TJ and TS are equivalent for maximum-
cardinality matchings.
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their shortest variants: if the algorithm constructs an actual reconfiguration
sequence which, at any step, transforms an edge of the initial matching into an
edge of the target one, then the sequence is indeed a shortest one.

Generally speaking, finding shortest transformations is much more difficult
if we need a detour, which touches an element that is not in the symmetric
difference of the source and target configurations. For such a detour-required
case, only a few polynomial-time algorithms are known for shortest variants,
e.g., satisfying assignments of a certain Boolean formulas by Mouawad et al. [18],
and independent sets under the TS operation for caterpillars by Yamada and
Uehara [24]. Note that Matching Reconfiguration belongs to the detour-
required case; recall the example in Figure 1, where we need to use the edge in
E(G) \ (Ms ∪Mt) in any reconfiguration sequence.

The reconfiguration of matchings is a special case of the reconfiguration of
independent sets of a graph. To see this, recall that matchings of a graph
correspond to independent sets of its line graph. Therefore, by a result of
Kamiński et al. [14], we can solve Matching Distance in polynomial time if
the line graph of a given graph is even-hole free. Note that in this case no detour
is required.

Our results. Although the reconfiguration of independent sets is one of the
most well-studied reconfiguration problems (see, e.g., a survey [19]), to the best
of our knowledge, the shortest variant of independent sets under the TJ opera-
tion is known to be solvable only for even-hole-free graphs, as mentioned above.
Thus, in this paper, we start a systematic study of the complexity of finding
shortest reconfiguration sequences between matchings, and more generally, be-
tween independent sets of a graph.

Our first result is the following classification of the complexity of the problem
Matching Distance. It follows immediately from Theorem 6, Corollary 9, and
Lemma 5.

Theorem 1. Matching Distance can be solved in polynomial time if at least
one of the two matchings is not inclusion-wise maximal. Furthermore, Match-

ing Distance restricted to instances where both matchings are maximal admits
no polynomial-time o(log n)-factor approximation algorithm, unless P = NP.

The hardness part of Theorem 1 holds even for bipartite graphs of maximum
degree three. Note that it implies approximation hardness for shortest trans-
formations between b-matchings of a graph and for shortest transformations
between independent sets on any graph class containing line graphs.

On the positive side, we show that determining the distance of maximum
matchings of bipartite graphs is FPT in the size d of the symmetric difference of
the input matchings. In our algorithm we consider two cases: either a shortest
reconfiguration sequence contains a non-inclusion-wise maximal matching or not.
Extending the positive side of Theorem 1, we give a polynomial-time algorithm
for the former case. To deal with the latter case, we proceed in two stages.
We first generate (many) instances of Matching Distance, such that the
two input matchings are maximum. This allows us to make some additionial
assumptions based on the Edmonds-Gallai decomposition [22, Ch. 24.4b]. We
then further reduce this variant of Matching Distance toDirected Steiner

Tree with at most d/2 terminals and show that optimal Steiner trees are in
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correspondence with shortest reconfiguration sequences. Optimal Steiner trees
can be computed in FPT time for a constant number of terminals according
to the algorithms [2, 9]. By properly combining the reconfiguration sequences
obtained from optimal Steiner trees we obtain the following result.

Theorem 2. Matching Distance in bipartite graphs can be solved in time
2d ·nO(1), where d is the size of the symmetric difference of two given matchings.

This result raises hopes for possible generalizations, e.g., an FPT algorithm
for finding a shortest transformation between independent sets of claw-free
graphs. The reduction from Matching Distance restricted to maximum
matchings in bipartite graphs to Directed Steiner Tree is approximation-
preserving, which implies the following.

Corollary 3. Matching Distance restricted to maximum matchings in bi-
partite graphs admits a polynomial-time dε-factor approximation algorithm for
every ε > 0, where d is the size of the symmetric difference of two given match-
ings.

We complement Theorem 1 by showing that there is a polynomial-time al-
gorithm that decides if the maximum distance between any two matchings of a
graph is finite. However, we also show that the problems Exact Matching

Distance and Exact Matching Diameter are both hard for the class DP,
which contains NP and coNP.

Theorem 4. The problem Exact Matching Distance is complete for DP

and Exact Matching Diameter is DP-hard.

The class DP is a class of decision problems introduced by Papadimitriou and
Yannakakis in [20]. It is a natural class for exact problems, critical problems,
and for example for the question, whether a certain inequality is a facet of a
polytope [20]. It was proved by Frieze and Teng that the related problem of
deciding the diameter of the graph of a polyhedron is also DP-hard [11].

Notation. We denote by A△B, the symmetric difference of two sets A and
B. That is, A△B := (A \ B) ∪ (B \ A). Unless stated otherwise, graphs
are simple. For standard definitions and notation related to graphs, we refer
the reader to [7]. For a graph G, we denote by V (G) (resp., E(G)) the set
of vertices (resp., edges) of G. We denote by G the complement graph of G
and by E the edge-set E(G) of the complement graph. Let G = (V,E) be a
graph and let M ⊆ E be a matching. A vertex of G that is not incident to any
edge in M is called M -exposed or M -free, otherwise it is matched or covered. It
will sometimes be convenient to work with the reconfiguration graph Mk(G) of
matchings of a graph G, which is defined as follows.

V (Mk(G)) := {M ⊆ E | M is a matching in G, |M | = k}

E(Mk(G)) := {MN | M,N ∈ V (Mk(G)), |M △N | = 2}

We denote by distMk(G)(M,N) the distance of two matchings in Mk(G) and
by diam(Mk(G)) the maximal distance of any two vertices of Mk(G).

5



The remainder of this paper is organized as follows. In Section 2, we prove
Theorem 1. In Section 3, we provide the FPT algorithm and the approxima-
tion algorithm for finding a shortest reconfiguration sequence for two maximum
matchings of a bipartite graph. Section 4 contains our hardness results for de-
ciding the exact distance of two matchings and the exact diameter of the graph
of matchings.

2 Hardness of Matching Distance

The goal of this section is to prove Theorem 1. The positive part of 1 is a
consequence of the following lemma.

Lemma 5 (∗). Matching Distance restricted to instances where at least one
of the two matchings is not inclusion-wise maximal can be decided in polynomial
time.

To prove Lemma 5, we show that the distance of two matchings Ms and
Mt, at least one of which is not inclusion-wise maximal, is either |Ms △Mt|/2
or |Ms △Mt|/2 + 1. Furthermore, it can be checked in polynomial time, which
case applies. To prove the hardness part of Theorem 1, we show the following.

Theorem 6. Matching Distance admits no o(log n)-factor approximation
unless P = NP, even when restricted to instances on bipartite graphs of maxi-
mum degree three.

To show approximation hardness we prove in Section 2.2, that a sublogarithmic-
factor approximation for Matching Distance yields a sublogarithmic-factor
approximation of Set Cover, using the construction from Section 2.1. How-
ever, the Set Cover problem is not approximable within a sublogarithmic
factor, unless P = NP [8].

Remark 1. The hardness part of Theorem 1 also holds for the Token Sliding
operation [14] since M1 and M2 are maximum.

Let us briefly recall some definitions related to the Set Cover problem. An
instance I = (U,S) of Set Cover is given by a set U called items and a family
S of subsets of U called hyperedges. The task is to find the minimal number of
sets in S that are required to cover U . We denote this number by OPT(I) and
let n := |U | and m := |S|. Let d := maxS∈S{|S|} be the maximum cardinality
of a set in S and for each u ∈ U let fu = |{S ∈ S | u ∈ S}| be the frequency of
u. Furthermore, let f := maxu∈U{fu} be frequency of I.

2.1 The Construction

We construct from the Set Cover instance I = (U,S) an instance I ′ =
(G,M1,M2) of Matching Distance. An illustration of the construction shown
in Figure 2.

First, for each item u ∈ U we create a 4-cycle Cu on the vertices c1u, c
2
u, c

3
u, c

4
u

and a path Pu on the vertices p1u, p
2
u, . . . , p

2fu
u . We connect c1u and p1u with an

edge for each u ∈ U . Furthermore, for each S ∈ S, we create a path PS on the

vertices p1S , p
2
S , . . . , p

2|S|
S and a path QS on the vertices q1S , q

2
S , . . . , q

L
S , where L is
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an odd number that will be specified later. For each S ∈ S, we connect PS to QS

with the edge p
2|S|
S q1S . Let us now simulate the containment in the hyperedges

as follows. For each item u ∈ U , the terminals of Pu are the vertices piu where
i is even. For each hyperedge S ∈ S, the terminals of PS are the vertices piS
where i is odd. Now, we add edges forming a matching on the terminal vertices
such that there is a (unique) edge in the matching between the terminals of
Pu and the terminals of PS if and only if u ∈ S. Note that such a matching
exists since there are |S| terminals in PS and fu terminals in Pu. Note that
G is bipartite, since we create edges between vertices with an even index and
vertices with an odd index. Also note that since we assume that m = poly(n),
the size of the instance is polynomial in n+m, whenever L is.

It remains to construct two matchingsM1 andM2 of G. Observe that Pu and
PS (for u ∈ U and S ∈ S) are paths with an even number of vertices, they admit
a unique perfect matching Mu (MS) for each u ∈ U (S ∈ S). Similarly, the
path QS admits a matching NS := {q1Sq

2
S , q

3
Sq

4
S , . . . q

L−2
S qL−1

S }. Note that QS

also admits another perfect matching if we push the matching to the right (this
will be of importance for the proof of Theorem 6). Now let M ′ =

⋃

u∈U Mu ∪
⋃

S∈S MS ∪NS . The matching M1 is M ′ plus edges c1uc
2
u and c3uc

4
u for each u ∈

U . And the matching M2 is M ′ plus the edges E(Cu) \ M1 = {c2uc
3
u, c

1
uc

4
u}

for each u ∈ U . That is, M1 and M2 only differ on the 4-cycles in G and
the vertices qLS are M1-free and M2-free for each S ∈ S. This completes the
construction of the instance I ′ = (G,M1,M2). Note that the matchings M1 and
M2 are maximum.

Figure 2 illustrates the above construction. The dashed edges are M1-edges
and the dotted edges are M2 edges. The terminal nodes that are used in order
to model the incidence relation of the Set Cover instance are indicated by the
square shapes. Informally, we think of L as a very large number, so in order to
find a short reconfiguration sequence from M1 to M2, it is desirable to minimize
the number of times an alternating path from q1S to qLS is reconfigured in order
to switch the matching edges on each cycle gadget.

2.2 Proof of Theorem 6

Let I = (U,S) be an instance of Set Cover and let I ′ = (G,M1,M2) is an
instance of Matching Distance, which is constructed from I as described in
Section 2.1. In order to prove the hardness-of-approximation result, we need
to construct a reconfiguration sequence from M1 to M2 from a cover and vice
versa. We need two lemmas and let L := |U |(2 + f + d). Observe that since L
is polynomial in |I|, the instance I ′ can be constructed in polynomial time.

Lemma 7 (∗). Let C ⊆ S be a cover of U . Then there is a reconfiguration
sequence from M1 to M2 of length at most 2L|C|+ 2|U |(2 + f + d).

Lemma 8 (∗). There is a polynomial-time algorithm A′ that constructs from
a reconfiguration sequence τ from M1 to M2 of length |τ | a set cover C ⊆ S of
cardinality at most |τ |/2L.

We are now ready to prove Theorem 6.

Proof of Theorem 6 (sketch). Suppose we have an f(n′)-factor approximation
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Figure 2: An example of the construction of an instance (G,M1,M2) of Match-

ing Distance from an instance (U,S) of Set Cover, where U = {1, 2, 3} and
S = {S1, S2, S3}, S1 = {1}, S2 = {1, 2}, S3 = {2, 3}. The terminals are indi-
cated by square node shapes.

algorithm A for Matching Distance, where n′ = |I ′|. Then

A′(I)
Lemma 8

≤
A(I ′)

2L

Lemma 7
≤

f(n′)(OPT(I) · 2L+ 2|U |(f + d+ 2))

2L
≤ 2f(n′)OPT(I) .

That is, we can compute in polynomial time a 2f(n′)-approximate solution of I.
Combining this with the result of Dinur and Steurer [8] completes the proof.

With a slight modification of the proof, we can show that the problem
Matching Distance remains hard, even if the matchings are not maximum.

Corollary 9 (∗). Matching Distance on bipartite graphs of maximum degree
three and matchings that are not maximum does not admit a polynomial-time
o(log n)-factor approximation algorithm, unless P = NP.

3 Distance of Matchings in Bipartite Graphs is

FPT

The main result of this section is Theorem 2, which states that Matching

Distance for matchings on bipartite graphs is FPT, where the parameter is
the size of the symmetric difference of the source and target matchings. In the
following, let (G,Ms,Mt) be an instance of Matching Distance, where the
graph G = (V,E) is bipartite. Due to Lemma 5, we may assume that Ms and
Mt are inclusion-wise maximal, since otherwise we may find a shortest transfor-
mation in polynomial time. Our FPT algorithm distinguishes two cases. First,
it may happen that in a shortest transformation some intermediate matching is

8



not inclusion-wise maximal. We show that in this case a shortest transformation
may be found in polynomial time.

Lemma 10 (∗). There is a polynomial-time algorithm that outputs a shortest
transformation from Ms to Mt via a matching M that is not inclusion-wise
maximal, or indicates that no such transformation exists.

Note that Lemma 10 properly generalizes Lemma 5 and therefore gives a
positive result beyond the the complexity classification stated in Theorem 1.
The proof idea is to find a cheapest transformation into a matching that is
not inclusion-wise maximal respect to a certain cost measure that reflects the
“progress” we make by performing exchanges along a given augmenting path.
The progress is essentially the sum of the length of an augmenting path and the
length of the remaining transformation, which can be determined by Lemma 5.

On the other hand, we need to check the length of a shortest transformation
that avoids matchings that are not inclusion-wise maximal. For this purpose,
we use a reduction to the problem Directed Steiner Tree, which is defined
as follows.

Directed Steiner Tree

Input: Directed graph D = (V,A), integral arc weights c ∈ Z
A
≥0,

root vertex r ∈ V , and terminals T ⊆ V .
Task: Find a minimum-cost directed tree in D that connects the
root r to each terminal.

It is known that Directed Steiner Tree parameterized by the number
of terminals is FPT [2, 9]. For the remainder of this section let d := |Ms △Mt|.
Our reduction gives at most d/2 terminals. As a consequence, we may use the
FPT algorithm from [2] for Directed Steiner Tree to obtain the following
result.

Lemma 11. Let Ms and Mt be maximum. Then there is an algorithm that
finds in time 2d/2 ·nO(1) a shortest transformation from Ms to Mt, or indicates
that no such transformation exists.

In order to deal with matchings that are not maximum, we do the following.
Let (U,W ) be a bipartition of the vertex set V . For each cycle C in the in
the symmetric difference of Ms and Mt, we have to guess if C is reconfigured
using an alternating path from an exposed vertex in U or in W in a shortest
transformation. For paths in the symmetric difference there is no choice. There-
fore, the number of different choices for reconfiguring all paths and cycles in the
symmetric difference is bounded by 2d/4, so we may check all possibilities and
pick a shortest transformation. Theorem 2 then follows from lemmas 10 and 11.
If Ms is maximum, then Lemma 11 only needs to be invoked once. By using
the approximation algorithm for Directed Steiner Tree from [5] instead of
the exact algorithm from [2] in the proof of Lemma 11, we obtain Corollary 3.

Our techniques are not likely to generalize to matchings in non-bipartite
graphs. We leave as an open problem whether finding a shortest transforma-
tion between two matchings in non-bipartite graphs is FPT in the size of the
symmetric difference of source and target matchings.

In the following, let C (resp., P) be the set of (Ms,Mt)-alternating cycles
(resp., (Ms,Mt)-alternating paths) in (V,Ms △Mt).

9



3.1 Reduction to Directed Steiner Tree

Let I = (G,Ms,Mt) be an instance of Matching Distance, where the G =
(U ∪W,E) is bipartite and the matchings Ms and Mt are maximum. We will
reduce the task of finding a shortest transformation from Ms to Mt to the
Directed Steiner Tree problem. Note that if some edge is not contained
in a maximum matching of G, we cannot use it for reconfiguration. Therefore,
we may assume that every edge of G is contained in some maximum matching.
Let Xs be the set of Ms-free vertices of G. Since Ms and Mt are maximum, we
may assume the following.

Fact 12. We may assume that Xs ⊆ U .

The main feature of the reduction is that the arc-costs in the auxiliary di-
rected graph will reflect the number of exchanges we need to perform in the
corresponding transformation. The terminals are placed each cycle in Ms △Mt

to ensure a correspondence between Steiner trees and transformations from Ms

to Mt. Without loss of generality, let Xs ⊆ U be the set of Ms-free vertices of G.
We construct an instance (D, c, r, T ) of Directed Steiner Tree as follows.
The digraph D = (U ′, A) is defined by

U ′ := {v ∈ U | ∃ an even-length Ms-alternating path from Xs to v} ∪ {r}

A := {uw | u,w ∈ U, ∃v ∈ W : uv ∈ E \Ms, vw ∈ Ms} ∪R ,

where r is a new vertex and R := {rv | v ∈ Xs}. For an arc uw ∈ A, let the
weight cuw be given by

cuw :=











0 if u = r,

1 if there are two edges uv ∈ Mt and vw in Ms.

2 otherwise.

The set T of terminals is given by T := U ′ ∩
⋃

Z∈C∪P V (Z). Note that since Ms

and Mt are matchings of G, any two distinct items in P ∪ C are vertex-disjoint.
The root of the Steiner tree is the vertex r. This completes the construction of
the instance (D, c, r, T ).

3.2 Proof of Lemma 11

Let (G,Ms,Mt) is an instance of Matching Distance, where the G = (U ∪
W,E) is a bipartite graph and the matchings Ms and Mt are maximum. By
Fact 12, we may assume that each Ms-free vertex is in U . Furthermore, let I ′ =
(D, c, r, T ) be an instance of Directed Steiner Tree, constructed according
to Section 3.1, where D = (U ′, A).

Let us first introduce some notation that will be used throughout this section.
An arc of weight one is called special. Note that, by definition of A, all the arcs
entering in w have to pass through the vertex v which is matched to w byMs. In
particular, for each pair of edges uv ∈ Mt and vw ∈ Ms, there exists a (unique)
special arc uw of D. Finally note that, since a vertex u is incident to at most
one edge of Ms and one edge of Mt, the vertex u has at most one incoming
special arc and at most one outgoing special arc. For each special arc uw ∈ A,
there is some Z ∈ C ∪ P , such that u,w ∈ V (Z). Let Z ∈ P ∪ C. We denote by

10



A(Z) ∈ A the set of special arcs with both endpoints in V (Z). If Z is a cycle of
length 2k then A(Z) is a directed cycle of length k and if Z is a path of length
2k then A(Z) is a directed path of length k.

An arc of weight zero is called artificial. By definition, any artificial arc is
incident to the root r. We first observe some properties of optimal Steiner trees
for I ′.

Proposition 13 (∗). Any optimal Steiner tree F for I ′ satisfies:

(i) For each P ∈ P, the tree F contains all arcs in A(P ).

(ii) For each C ∈ C, the tree F misses exactly one arc of A(C).

(iii) For each P ∈ P, the root r is joined to the Ms-free vertex of P .

The next lemma shows how to construct from an optimal Steiner tree F of
cost c(F ) a reconfiguration sequence of length c(F ).

Lemma 14. Let F be an optimal Steiner tree for I ′. Then there is a reconfig-
uration sequence of length c(F ) that transforms Ms to Mt.

Proof. Let A′ be the arc-set of F . Let us consider a depth-first-search (DFS)
traversal of the tree F starting at r, where at each vertex v, we select a successor
that is joined to v by an arc of largest weight among all successors of v in F
that have not been visited previously by the DFS. The traversal of F yields
a sequence a1, a2, . . . , am of arcs of A′ of length m := 2|A′|. This is the case
since each arc is visited twice: once when going “down” in the tree F and a
second time when going “up”, that is, when we are backtracking. Note that the
preference for arcs of weight two will be important to prove the correctness of
the transformation.

For 1 ≤ i ≤ m, let ui, wi ∈ U , such that ai = uiwi. If ai is not artificial,
let Pi = ui, vi, wi be the unique path of length two in G, such that viwi ∈ Ms.
Furthermore, if ai is not artificial, let ēi := uivi and ei := viwi. Note that for
1 ≤ i ≤ m, if ai not artificial, then ei ∈ Ms and ēi ∈ E \Ms. By Proposition 13,
for each C ∈ C, the tree F misses exactly one arc aC of A(C). By definition,
the arc aC is a shortcut for a path u, v, w of length two in G, such that uv ∈ Mt

and vw ∈ Ms. We denote by eC the unique Mt-edge incident to the source of
aC . We will use the edge eC when backtracking to complete the reconfiguration
of the cycle C.

We now specify the reconfiguration sequence M0,M1, . . . ,Mm, where M0 :=
Ms. For each 1 ≤ i ≤ m, let Mi+1 be given as follows.

Mi+1 :=































Mi if ai+1 is artificial

Mi − ei+1 + ēi+1 otherwise, if we traverse ai+1 downwards,

Mi otherwise, if ai+1 is special,

Mi − ēi+1 + eC otherwise, if ai ∈ A(C) for C ∈ C,

Mi − ēi+1 + ei+1 otherwise.

(1)

Note that if several cases apply, then we choose the first one in the given
order. The next two claims establish that M0,M2, . . . ,Mm is a reconfiguration
sequence from Ms to Mt. Claim 1 is omitted due to space limitations.
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Claim 1. Let 1 ≤ j ≤ m and suppose we have processed arcs a1, a2, . . . , aj , so
Mj is our current set of edges. Let ai ∈ A, such that ai is not artificial. Then
the following holds:

• If ai has been traversed downwards but not upwards, then ēi = uivi is in
Mi \Mi.

• If ai has not been traversed so far, then ei = viwi is in Mi ∩Mi.

• If an artificial arc rv has not been visited so far, then v is Mj-free.

• Let C be a cycle of C and let aC = uw be the arc of C not in F and
a = u′u the arc before aC in C and a′ = ww′ the arc after it in C. Then
if at step j, a has been visited upwards and a′ has not then Mj is u-free.

Claim 2. Mm = Mt.

From the definition of (1) it is straightforward to see that all the artificial
arcs lead to no exchange, all the special arcs lead to one exchange and all the
other arcs lead to two exchanges. Therefore, the total number of exchanges is
c(F ), as claimed.

We show how to obtain from a reconfiguration sequence S that transforms
Ms to Mt a subgraph of DS of D, such that the root r is connected to each
terminal in D. Let S := M0,M1, . . . ,Mm be a reconfiguration sequence of
matchings of G. Let A(S) be the subsets of the arcs of D that correspond to
some exchange in S. That is, A(S) is given by

A(S) := {uw ∈ A | ∃1 ≤ i ≤ m, v ∈ U ′ : {uv, vw} = Mi−1 △Mi}

Furthermore, let DS := (U ′, A(S) ∪R) ⊆ D be the subgraph of D given by the
arcs A(S) and the artificial arcs R.

Lemma 15 (∗). Let S := M0,M1, . . . ,Mm be a reconfiguration sequence from
Ms to Mt. Then, for each terminal w ∈ T , there is a rw-path in DS .

The main idea in the proof of Theorem 11 is as follows. Given some reconfig-
uration sequence that transforms Ms into Mt, we obtain a subgraph of D that
contains a Steiner tree F . Let F ∗ be an optimal solution to I ′. By Lemma 14,
we obtain from F ∗ a reconfiguration sequence of length m∗ = c(F ∗) that trans-
forms Ms to Mt. Hence, we have m∗ = c(F ∗) < c(F ) ≤ m. Therefore, the
directed Steiner tree F is optimal if and only if S is a shortest reconfiguration
sequence. Using the exactDirected Steiner Tree algorithm from [2] to com-
pute F ∗ yields Theorem 2, while using the approximation algorithm from [5]
yields Corollary 3.

3.3 Proof of Theorem 2

By Lemma 10, we may compute a shortest transformation from Mt to Mt via
a matching that is not inclusion-wise maximal in polynomial time. Hence it
remains to deal with the case that such a transformation is expensive (or does
not exist). For this purpose, we reduce the problem to the case where both
matchings are maximum and repeatedly use the algorithm from Lemma 11. Let
us fix some bipartition (U,W ) of the vertex set V . If Ms is not maximum, then
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there is an Ms-augmenting path, so there are Ms-free vertices on both sides of
the bipartition (U,W ). In particular, it may happen that Ms-free vertices on
both sides can be used in order to reconfigure a cycle in Ms △Mt, as explained
below. Hence, for each cycle in |Ms △Mt|, we have to check if in a shortest
transformation it is reconfigured using an exposed vertex from U or from W .
Since the number of choices is bounded by a function of the size of the symmetric
difference, we just enumerate all possibilities.

The reduction to the restriction of Matching Distance where both match-
ings are maximum is as follows. We recall the following lemma from [13].

Lemma 16 ([13, Lemma 1]). Suppose that Ms and Mt are maximum matchings
of G. Then, there a transformation from Ms to Mt if and only if, for each cycle
C ∈ C, there is an Ms-alternating path in G connecting an Ms-free vertex to C.

In the light of this lemma we say that a cycle C ∈ C is reconfigurable from U
if there is an Ms-alternating path that connects an Ms-free vertex in U to C.
If a cycle C ∈ C is neither reconfigurable from U nor from W , then there is
no transformation from Ms to Mt. Furthermore, we say that a path P ∈ P is
reconfigurable from U , if P contains an Ms-free vertex in U . Let us fix for each
F ∈ C ∪ P a choice SF ∈ {U,W}, such that F is reconfigurable from SF . Let
S ∈ {U,W}C∪P be a tuple corresponding to feasible choice of the side of the
bipartition for each item in C ∪ P . Furthermore, let Xs be the set of Ms-free
vertices of G. Based on the choice S, we construct two instances IU (S) and
IW (S) of Matching Distance on maximum matchings as follows. Let

MU (S) :=
⋃

F∈C∪P:SF=W

(E(F ) ∩Ms) ∪
⋃

F∈C∪P:SF=U

(E(F ) ∩Mt) ,

and let IU (S) := (G − (Xs ∩ W ),Ms,MU (S)) and IW (S) := (G − (Xs ∩
U),MU (S),Mt). Note that Ms and MU (S) are maximum in G − (Xs ∩ W )
and MU (S) and Mt are maximum in G− (Xs ∩ U).

Let us now describe the algorithm that outputs a shortest transformation
from Ms to Mt if it exists. For each feasible choice S ⊆ {U,W}C∪P we invoke
Lemma 11 on IU (resp., IW ) to obtain a transformation α1 (resp., α2) from Ms

to MU (S) (resp., MU (S) to Mt) if it exists. Clearly, by combining α1 and α2

we obtain a transformation from Ms to Mt. Let us denote this transformation
by α(S) and by |α(S)| its length. Let S∗ ∈ {U,W}P∪C such that |α(S∗)| is
minimal. If there is no transformation for any choice S, then |α(S∗)| = ∞.
According to Lemma 10 we determine in polynomial time the length |β∗| of a
shortest transformation from Ms to Mt via a matching that is not inclusion-wise
maximal. If |α(S∗)| and |β∗| are both not finite, then (G,Ms,Mt) must be a
No-instance. Otherwise, we output output either the transformation of length
|β∗| via a matching that is not inclusion-wise maximal, or a transformation of
length |α(S∗)| via MU (S

∗), depending on which is shorter.
The running time of the algorithm is dominated by the computation of

|α(S∗)| and S∗. Both |α(S∗)| and S∗, as well as a corresponding transformation
if it exists can be computed in time 2d/2 · 2d/2 · nO(1) by Lemma 11. The
leading factor of 2d/2 bounds the number of feasible choices of S ∈ {U,W}P∪C.
The overall running time of the algorithm is therefore bounded by 2d · nO(1)

as claimed. The correctness of the algorithm is a consequence of the following
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lemma, which ensures that in the case that no optimal transformation visits a
matching that is not inclusion-wise maximal, we have that an optimal choice of
S ⊆ {U,W}C∪P also results in an optimal transformation from Ms to Mt.

Lemma 17 (∗). Suppose that no shortest transformation from Ms to Mt has an
intermediate matching that is not inclusion-wise maximal. Let τ := M0,M1, . . . ,Mm

be a shortest transformation from Ms to Mt of length m. Then |α(S∗)| ≤ m.

4 Exact Distance and Diameter

We will consider the exact versions of the problems of determining the distance of
two matchings and the diameter of the reconfiguration graph. Before presenting
our hardness result for these problems, let us first prove that we can determine
in polynomial if the diameter of the reconfiguration graph of matchings is finite.
In other words, for any k ≥ 0, we can determine in polynomial time if Mk(G)
is connected.

Note that proof of [13, Proposition 2] provides a polynomial-time algorithm
for deciding, whether the distance of two given matchings is finite. We show
that there is a polynomial-time algorithm that decides if the diameter of Mk(G)
is finite. To this end we need a condition that characterizes Yes-instances of
Matching Reconfiguration, which was given in [13, Lemma 1], as well as
the Edmonds-Gallai decomposition of the vertex set of G [22, Ch. 24.4b]. Using
these two ingredients, we can check efficiently if the diameter of Mk(G) is finite.

Theorem 18 (∗). There is a polynomial-time algorithm that, given a graph G
and a number k ∈ N, decides if Mk(G) is connected.

For the remainder of this section we will consider maximum matchings. That
is, we restrict our attention to instances of Exact Matching Distance and
Exact Matching Diameter, where the number k is the equal to the size
of a maximum matching of the input graph G. Using a similar construction
to the one from Section 2.1, we show that the problem of Exact Matching

Distance is complete for the class DP, which was introduced in [20] as the
following class of languages

DP := {L1 ∩ L2 | L1 ∈ NP, L2 ∈ coNP}

From the DP-completeness of Exact Matching Distance, the DP-hardness of
Exact Matching Diameter will follow in a relatively straightforwardmanner.
To show that Exact Matching Distance is DP-hard we use a reduction from
Exact Vertex Cover, which is given a follows.

Exact Vertex Cover

Input: Graph G and number ℓ.
Question: Is ℓ the minimum size of a vertex cover?

The Construction. Let H = (V,E) be a graph. Starting with the empty
graph, we construct a graph G and two matchings M and N of G as follows.
We first create a vertex t. For each e ∈ E, we create a 4-cycle Ce on the vertices
c1e, c

2
e, c

3
e, c

4
e. Then, for each v ∈ V , we create two vertices p1v and p2v and create

a path Pv p1vp
2
vt. Now, for e ∈ E and v ∈ V , we add an edge c1ep

1
v whenever
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Ce1

Ce2

Ce3

p1v1

p1v2

p1v3

p2v1

p2v2

p2v3

t q1 q2 q3 q4 q5 q6

Figure 3: Example of the construction of G, M , N from the graph H = C3.

e is incident to v. In a final step we create new vertices q1, . . . , q6 and add
a path t, q1, q2, . . . , q6 to G. Note that we added this path in oder to avoid a
case analysis when we determine the maximal distance of any two matchings.
Observe that G is bipartite and that a maximum matching in G has precisely
one unmatched vertex. Let M and N be two maximum matchings that both
leave t exposed and are disjoint on Ce for each e ∈ E. This completes the
construction of G, M , and N . An illustration of the construction where H is
a cycle on three vertices is shown in Figure 3. The dashed edges are in M and
the dotted edges are in N .

Proof of Theorem 4 (sketch) By [4, Theorem 5.4], the problem Exact

Vertex Cover is complete for the class DP. Theorem 4 now follows directly
from this result and the next two lemmas. The key insight is that if we know the
size of a smallest vertex cover, then we know the distance of the two matchings
and the diameter of the reconfiguration graph after performing the construction
above.

Lemma 19 (∗). Let H be a graph and let G, M , N be the graph and the two
matchings obtained according to the construction above. Then distMk(G)(M,N) =
3|E(H)|+ 2τ(H), where τ(H) is the size of a smallest vertex cover of H.

Lemma 20 (∗). Let H be a graph and let G, M , N be the graph and the two
matchings obtained according to the construction above. Then diamMk(G) =
distMk(G)(M,N) + 6.
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A Edmonds-Gallai Decomposition

A matching of a bipartite graph (A∪B,E) is called A-perfect, if it matches each
vertex of A. Let G = (V,E) be a graph, let M be a maximum matching of G
and let X := {v ∈ V (G) | v is M -free}. Consider the following partition of the
vertex set V (G) into D(G), A(G), C(G) ⊆ V (G).

• D(G) := {v ∈ V (G) | there is an M -alternating path of even length from X to v}

• A(G) := {v ∈ V (G)\D(G) | there is an M -alternating path from X to v}

• C(G) := {v ∈ V (G) | there is no M -alternating path from X to v}

The following classical theorem states that D(G), A(G), and C(G) depend
only on G, but not on the choice of the maximum matching.

Theorem 21 (Edmonds-Gallai decomposition, see [22, Ch. 24.4b]). Let G be a
graph and D(G), A(G), C(G) be given as above. Then, a maximum matching
of G can be partitioned into

1. a perfect matching of G[C(G)],

2. a matching that leaves precisely one vertex unmatched in each component
of G[D(G)],

3. and an A-perfect matching from A(G) to D(G).

Furthermore, the partition of G into D(G), A(G), C(G) can be found in polyno-
mial time.

B Proofs Omitted from Section 2

Proof of Lemma 5. Let I = (G,M1,M2) be an instance of Matching Dis-

tance where at least one of M1 and M2 is not inclusion-wise maximal. With-
out loss of generality, we assume that M1 is not inclusion-wise maximal. Since
M1 and M2 are matchings, the graph on the edges M1 △M2 is composed of
disjoint paths and cycles. Let OPT(I) be the shortest length of a reconfigu-
ration sequence that transforms M1 into M2. We show that OPT(I) is either
|M1 △M2|/2 or |M1 △M2|/2+1. The exact value can be determined as follows.
The shortest reconfiguration sequence is equal to |M1 △M2|/2 if and only if one
of the following statements is true.

• All the components of M1 △M2 are paths;

• One of the paths in M1△M2 has an odd number of edges.

Note that |M1 △M2|/2 is indeed a lower bound on the length of the reconfigu-
ration sequence. Assume that at least one of the above statements is true. If
the symmetric difference of M1 and M2 only contains paths, then we can move
tokens from M1 to M2 in a greedy fashion until the target configuration M2

is reached. Assume now that M1 △M2 contains a path with an odd number
of vertices. Let us prove that there is a reconfiguration sequence that trans-
forms M1 into M2 by induction on the number of cycles in M1 △M2. Since
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|M1| = |M2|, there is a path in M1△M2 containing more edges of M2 than
edges of M1. We slide tokens on this path path as in the previous case, until a
path P consisting of a single M2-edge remains in the symmetric difference. Let
C be a cycle in M1△M2. We can transform C into a path, by moving a token
from C to P . This decreases the number of cycles in the symmetric difference by
one and leaves a path that contains more M2-edges than M1-edges. We invoke
the induction hypothesis and the statement follows.

Assume now thatM1 △M2 contains a cycle and does not contain a path with
an odd number of edges. If there is a transformation of length |M1△M2|/2,
then, at each step, we must move a token from M1 to M2. We can do so, again
in a greedy fashion, by moving tokens on paths in M1 △M2. At some point
however, only cycles remain the symmetric difference. But then, we cannot
move any token, such that the number of tokens on M2 is increased. Therefore,
there is no transformation from M1 to M2 of length |M1 △M2|/2.

Let us finally prove that a transformation of length |M1△M2|/2+ 1 always
exists. Since M1 is not inclusion-wise maximal, it is possible to move any token
of M1 to some edge e, which is not incident to any edge of M1. Let f be an
edge of M1 in a cycle of M1△M2. We can move the token of f to e. Let
M ′

1 the resulting matching. Note that the cycle on which f appeared is now
a path of odd length in the symmetric difference. Moreover, we have that
|M ′

1 △M2| ≤ |M1 △M2|. By our previous arguments, there is a transformation
of length at most |M1 △M2|/2 between M ′

1 and M2. It follows that there is
a reconfiguration sequence of length |M1 △M2|/2 + 1 that transforms M1 into
M2.

All the steps can indeed by performed in polynomial time, which concludes
the proof.

Proof of Lemma 7. As usual for the token sliding operation, we will frequently
say that we reconfigure the alternating path P by “sliding” the matching edges
one-by-one, until the other end-vertex of the path P is M1-free. In this proce-
dure, one exchange is performed per matching-edge.

Let C = {S1, S2, . . . , Sk} be a cover of U of size k = OPT(I). We construct
a transformation from M1 to M2 of the desired size. For 1 ≤ i ≤ k, let Ti ⊆ U
be the items that are covered by Si but not by Sj , 1 ≤ j < i. Note that since
C is a set cover, U = ∪k

i=1Ti.
Let us present a way to reconfigure Cu ∩M1 to Cu ∩M2 for each u ∈ Ti as

follows in such a way, after these operations the resulting matching still contains
the edges of M ′ (recall that M ′ is the matching without the edges of the C4’s).
First, we reconfigure the M1-alternating path from q1Si

to the M1-free vertex qLSi
,

which takes L steps and leaves vertex q1Si
exposed. Now, for each u ∈ Ti, we

have the following path P ′ in G: the subpath of Pu from p1u until the terminal

vertex pju that is connected to some vertex pj
′

Si
and then the subpath of PS from

pj
′

Si
to q1Si

. Note that by definition of M ′ this path is an alternating path. We

reconfigure the alternating path P ′, which leaves p1u exposed and takes at most
2(|Si|+ fu) steps. Since p1u is exposed, we can reconfigure the cycle Cu ∩M1 to
Cu ∩M2 with three exchanges such that q1u is again exposed. We finally undo
the changes on P ′ and have again p1Si

exposed. We repeat this operation for
every u ∈ Ti. We finally reconfigure back the path QSi

. Note that after all
these steps, the resulting matching still contains the edges of M ′.
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Let us now count the number of steps we performed to reconfigure Cu ∩M1

to Cu ∩M2 for each u ∈ Ti. The reconfiguration of QSi
costs 2L steps (L steps

at the beginning and L steps at the end to put it back). Moreover, for each
u ∈ Ti we perform at most 3 + 2(|S|+ fu) exchanges.

So if we repeat this operation for every Si, we know that we will reconfigure
the matching on every C4 since

⋃

Si = U . So the total number of exchanges we
performed is at most

2L|C|+
∑

1≤i≤k

|Ti|(3 + 2(f + |Si|)) ≤ 2L|C|+ 2|U |(2 + f + d))

as claimed.

Proof of Lemma 8. Since M1 and M2 are maximum, any u ∈ U a transforma-
tion from M1 to M2 must have p1u exposed at some point. Indeed if a matching
edge on the cycle Cu is moved, it has to be moved an edge incident to it and
then, by construction on an edge incident to p1u.

Let us consider a transformation from M1 to M2. Given a matching M , we
say that a set S ∈ S is active if qLS is covered by M . Let C ⊆ S be the sets that
are active with respect to some matching of the transformation τ . Let us prove
that the sets C cover the items U . Let u ∈ U . As we already mentioned, for each
u ∈ U , the vertex p1u has to be exposed at some step M of the transformation.
Let us prove that a set S ∈ S containing u is active with respect to M . We
can then define an M -alternating path starting on p1u that alternates between
edges in E \M and edges in M . Since Pu is of even length and p1up

2
u is not in

M either we have an augmenting path included in Pu (a contradiction to the
maximality of M) or this alternating path must leave Pu. By the construction
of G, such an edge is of the form e := piup

j
S where i is even and j is odd. Note

moreover, that Let us follow the M -alternating path along PS and QS until it
is no longer possible. Three cases may occur: (i) the alternating path ends at
qLS . In this case S is active and the conclusion holds since by construction u ∈ S.
(ii) the alternating path ends at some other vertex w of PS or QS . Then w is
exposed and we have thus discovered an augmenting path, a contradiction with
the maximality of M . (iii) the alternating path leaves PS via some vertex prS
(since vertices of QS have degree 2 (their precesessors and successors in QS∪PS).
Then there is some v ∈ U such that M contains an edge psvp

r
S , where s is even.

Since it is no longer possible to follow PS in psv, it means that psv is incident to
an edge of M (otherwise we would take prSp

r+1
S in the alternating path). Since

e := piup
j
S where j is odd is in M then r must be even. By construction of G,

prS has degree 2 and then there is no edge psvp
r
S , a contradiction. So only case

(i) can occur, and then a set S containing u is active for M .
Let C ⊆ S be the subset of sets that are active in some step of the trans-

formation τ . Clearly, there is a polynomial-time algorithm A′ that outputs C
given τ . By the discussion above, the set C is a set cover. Let us finally prove
that the size of C is at most |τ |/2L. For each set S ∈ C we have to reconfigure
an alternating path from q1S to qLS twice (once to expose q1S and once to expose
again qLS ), the output C of A′ has cardinality at most |τ |/2L.

Proof of Theorem 6. Suppose we have an f(n′)-factor approximation algorithm
A for Matching Distance, where n′ = |I ′|. That is, A computes a reconfig-
uration sequence from M1 to M2 of length at most f(n′) · OPT(I ′). Then we
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can use algorithm A′ from Lemma 8 to compute a 2f(n′)-approximate solution
of I:

A′(I) ≤
A(I ′)

2L
≤

f(n′) ·OPT(I ′)

2L

≤
f(n′)(OPT(I) · 2L+ 2|U |(f + d+ 2))

2L
≤ f(n′)OPT(I) + 1

≤ 2f(n′)OPT(I) ,

where A′(I) is the size of the cover A′ computes. The first inequality follows
from Lemma 8, the third inequality from Lemma 7 and the fourth one from
the definition of L. Suppose for a contradiction that there is a polynomial-time
o(log n′)-approximation algorithm for Matching Distance, so we let f(n′) =
o(log n′). By the construction of G and m = poly(n), we have n′ = poly(n).
Then, by the reasoning above, we have a 2f(nk)-approximation algorithm for
Set Cover for some constant k. But

lim sup
n→∞

2f(nk)

logn
= lim sup

n→∞

2f(n)

log n1/k
= lim sup

n→∞

2kf(n)

logn
= lim sup

n′→∞

2kf(n′)

logn′
= 0

Therefore, a sublogarithmic-factor approximation guarantee forMatching Dis-

tance implies a sublogarithmic-factor approximation guarantee for Set Cover.
But there is no polynomial-time (1−ε) logn-factor approximation algorithm for
Set Cover for any ε > 0 unless P = NP [8].

Proof of Corollary 9. We modify the construction from Section 2.1 slightly, by
adding a path R r1, r2, . . . , rL′ to the graph G and joining q1S to r1, where L

′ ≥
3|U |+(L+d+f)|S| be odd. Furthermore, we add the edges r1r2, r3r4, . . . , rL′−2rL′−1

to the two matchings M1 and M2. Clearly, the distance from M1 or M2 to a
matching that is not inclusion-wise maximal is larger than the distance between
M1 andM2. Hence, it is easily verified that lemmas 7 and 8 as well as Theorem 6
hold also for the modified construction.

C Proofs Omitted from Section 3

C.1 Proof of Lemma 10

We may check in polynomial time if a transformation from Ms to Mt exists [13,
Proposion 1]. So let us assume that such a transformation exists. Then there
is a transformation from Ms to Mt via a matching that is not inclusion-wise
maximal if and only if Ms and Mt are not maximum. Again, we can check this
condition in polynomial time and may assume in the following that Ms and Mt

are not maximum.
Our first claim follows from the first part of the proof of Lemma 5.

Claim 1. If Ms△Mt contains a path of odd length, then there is a polynomial-
time algorithm that outputs a shortest transformation from Ms to Mt.

Hence we may assume that Ms △Mt contains only even cycles and paths.
Observe that by using any Ms-augmenting path, we can reconfigure Ms into

a matching that is not inclusion-wise maximal. Hence, our task is to find a
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cheapest augmenting path with respect to a certain cost measure that reflects
the “progress” we make by performing exchanges along a given augmenting path.
The progress is essentially the sum of the length of the remaining transformation
and the length of the augmenting path. Let us fix a bipartition (U,W ) of the
vertex set of G and let X be the set of Ms-free vertices in U . Consider the
following auxiliary digraph D = (U ′, A) given by

U ′ := {v ∈ U | ∃ an even-length Ms-alternating path from X to v}

A := {uw | u,w ∈ U, v ∈ W : uv ∈ E \Ms, vw ∈ Ms} .

Let Y := {v ∈ U | v has a neighbor in G that is Ms-free}. Directed XY -paths
in D are in 1-to-1 correspondence with the Ms-augmenting paths in G. For an
XY -path P in D, we denote by PG the corresponding Ms-alternating path in
G. Let us define arc-costs c ∈ Z

A. For an arc uw ∈ A that corresponds to a
path u, v, w in G, let

cuw :=



















0 if uv ∈ Mt \Ms and vw ∈ Ms \Mt,

0 otherwise, if w ∈ V (F ) for some F ∈ P , such that V (P ) ∩ Y 6= ∅,

1 otherwise, if uv ∈ E \ (Ms ∪Mt) and vw ∈ Ms \Mt,

2 otherwise, if uv ∈ E \ (Ms ∪Mt) and vw ∈ Ms ∩Mt .

For an XY -path P in D, let

δP =

{

1 if (Ms △E(PG))△Mt contains a cycle, and

0 otherwise .

Lemma 10 follows from the next two claims.

Claim 2. Let P be anXY -path of cost c(P ) inD. Then there is a transformation
from Ms to Mt of length at most c(P ) + |Ms △Mt|/2 + δP .

Proof of Claim 2. Our goal is to transform Ms into a matching that is not
inclusion-wise maximal by using exchanges along P . Let ℓ(P ) be the number of
arcs of P . For an arc a of D, let ua, va, wa be the path in G that corresponds to
a. Starting from the matching Ms, for each arc a on P , in forward direction, we
swap vawa for uava to obtain the matching M . This amounts to ℓ(P ) exchanges.
Observe that M is not inclusion-wise maximal. By using the algorithm from
Lemma 5, a transformation fromMs toMt viaM has length ℓ(P )+|M △Mt|/2+
δP .

In order to obtain a bound in terms of c(P ), we first perform some prepro-
cessing. Let x (resp., y) be the starting vertex (resp., end vertex) of P . Suppose
that P meets an (Ms,Mt)-alternating path containing a vertex in Y . Let F be
the first such path and let z ∈ U be the first vertex of F that is visited by P .
Then we can reconfigure Ms into a matching M ′

s, such that z has a neighbor
that is M ′

s-free and the symmetric difference between the current matching and
Mt decreases by two in each step. To this end, we perform exchanges along F as
follows. Let y′ be the vertex of F in Y . Then there is a path Q from z to y′ in D
that visits only vertices of F . We process each arc a of Q in reverse order (from
y′ to z′). Then wa is matched to the vertex va by Ms. Furthermore, the vertex
wa must be matched to a vertex w′ by Mt, such that w′ is free with respect to
the current matching. Note that if a is the first arc of Q we process, then wa
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must be covered by Mt, since otherwise Mt is not maximal. We exchange vawa

for waw
′, which decreases the size of the symmetric difference of the current

matching and Mt by two. Let M ′
s be the resulting matching.

Now we have that |M ′
s △Mt| = |Ms △Mt| − |Ms △M ′

s|. Let |Ms △M ′
s| =:

2k. It now remains to consider the xz-subpath P ′ of P in order to reach a
matching that is not inclusion-wise maximal. In the case that P does not meet
an (Ms,Mt)-alternating path, we let P ′ := P , M ′

s = Ms, k = 0, and z := y.
Either way, we have that z has an M ′

s-free neighbor and we have performed k
exchanges to reach M ′

s. Recall that an arc into an (Ms,Mt)-alternating cycle
has cost one. It follows that if δP = 0 and δP ′ = 1, then c(P ) ≥ c(P ′) + 1.
Hence, we have that

c(P ) + |Ms △Mt|/2 + δP ≥ c(P ′) + |M ′
s △Mt|/2 + δP ′ + k .

We show that ℓ(P ′) + |(M ′
s △E(P ′

G))△Mt|/2 = c(P ′) + |M ′
s △Mt|/2. We

start with the matching M ′
s and process the arcs of P ′ in forward direction. We

exchange for each arc a of P ′ the edges vawa and uava. To prove the equality,
consider the relative changes to the size of the symmetric difference between the
current matching and Mt. If a has cost two, then it corresponds to an exchange
that increases the size of the symmetric difference by two. If a has cost one,
then it corresponds to an exchange that does not alter the size of the symmetric
difference. If a has cost zero we distinguish two cases. First, suppose that wa is
not on some (Ms,Mt)-alternating path that contains a vertex in Y . Then the
corresponding exchange decreases the size of the symmetric difference by two.
Otherwise, due to the preprocessing, we know that a is the final arc of P ′ and its
target vertex wa is matched by M ′

s to va. Furthermore, since Mt is maximal, we
have that wa has an M ′

s-free neighbor w
′, such that ww′ ∈ Mt \Ms. So we may

exchange vawa for waw
′ to turn the current matching into a non-inclusion-wise

maximal one. At the same time, we reduce the size of the symmetric difference
with Mt by two. By counting the number of exchanges and keeping track of the
size of the symmetric difference of the current matching and Mt, the claimed
equation follows.

Putting things together, there is a transformation from M ′
s to Mt of length

ℓ(P ′) + |(M ′
s △E(P ′

G))△Mt|/2 + δP ′ = c(P ′) + |M ′
s △M ′

t |/2 + δP ′

≤ c(P ) + |Ms △Mt|/2 + δP .

Claim 3. Let P ∗ be a minimum-cost XY -path in D. Then a transformation
from Ms to Mt via a matching M that is not inclusion-wise maximal has length
at least c(P ∗) + |Ms △Mt|/2 + δP∗ .

Proof of Claim 3. Let N∗ be a matching that is not inclusion-wise maximal,
such that there is a shortest transformation of length L from Ms to Mt via
N∗. So there is an edge e ∈ E(G), such that N∗ + e is a matching. Since
N∗ + e contains more edges than Ms, the symmetric difference of N∗ + e and
Ms contains an augmenting path, which corresponds to an xy-path Q∗ in D,
where x ∈ X and y ∈ Y . Then

L ≥ ℓ(Q∗)+ |(Ms △E(Q∗
G))△Mt|/2+δQ∗

G
= c(Q∗)+ |Ms△Mt|/2+δQ∗

G
. (2)
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The first inequality follows, since the shortest transformation performs at least
ℓ(Q∗) exchanges to reach the matching N∗. By Lemma 5, a shortest transforma-
tion from M to Mt has length |M △Mt|/2+ δQ∗ = |(Ms △E(Q∗

G))△Mt|+ δQ∗ .
Let us prove the final equality of (2). The argument is similar to the proof

of Claim 2. For an arc a of D, let ua, va, wa be the path in G that corresponds
to a. Note that Q∗ visits an (Ms,Mt)-alternating path that contains a vertex in
Y at most once; otherwise there is a shorter transformation. If Q∗ visits such a
path F , we split Q∗ into two paths R and R′ at a vertex z, such that z is the last
vertex of Q∗ not on F . If Q∗ visits no such path, then we let R′ be empty and
R := Q∗. For each arc a of R′ in reverse order (from y to z), we do the following.
The vertex wa is matched to the vertex va by Ms. Furthermore, wa must be
matched to a vertex w′ by Mt. Note that if a is the first arc of R′ we process,
then wa must be covered by Mt, otherwise Mt is not maximal. In each step, we
exchange vawa for waw

′, which decreases the size of the symmetric difference
of the current matching and Mt by two. Let M be the matching obtained be
these exchanges. Then |M △Mt| = |Ms △Mt| − 2ℓ(R′). Now, we perform an
exchange for each arc of R in forward direction. Note that an arc of cost two
corresponds to an exchange that increases the size of the symmetric difference
by two. Similarly, an arc of cost one (zero) corresponds to an exchange that
does not change the size of the symmetric difference (decreases the size of the
symmetric difference by two). By keeping track of the size of the symmetric
difference with respect to Mt, the final equality of (2) follows.

Recall that P ∗ is a shortest XY -path in D. By Claim 2, there is a transfor-
mation from Ms to Mt of length at most c(P ∗) + |Ms △Mt|/2+ δ(P ∗

G). By the
optimality of P ∗

G and observing that visiting a cycle C ∈ C incurs a cost of at
least one for an XY -path, we obtain

c(Q∗) + |Ms △Mt|/2 + δQ∗

G
≥ c(P ∗) + |Ms △Mt|/2 + δP∗

G
. (3)

We combine (2) and (3) to prove the claim.

Note that we can find in polynomial-time a minimum-cost XY -path P ∗ in
D, for example by Dijkstra’s algorithm. Hence, it suffices to transform Ms into
the matching Ms △E(P ∗

G), which is not inclusion-wise maximal, and then use
the algorithm from Lemma 5 to transform the resulting matching into Mt. By
Claim 3, the transformation has minimal length with respect to all transforma-
tions from Ms to Mt via a matching that is not inclusion-wise maximal.

C.2 Remaining Proofs omitted from Section 3

Proof of Fact 12. If an edge does not occur in some maximum matching of the
input graph G then it is useless for reconfiguration. Therefore, we may assume
that every edge of G occurs in some maximum matching. Also, we may assume
that G is connected, otherwise we consider each component separately. Now
consider the Edmonds-Gallai decomposition D, A, C of the graph G. The odd
components of the decomposition are just single vertices since they are factor-
critical, and no factor-critical graph is bipartite. By our assumptions above, A
is an independent set and C is empty (no edge between A and C occurs in a
maximum matching; G is connected). Therefore, (D,A) is a bipartition of V (G)
with all exposed vertices on the same side, D.
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Proof of Proposition 13. Observe that since F is a directed tree, the indegree
of each vertex of F except r is precisely one. Let A′ be the arc-set of F .

Proof of (i). Let P ∈ P . Suppose that F is missing at least one arc of A(P ).
Since the indegree of each vertex of F except r is precisely one (they are ter-
minals), there must be two nodes x, y ∈ V (P ), such that xy ∈ A(P ) \ A′ and
the predecessor x′ of y is not in V (P ). Then F − x′y + xy connects r to each
terminal at cost c(F − x′y + xy) < c(F ) since we replace an arc of weight two
by an arc of weigt one. Indeed, as we observed, only one arc entering in y is
special. This contradicts the optimality of F .

Proof of (ii). Let C ∈ C. If A′ contains each arc of A(C), then F is not a tree.
So F misses at least one arc. Suppose that F is missing at least two arcs of
A(C). Since the indegree of each vertex of F except r is precisely one, there
must be two vertices x, y ∈ V (C) as follows. The arc xy is in A(C), but not in
A′ and the predecessor of y is not in V (C). Let a be the in-arc of y in F . Then
F − a + xy connects r to each terminal at cost c(F − a + xy) < c(F ). This
contradicts the optimality of F .

Proof of (iii). Let P ∈ P . Let v ∈ V (P ) be the Ms-free vertex of P . By (i),
the tree F contains the arcs A(P ) and each vertex of F except r has indegree
precisely one. Therefore, there is only a single in-arc pv, where v ∈ V (P ) and
p /∈ V (P ). If p 6= r, then we may replace pv by rv and obtain a directed tree
F − pv + rv that connects r to each terminal at cost c(F − pv + rv) < c(F ).
Again, this is a contradiction to the optimality of F .

Proof of Claim 1 of Lemma 14. The three first statements follow directly from
the definition of the transformation (1).

Let us prove the fourth point. First note that aC exists and all the arcs of
A(C) but aC are in F by Proposition 13. Since a has been visited backwards, it
implies that a′ has been visited forwards (since a′ is an arc of the unique path
from r to a).

aj ∈ A′ by Proposition 13. We first show that the statement holds in step
j. If aj−1 = aj = u′u then u is Mj−1-free (by the second rule of (1)) and
Mj = Mj−1 (by the third rule of (1)). So we can assume that aj−1 is visited
backwards. Since aC is not in F and aC is the only out-arc of u which is special,
the arc aj−1 = uv is neither special nor artificial. By definition of rules four and
five of (1), we have that āj−1 = vu ∈ Mj−2 is moved to an edge not incident to
u in Mj−1. Since Mj = Mj−1, we have that Mj is u-free.

So we can assume that aj 6= a. Let j′ be the step where a is visited backwards.
Since F is a tree and we consider a DFS traversal, no arc incident to w is
considered between steps j′ and j since a′ has not been visited upwards. So
if an edge e incident to u is added in Mj , it can only be by the fourth rule
of (1). So u is incident to an edge eC′ for C′ ∈ C. Since a′ has not been visited
backwards, neither is the arc entering in C. So C 6= C′, a contradiction since it
would mean that u belongs to both cycles C and C′, that must be disjoint.

Claim 2. For 0 ≤ i ≤ m, the set Mi ⊆ E is a matching of G.

Proof of Claim 2 of Lemma 14. The statement holds for i = 0, so let us assume
that for some fixed i < m and 1 ≤ j ≤ i, we have that Mj is a matching of G.
We show that so is Mi+1. Note that |Mi+1| = |Mi| by the definition of (1). Let
us prove that Mi+1 is a matching. If Mi+1 = Mi then the conclusion indeed
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holds, so we assume that Mi+1 6= Mi. We distinguish two cases depending on
whether the arc ai+1 = ui+1wi+1 is visited for the first or second time.

Case 1. The arc ai+1 is visited for the first time (i.e., ai+1 is traversed down-
wards).

We can assume that ai+1 is not artificial, since otherwise Mi = Mi+1. Let
ai = uiwi be the arc visited before ai+1. We distinguish several subcases de-
pending on which rule of (1) was applied to obtain Mi from Mi−1. If the first
rule of (1) was applied to obtain Mi, the arc ai is artificial. Then wi = ui+1

is Mi−1-free by Claim 1. Since Mi−1 = Mi by the first rule of (1), ui+1 also
is Mi-free. So Mi+1 is a matching of G. If the second rule of (1) was applied,
then we have that ui+1 = wi and Mi = Mi−1 − ei + ēi, so wi is Mi-free as
required. So the third, fourth or fifth rule of (1) was applied, and then ai+1 is
traversed downwards and ai is traversed upwards. Since arcs of larger weight
are traversed first and at most one outgoing arc of ui has weight one, we have
that ai has weight two. Therefore, the arc ai cannot be special and rule three
of (1) is not applicable, Finally, if the fourth or fifth rule of (1) were applied,
then ui = ui+1 and, by definition of Mi, in both cases the vertex ui is Mi-free.
Therefore, the set Mi+1 = Mi − ei + ēi is a matching of G.

Case 2. The arc ai+1 is visited for the second time (i.e., ai+1 is traversed up-
wards).

If Mi+1 is obtained via the first or the third rule, then Mi+1 = Mi and the
conclusion holds. Furthermore, rule two is not applicable, since ai+1 is traversed
upwards by assumption. So Mi+1 is obtained by rules four or five of of (1). As
in Case 1, we distinguish several subcases, depending on which rule of (1) was
applied to obtain Mi from Mi−1 when processing ai = uiwi.

If the first rule of (1) was applied, then ui = wi+1 = r, which contradicts
our construction of the instance. If rule two of (1) was applied, then Mi =
Mi−1 − ei + ēi and ai+1 = ai. So in particular, the fourth rule of (1) cannot be
used to obtain Mi+1. Indeed ai = ai+1 cannot be both, special (ai is because of
rule four for ai+1) and not special (ai+1 is not since rule three is not applied).
So we have either Mi+1 = Mi−1 or Mi+1 = Mi and the conclusion holds. We
may therefore assume that ai is traversed for the second time and hence, we
have ui = wi+1. So Mi+1 is the result of rules four or five of (1) and Mi from
rules three, four, or five of (1).

Assume first, that the fifth rule of (1) was applied to obtain Mi+1. We
first prove by contradiction that Mi cannot be obtained using rule three of (1).
Indeed otherwise, ai would be special and belong to Z and ai+1 would not be
special. Since rule four is not applied to obtain Mi+1 and ai+1 would be the
only arc entering V (Z). By Proposition 13 Z would be a path. But then ui

would incident to r, so ai+1 = ru by Proposition 13, a contradiction. If rules
four or five of (1) were applied to obtain Mi, then we have that ui = wi+1 is
Mi-free, so Mi+1 = Mi − ēi+1 + ei+1 is a matching of G.

Finally assume that the fourth rule of (1) was applied to obtain Mi+1. By
definition of rule four, rule three of (1) was applied to ai. So Mi+1 = Mi− ēi+1+
eC for some C ∈ C. Note that by definition of aC , we have that wi+1 = ui is a
vertex of C. Let us denote by u the other endpoint of aC . By Proposition 13,
all the arcs of C but aC are in F and since F is traversed in DFS order, they
were already traversed backwards. The last point of Claim 1 ensures that u is
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Mi−1-free. Since Mi = Mi−1, it is also Mi-free. Thus the exchange of ēi+1 for
eC results in a matching.

This concludes the proof of Claim 2.

Proof of Claim 2 of Lemma 14. By the definition of (1), an edge vw ∈ Ms is
exchanged at most twice during the algorithm, once when the arc a of F ending
in w is traversed downwards and once when it is traversed backwards.

Let us first prove that at the end of the algorithm, if an edge e = vw ∈ Ms is
exchanged, then it is exchanged with an edge in Mt. Let a = uw be the unique
in-arc of w in F . When a is traversed forwards, the edge vw is exchanged with
uv (rule two of (1)). If a is special, then uv is in Mt (by the definition of special
edge) and uv is not exchanged when a is visited backwards (rule three of (1)), so
the conclusion holds in this case. Hence we can assume that a is not special. If
vw /∈ Ms △Mt, then w is not in a cycle C of C, and then it has no out-arc that
is special. Thus, when a is traversed backwards, rule five of (1) applies, and
then vw ∈ Mt. Let us finally assume that a is not special but vw ∈ Mt −Ms.
By Proposition 13, the arc a = uw is the unique arc entering in some item
Z ∈ C ∪ P . Since a is not artificial, Proposition 13 ensures that Z = C ∈ C. By
construction, when a is traversed backwards, the edge uv is exchanged for eC
which is, by definition, in Mt.

To conclude, we simply have to prove that each edge Ms \ Mt has been
exchanged at some point. This is indeed the case since, for each arc vw ∈
Ms −Mt, the vertex w is a terminal. Since F is a Steiner tree, it connects r to
each terminal.

Proof of Lemma 15. Let w ∈ T be a terminal. Then, by the definition of the
arc-set A, there is some edge vw ∈ Ms. By the definition of the Edmonds-
Gallai decomposition in Section 4, there is an even-length alternating path from
an Ms-free vertex to w. Therefore, w ∈ D(G). Let vw be the Ms-edge incident
to w. Then v ∈ A(G). Since, by Theorem 21, any maximum matching of G
induces an A(G)-perfect matching into D(G) and C(G) is completely matched
by any maximum matching, it is only possible to exchange vw for some edge
vz, where z is a neighbor of v. Since vw /∈ Mt, there is some step i, such that
Mi = Mi−1 − vw + vz, for some neighbor z of v. Therefore, the indegree of w
in DS is at least one. If z is Ms-free, then there is some rw-path in DS and we
are done. Suppose this is not the case, so Mi does not cover z, but Ms does.
Then, there is some index i′ < i, such that Mi′ does not cover z, but Mi′−1 does.
Among all such indices, let i′ be the minimal one. So in particular the edge of
Mi′−1 incident to z is the same as in Ms. That is, there is some neighbor v′ of z
and some neighbor z′ of v′, such that Mi′ = Mi′−1− zv′+ v′z′. Since z ∈ D(G),
we have that the indegree of z in DS is at least one. Again, if z is Ms-free then
we are done. We can repeat this argument until we reach either an Ms-free
vertex or either Ms or Mt are not maximum, or to S is not a reconfiguration
sequence transforming Ms to Mt. We conclude that there is an rw-path in DS

for each w ∈ T .

Proof of Lemma 17. We show that we can decompose τ into two transforma-
tions τ1 and τ2, such that τ1 is a transformation from Ms to MU (S) for some
S ∈ {U,W}P∪C and τ2 transforms MU (S) into Mt. Our claim then follows,
since α(S∗) is a shortest such transformation.
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We consider τ as a sequence ((ei, fi))1≤i≤m of exchanges, where ei = viwi

and fi = uivi. For each 1 ≤ i ≤ m, we have that Mi = Mi−1−ei+fi. Note that
for each exchange (ei, fi), the vertex vi is Mi-free. Consider the transformations
τ1 := ((ei, fi))1≤i≤m: ui∈U and τ2 := ((ei, fi))1≤i≤m: ui∈W . We show that we can
apply τ1 to Ms to obtain an intermediate matching M and that we can apply
τ2 to M to obtain Mt. For j ∈ {1, 2}, let |τj | be the length of τj and re-index
the exchanges from 1 to |τj |.

Suppose for a contradiction that for some index i, the exchange (viwi, uivi)
of τ1 cannot be performed and let i be the smallest such index. This means,
that viwi is not in the current matching because some exchange (v′jw

′
j , u

′
jv

′
j)

of τ2 needs to be performed before (viwi, uivi). Again, we assume that j is
the smallest such index. We distinguish two cases. If (viwi, uivi) cannot be
performed since ui is not exposed, then w′

j = ui, so u′
j ∈ U , which contradicts

the construction of τ2. On the other hand, if the exchange (viwi, uivi) cannot
be performed since viwi is not in the current matching, then u′

jv
′
j = viwi. Then

we can perform exchanges 1, 2, . . . , j − 1 of τ2 and 1, 2, . . . , i− 1 of τ1 to obtain
a matching M ′. But uivi is an edge of G and ui and vi are both M ′-free.
Therefore, M ′ is not inclusion-wise maximal. Since τ contains all the exchanges
we performed so far to obtain M ′, there is a transformation from Ms to Mt via
M ′ that has length at most m by Lemma 5, a contradiction.

Let us now prove that τ2 is a transformation from M ′ to Mt. The argument
is similar to the one above. Suppose for a contradiction that for some index i,
the exchange (viwi, uivi) of τ2 cannot be performed and let i be the smallest
such index. If (viwi, uivi) cannot be performed since ui is not exposed, then
w′

j = ui, so u′
j ∈ V , which contradicts the construction of τ1. On the other

hand, if the exchange (viwi, uivi) cannot be performed, because viwi is not
in the current matching, then v′jw

′
j = viwi. Then we can perform exchanges

1, 2, . . . , j of τ1 and 1, 2, . . . , i− 1 of τ2 to obtain a matching M ′. But uivi is an
edge of G and ui and vi are both M ′-free. Therefore M ′ is not inclusion-wise
maximal. Since τ contains all the exchanges we performed so far to obtain M ′,
there is a transformation from Ms to Mt via M ′ that has length at most m by
Lemma 5, a contradiction.

We show that if (ei, fi) is the last exchange of τ1 that involves the edge fi,
then fi cannot be moved by τ2, so fi is in the target matching Mt. Suppose for a
contradiction, that there is some index j, such that the (ej , fj) of τ2 has fi = ej.
Let j be the smallest such index. Then we can apply τ1 to Ms and the perform
all exchanges of τ2 up to index j. Let M ′ be the resulting matching. Then M ′

is not inclusion-wise maximal, since M ′ + ei is a matching of G. Therefore, by
Lemma 5, there is a transformation from Ms to Mt via M ′ of length at most
m, a contradiction.

By swapping τ1 and τ2 and using an analogous argument, we may conclude
that if (ei, fi) is the last exchange of τ2 that involves fi, then fi is in Mt.
Therefore, each exchange (e, f) of τ , such f is involved for the last time occurs
as a final exchange involving f either in τ1 or τ2. Therefore, we obtain Mt by
applying τ1 followed by τ2 to Ms.

Let M be the matching obtained by applying τ1 to Ms and consider the set
P of paths and the set C of cycles in Ms △Mt. We claim that for each F ∈ C∪P ,
when reaching M , we have either completely reconfigured F or performed no
change at all on F . That is, for each F ∈ C ∪ P , we have that M ∩ E(F ) is
either Ms ∩ E(F ) or Mt ∩ E(F ). Suppose for a contradiction, that this is not
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the case for some F ∈ C ∪ P . If some edge f /∈ Ms ∪Mt is incident to F in M ,
then, by the argument above, the edge f cannot be involved in any exchange
of τ2 and will remain in the final matching, a contradiction. If the matching M
contains at least one edge in Ms ∩ E(F ) and at least one edge in Mt ∩ E(F ),
then there is an M -free vertex u ∈ V (F ). Due to the construction of τ1, we
have that u ∈ U . But each exchange in τ2 only swaps two edges incident to a
common vertex in U , so u is Mt-free. Therefore, F must be a path and u is one
of its end vertices. Since all edges of M incident to F are in Ms ∪Mt and u is
Mt-free, we have that M ∩ E(F ) = M ∩E(Mt), a contradiction.

Finally, we choose S ∈ {U,W}C∪P , such that for F ∈ C ∪ P , we have that
SF = U if Mt ∩ E(F ) = M ∩ E(F ) and SF = W otherwise. By the definition
of τ1 and our arguments above, we have that M = MU (S). By the optimality
of the choice of S∗, we have that |α(S∗)| ≤ |α(S)| = m.

D Proofs Omitted from Section 4

Proof of Theorem 18. Let ν(G) be the size of a maximum matching in G and
let A := A(G), D := D(G) and C := C(G) the partition of V (G) according
to the Edmonds-Gallai decomposition. If k < ν(G) then Mk(G) is connected
according to the proof of [13, Proposition 1], so let k = ν(G). From Theorem 21,
we have that G[C] is perfectly matched by any maximum matching of G. Let
us prove that Mk(G) is connected if and only if G[C] admits a unique perfect
matching.

First consider the case that G[C] admits two distinct perfect matchings. Let
M1 and M2 be extensions of the two distinct perfect matchings on G[C] to max-
imum matchings of G. Assume by contradiction that there is a transformation
and let M be the matching just before the first modification of an edge in G[C].
By definition of C, there is no M -alternating path from an M -free vertex to
C for any maximum matching M of G. In particular, there is no exchange
M − e + f , where e ∈ E(G[C]) ∩ M and f ∈ E(G) \ M for any maximum
matching M of G (since otherwise a maximum matching would not be perfect
on G[C]). And since M is C-perfect one cannot replace an edge in G[C] by
another. Therefore, all the matchings in the connected component of M1 in
Mk(G) agree on G[C]. Thus M1 and M2 cannot be connected in Mk(G), and
then Mk(G) is not connected.

On the other hand, suppose that all the maximum matchings agree on
G[C]. Let M1 and M2 be two maximum matchings of G and suppose that
G[M1 △M2] contains an even-length (M1,M2)-alternating cycle C. Then C
must be contained in G[D ∪ A]. By the definition of D and A in Theorem 21,
there is an M1-alternating path from an M1-free vertex to C. Therefore, by
Lemma 16, (G,M1,M2) is a Yes instances of Matching Reconfiguration.
It follows that if G[C] has a unique perfect matching, then Mk(G) is connected,
so diam(Mk(G)) is finite.

Proof of Lemma 19. Let e ∈ E. ReconfiguringM∩E(Ce) to N∩E(Ce) requires
that p1v is exposed for some v ∈ V such that e is incident to v. If this is the
case, then the reconfiguration requires precisely three exchanges. So we need
3|E| exchanges to reconfigure the cycles on four vertices.
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To reconfigure a cycle, we need that one of its neighbors is exposed. By
definition of τ(H) and by construction at least τ(H) vertices have to be exposed
at some step of the algorithm. Let us prove that two steps are needed to expose
a vertex p1u if p1v is exposed. Since all but one vertex are covered by the matching,
we have perfect matchings on all the C4. Thus to expose p1u we need to push the
edge p1up

2
u on p2ut. Since there is an edge incident to t (otherwise two vertices

are exposed), we need to push this edge. Thus at least two steps are needed to
expose p1u. Finally we need one step to expose one vertex p1u at the beginning
and one step to expose t at the end. Therefore, dist(M,N) ≥ 3|E(H)|+2τ(H).
And one can easily prove that a transformation of this length exists.

Proof of Lemma 20. Let M∗ and N∗ be two maximum matchings of G of max-
imal distance in Mk(G). Note that due to the maximality of dist(M,N), for
each e ∈ E such that M∗ and N∗ leave no vertex of Ce exposed, we have that
either M∗ ∩ E(Ce) = {c1ec

2
e, c

3
ec

4
e} and N∗ ∩ Ce = {c2ec

3
e, c

4
ec

1
e} or vice versa

(indeed a transformation where they are different can immediately be adapted
into a transformation where they are the same). So we may assume that M∗

agrees with M and N∗ agrees with N on each e ∈ E such that Ce contains no
exposed vertex of M∗ or N∗. Now, due to the construction of G and since M
and N leave t exposed, dist(M∗,M) ≤ 3 and dist(N∗, N) ≤ 3. Indeed if some
p1u or qi is exposed, we can expose t in at most 3 steps. Similarly, if a vertex of
a C4 is exposed, then we can expose t in two steps.

Hence we have

diam(Mk(G)) = dist(M∗, N∗) ≤ dist(M,N) + 6 (4)

Now letM ′ (N ′) be a maximum matching of G that leaves q6 exposed and agrees
with M (N) on each Ce for each e ∈ E. Then, any reconfiguration sequence
from M ′ to N ′ must include M and N and since dist(M ′,M) = dist(N ′, N) = 3,
we have that dist(M ′, N ′) = dist(M,N) + 6. By (4), the matchings M ′ and N ′

have maximal distance in Mk(G) and the lemma follows.

Proof of Theorem 4. Note that the length of a shortest transformation between
two matchings of G is bounded by O(|V 2|) [13]. Due to the polynomial size of a
certificate, the question “is the distance of two matchings in Mk(G) at most ℓ“
is an NP-question. Therefore, Exact Matching Distance is in DP. In order
to show that Exact Matching Distance and Exact Matching Diameter

are DP-hard, we give a polynomial-time reduction from Sat-Unsat, which is
complete for DP [20] and defined as follows.

Sat-Unsat

Input: 3-CNF formulas F and F ′

Output: Yes if and only if F is satisfiable and F ′ is not.

Note that we may as well reduce from Exact Vertex Cover, which is also
known to be DP-complete [4, Theorem 5.4]. However, to make the proof more
self-contained, we include the simple reduction step from Sat-Unsat to Exact

Vertex Cover. Let F be a 3-CNF formula with m clauses and n variables.
Recall that H has a ℓ-clique if and only if H a ℓ-stable set if and only if H
has a vertex cover of size |V | − ℓ. Using the standard reduction from 3-SAT to
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Clique and adding a clique of size m− 1 to the resulting graph and we have

F ∈ 3-SAT ⇔ H has a maximum clique of size m

⇔ H has a minimum vertex cover of size |V | −m

Lemma 19
⇔ distMk(G)(M,N) = 3|E(H)|+ 2(|V (H)| −m)

Lemma 20
⇔ diamMk(G) = 3|H)|+ 2(|V (H)| −m+ 3)

(5)

On the other hand, using similar arguments we have

F /∈ 3-SAT ⇔ distMk(G)(M,N) = 3|E(H)|+ 2(|V (H | −m+ 1)

⇔ diamMk(G) = 3|E(H)|+ 2(|V (H | −m+ 4)
(6)

Let (F1, F2) be an instance of Sat-Unsat. Let H1 (H2) be the graph con-
structed from F1 (F2) in the reduction from Sat to Clique. Furthermore, let
G1, M1, and N1 (G2, M2 and N2) be the graph and the two matchings ob-
tained from H1 (H2) according to the construction given above. We may obtain
in polynomial time from (F1, F2) an instance (G,M,N, k, ℓ) of Exact Match-

ing Distance as follows: Let G consist of two copies of G1 and one copy of
G2 and let M (N) be the obvious matching in G created from two copies of M1

(M2) and one copy of N1 (N2). Finally, let k be the size of a maximum matching
of G and ℓ := 6|E(G1)| + 4(|V (G1)| − m1) + 3|E(G2)| + 2(|V (G2)| − m2) + 2.
Clearly, the instance I can be constructed from (F1, F2) in polynomial time.
Using (5) and (6) it is readily verified that

(F1, F2) ∈ Sat-Unsat ⇔ distMk(G)(M,N) = ℓ

and that

(F1, F2) ∈ Sat-Unsat ⇔ diamMk(G) = ℓ+ 6
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